期刊文献+
共找到1,284篇文章
< 1 2 65 >
每页显示 20 50 100
An air combat maneuver pattern extraction based on time series segmentation and clustering analysis
1
作者 Zhifei Xi Yingxin Kou +2 位作者 Zhanwu Li Yue Lv You Li 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第6期149-162,共14页
Target maneuver recognition is a prerequisite for air combat situation awareness,trajectory prediction,threat assessment and maneuver decision.To get rid of the dependence of the current target maneuver recognition me... Target maneuver recognition is a prerequisite for air combat situation awareness,trajectory prediction,threat assessment and maneuver decision.To get rid of the dependence of the current target maneuver recognition method on empirical criteria and sample data,and automatically and adaptively complete the task of extracting the target maneuver pattern,in this paper,an air combat maneuver pattern extraction based on time series segmentation and clustering analysis is proposed by combining autoencoder,G-G clustering algorithm and the selective ensemble clustering analysis algorithm.Firstly,the autoencoder is used to extract key features of maneuvering trajectory to remove the impacts of redundant variables and reduce the data dimension;Then,taking the time information into account,the segmentation of Maneuver characteristic time series is realized with the improved FSTS-AEGG algorithm,and a large number of maneuver primitives are extracted;Finally,the maneuver primitives are grouped into some categories by using the selective ensemble multiple time series clustering algorithm,which can prove that each class represents a maneuver action.The maneuver pattern extraction method is applied to small scale air combat trajectory and can recognize and correctly partition at least 71.3%of maneuver actions,indicating that the method is effective and satisfies the requirements for engineering accuracy.In addition,this method can provide data support for various target maneuvering recognition methods proposed in the literature,greatly reduce the workload and improve the recognition accuracy. 展开更多
关键词 Maneuver pattern extraction Data mining Fuzzy segmentation Selective ensemble clustering
在线阅读 下载PDF
基于RSA模型和改进K-means算法的电商行业客户细分
2
作者 杨静 《计算机应用与软件》 北大核心 2025年第8期125-131,172,共8页
针对新兴的网络购物客户数量大、客户流动性强和消费数据多的特点,提出RSA模型结合改进的K-means聚类算法实现客户细分。采用熵值法计算RSA模型各指标的权重,综合各个属性计算客户价值。结合K近邻算法和密度峰值算法,提出一种基于K近邻... 针对新兴的网络购物客户数量大、客户流动性强和消费数据多的特点,提出RSA模型结合改进的K-means聚类算法实现客户细分。采用熵值法计算RSA模型各指标的权重,综合各个属性计算客户价值。结合K近邻算法和密度峰值算法,提出一种基于K近邻和密度峰值聚类的K-means初始聚类中心选取方法,优化传统K-means算法实现客户细分。通过选取的标准数据集和某零售公司在线交易的真实数据进行实验验证,证明了RSA模型和改进K-means算法具有更加优异的性能。 展开更多
关键词 RSA模型 客户细分 k-means算法 密度峰值聚类 K近邻
在线阅读 下载PDF
Simulated annealing spectral clustering algorithm for image segmentation 被引量:3
3
作者 Yifang Yang Yuping Wang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2014年第3期514-522,共9页
The similarity measure is crucial to the performance of spectral clustering. The Gaussian kernel function based on the Euclidean distance is usual y adopted as the similarity measure. However, the Euclidean distance m... The similarity measure is crucial to the performance of spectral clustering. The Gaussian kernel function based on the Euclidean distance is usual y adopted as the similarity measure. However, the Euclidean distance measure cannot ful y reveal the complex distribution data, and the result of spectral clustering is very sensitive to the scaling parameter. To solve these problems, a new manifold distance measure and a novel simulated anneal-ing spectral clustering (SASC) algorithm based on the manifold distance measure are proposed. The simulated annealing based on genetic algorithm (SAGA), characterized by its rapid convergence to the global optimum, is used to cluster the sample points in the spectral mapping space. The proposed algorithm can not only reflect local and global consistency better, but also reduce the sensitivity of spectral clustering to the kernel parameter, which improves the algorithm’s clustering performance. To efficiently apply the algorithm to image segmentation, the Nystrom method is used to reduce the computation complexity. Experimental results show that compared with traditional clustering algorithms and those popular spectral clustering algorithms, the proposed algorithm can achieve better clustering performances on several synthetic datasets, texture images and real images. 展开更多
关键词 spectral clustering (SC) simulated annealing (SA) image segmentation Nystr6m method.
