将BP神经网络与K-最近邻(KNN)算法耦合起来,建立BK(BP-KNN)模型,该模型以前期模拟流量和相应影响要素作为BP神经网络的输入,出口断面流量作为网络输出,对产汇流过程进行模拟;采用K-最近邻算法,基于历史样本的模拟误差和相应影响要素对...将BP神经网络与K-最近邻(KNN)算法耦合起来,建立BK(BP-KNN)模型,该模型以前期模拟流量和相应影响要素作为BP神经网络的输入,出口断面流量作为网络输出,对产汇流过程进行模拟;采用K-最近邻算法,基于历史样本的模拟误差和相应影响要素对网络输出进行修正,实现了非实时校正模式下的连续模拟。根据BK模型的计算流程将其参数分为3个层次,各层次分别使用NSGA-Ⅱ多目标优化算法进行参数优选,提高了模拟精度、优化效率和网络泛化能力。分别将新安江模型的产流、产流分水源计算模块与BK模型相耦合,建立XBK(Xinanjiang runoff production-BK)和XSBK(Xinanjiang runoff production and separation-BK)模型,在呈村等3个不同类型的流域应用新安江模型、BK模型、XBK模型和XSBK模型进行模拟精度比较,结果表明改进的模型模拟精度更高,较好地解决了神经网络模型在水文模拟中存在的问题。展开更多
水田秧苗列中心线的检测是实现水田除草机器人自主导航的重要保证。在秧苗的不同生长时期,秧苗形态各不相同;并且在南方地区的水田中经常会出现的绿色浮萍、蓝藻,它们的颜色与目标秧苗非常接近,这给秧苗的分割以及列中心线的检测带来很...水田秧苗列中心线的检测是实现水田除草机器人自主导航的重要保证。在秧苗的不同生长时期,秧苗形态各不相同;并且在南方地区的水田中经常会出现的绿色浮萍、蓝藻,它们的颜色与目标秧苗非常接近,这给秧苗的分割以及列中心线的检测带来很大的困难。针对这些问题,提出一种基于彩色模型和近邻法聚类实现秧苗列中心线的检测方法。首先,基于彩色模型即2G-R-B模型(2Green-Red-Blue)和HSI(Hue,Saturation and Intensity)彩色空间中提取S分量提取秧苗灰度特征;然后,在保持秧苗原有形状的前提下提取秧苗特征点,获得秧苗特征点图像;最后,基于近邻法利用特征点间的邻近关系对特征点进行聚类,采用基于已知点的Hough变换(known point Hough transform)提取秧苗列中心线。试验表明:提出的方法能够在图像中存有绿色浮萍、蓝藻等噪声情况下准确提取秧苗灰度特征,平均每幅真彩色图像(分辨率:1280×960)整个流程所需时间小于350ms,并能够适应自然光线变化。提出的方法能够适应环境的变化,满足机器人实时性要求。展开更多
文摘将BP神经网络与K-最近邻(KNN)算法耦合起来,建立BK(BP-KNN)模型,该模型以前期模拟流量和相应影响要素作为BP神经网络的输入,出口断面流量作为网络输出,对产汇流过程进行模拟;采用K-最近邻算法,基于历史样本的模拟误差和相应影响要素对网络输出进行修正,实现了非实时校正模式下的连续模拟。根据BK模型的计算流程将其参数分为3个层次,各层次分别使用NSGA-Ⅱ多目标优化算法进行参数优选,提高了模拟精度、优化效率和网络泛化能力。分别将新安江模型的产流、产流分水源计算模块与BK模型相耦合,建立XBK(Xinanjiang runoff production-BK)和XSBK(Xinanjiang runoff production and separation-BK)模型,在呈村等3个不同类型的流域应用新安江模型、BK模型、XBK模型和XSBK模型进行模拟精度比较,结果表明改进的模型模拟精度更高,较好地解决了神经网络模型在水文模拟中存在的问题。
文摘水田秧苗列中心线的检测是实现水田除草机器人自主导航的重要保证。在秧苗的不同生长时期,秧苗形态各不相同;并且在南方地区的水田中经常会出现的绿色浮萍、蓝藻,它们的颜色与目标秧苗非常接近,这给秧苗的分割以及列中心线的检测带来很大的困难。针对这些问题,提出一种基于彩色模型和近邻法聚类实现秧苗列中心线的检测方法。首先,基于彩色模型即2G-R-B模型(2Green-Red-Blue)和HSI(Hue,Saturation and Intensity)彩色空间中提取S分量提取秧苗灰度特征;然后,在保持秧苗原有形状的前提下提取秧苗特征点,获得秧苗特征点图像;最后,基于近邻法利用特征点间的邻近关系对特征点进行聚类,采用基于已知点的Hough变换(known point Hough transform)提取秧苗列中心线。试验表明:提出的方法能够在图像中存有绿色浮萍、蓝藻等噪声情况下准确提取秧苗灰度特征,平均每幅真彩色图像(分辨率:1280×960)整个流程所需时间小于350ms,并能够适应自然光线变化。提出的方法能够适应环境的变化,满足机器人实时性要求。