在线阅读 下载PDF
Blind source separation by weighted K-means clustering 被引量:5
4
作者 Yi Qingming 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第5期882-887,共6页
Blind separation of sparse sources (BSSS) is discussed. The BSSS method based on the conventional K-means clustering is very fast and is also easy to implement. However, the accuracy of this method is generally not ... Blind separation of sparse sources (BSSS) is discussed. The BSSS method based on the conventional K-means clustering is very fast and is also easy to implement. However, the accuracy of this method is generally not satisfactory. The contribution of the vector x(t) with different modules is theoretically proved to be unequal, and a weighted K-means clustering method is proposed on this grounds. The proposed algorithm is not only as fast as the conventional K-means clustering method, but can also achieve considerably accurate results, which is demonstrated by numerical experiments. 展开更多
关键词 blind source separation underdetermined mixing sparse representation weighted k-means clustering.
在线阅读 下载PDF
An algorithm for segmentation of lung ROI by mean-shift clustering combined with multi-scale HESSIAN matrix dot filtering 被引量:7
5
作者 魏颖 李锐 +1 位作者 杨金柱 赵大哲 《Journal of Central South University》 SCIE EI CAS 2012年第12期3500-3509,共10页
A new algorithm for segmentation of suspected lung ROI(regions of interest)by mean-shift clustering and multi-scale HESSIAN matrix dot filtering was proposed.Original image was firstly filtered by multi-scale HESSIAN ... A new algorithm for segmentation of suspected lung ROI(regions of interest)by mean-shift clustering and multi-scale HESSIAN matrix dot filtering was proposed.Original image was firstly filtered by multi-scale HESSIAN matrix dot filters,round suspected nodular lesions in the image were enhanced,and linear shape regions of the trachea and vascular were suppressed.Then,three types of information,such as,shape filtering value of HESSIAN matrix,gray value,and spatial location,were introduced to feature space.The kernel function of mean-shift clustering was divided into product form of three kinds of kernel functions corresponding to the three feature information.Finally,bandwidths were calculated adaptively to determine the bandwidth of each suspected area,and they were used in mean-shift clustering segmentation.Experimental results show that by the introduction of HESSIAN matrix of dot filtering information to mean-shift clustering,nodular regions can be segmented from blood vessels,trachea,or cross regions connected to the nodule,non-nodular areas can be removed from ROIs properly,and ground glass object(GGO)nodular areas can also be segmented.For the experimental data set of 127 different forms of nodules,the average accuracy of the proposed algorithm is more than 90%. 展开更多
关键词 HESSIAN matrix multi-scale dot filtering mean-shift clustering segmentation of suspected areas lung computer-aideddetection/diagnosis
在线阅读 下载PDF
Color image segmentation using mean shift and improved ant clustering 被引量:3
6
作者 刘玲星 谭冠政 M.Sami Soliman 《Journal of Central South University》 SCIE EI CAS 2012年第4期1040-1048,共9页
To improve the segmentation quality and efficiency of color image,a novel approach which combines the advantages of the mean shift(MS) segmentation and improved ant clustering method is proposed.The regions which can ... To improve the segmentation quality and efficiency of color image,a novel approach which combines the advantages of the mean shift(MS) segmentation and improved ant clustering method is proposed.The regions which can preserve the discontinuity characteristics of an image are segmented by MS algorithm,and then they are represented by a graph in which every region is represented by a node.In order to solve the graph partition problem,an improved ant clustering algorithm,called similarity carrying ant model(SCAM-ant),is proposed,in which a new similarity calculation method is given.Using SCAM-ant,the maximum number of items that each ant can carry will increase,the clustering time will be effectively reduced,and globally optimized clustering can also be realized.Because the graph is not based on the pixels of original image but on the segmentation result of MS algorithm,the computational complexity is greatly reduced.Experiments show that the proposed method can realize color image segmentation efficiently,and compared with the conventional methods based on the image pixels,it improves the image segmentation quality and the anti-interference ability. 展开更多
关键词 color image segmentation improved ant clustering graph partition mean shift
在线阅读 下载PDF
New two-dimensional fuzzy C-means clustering algorithm for image segmentation 被引量:4
7
作者 周鲜成 申群太 刘利枚 《Journal of Central South University of Technology》 EI 2008年第6期882-887,共6页
To solve the problem of poor anti-noise performance of the traditional fuzzy C-means (FCM) algorithm in image segmentation, a novel two-dimensional FCM clustering algorithm for image segmentation was proposed. In this... To solve the problem of poor anti-noise performance of the traditional fuzzy C-means (FCM) algorithm in image segmentation, a novel two-dimensional FCM clustering algorithm for image segmentation was proposed. In this method, the image segmentation was converted into an optimization problem. The fitness function containing neighbor information was set up based on the gray information and the neighbor relations between the pixels described by the improved two-dimensional histogram. By making use of the global searching ability of the predator-prey particle swarm optimization, the optimal cluster center could be obtained by iterative optimization, and the image segmentation could be accomplished. The simulation results show that the segmentation accuracy ratio of the proposed method is above 99%. The proposed algorithm has strong anti-noise capability, high clustering accuracy and good segment effect, indicating that it is an effective algorithm for image segmentation. 展开更多
关键词 image segmentation fuzzy C-means clustering particle swarm optimization two-dimensional histogram
在线阅读 下载PDF
Image segmentation algorithm based on high-dimension fuzzy character and restrained clustering network 被引量:2
8
作者 Baoping Wang Yang Fang Chao Sun 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2014年第2期298-306,共9页
An image segmentation algorithm of the restrained fuzzy Kohonen clustering network (RFKCN) based on high- dimension fuzzy character is proposed. The algorithm includes two steps. The first step is the fuzzification ... An image segmentation algorithm of the restrained fuzzy Kohonen clustering network (RFKCN) based on high- dimension fuzzy character is proposed. The algorithm includes two steps. The first step is the fuzzification of pixels in which two redundant images are built by fuzzy mean value and fuzzy median value. The second step is to construct a three-dimensional (3-D) feature vector of redundant images and their original images and cluster the feature vector through RFKCN, to realize image seg- mentation. The proposed algorithm fully takes into account not only gray distribution information of pixels, but also relevant information and fuzzy information among neighboring pixels in constructing 3- D character space. Based on the combination of competitiveness, redundancy and complementary of the information, the proposed algorithm improves the accuracy of clustering. Theoretical anal- yses and experimental results demonstrate that the proposed algorithm has a good segmentation performance. 展开更多
关键词 image segmentation high-dimension fuzzy character restrained fuzzy Kohonen clustering network (RFKCN).
在线阅读 下载PDF
A K-means clustering based blind multiband spectrum sensing algorithm for cognitive radio 被引量:3
9
作者 LEI Ke-jun TAN Yang-hong +1 位作者 YANG Xi WANG Han-rui 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第10期2451-2461,共11页
In this paper,a blind multiband spectrum sensing(BMSS)method requiring no knowledge of noise power,primary signal and wireless channel is proposed based on the K-means clustering(KMC).In this approach,the KMC algorith... In this paper,a blind multiband spectrum sensing(BMSS)method requiring no knowledge of noise power,primary signal and wireless channel is proposed based on the K-means clustering(KMC).In this approach,the KMC algorithm is used to identify the occupied subband set(OSS)and the idle subband set(ISS),and then the location and number information of the occupied channels are obtained according to the elements in the OSS.Compared with the classical BMSS methods based on the information theoretic criteria(ITC),the new method shows more excellent performance especially in the low signal-to-noise ratio(SNR)and the small sampling number scenarios,and more robust detection performance in noise uncertainty or unequal noise variance applications.Meanwhile,the new method performs more stablely than the ITC-based methods when the occupied subband number increases or the primary signals suffer multi-path fading.Simulation result verifies the effectiveness of the proposed method. 展开更多
关键词 cognitive radio(CR) blind multiband spectrum sensing(BMSS) k-means clustering(KMC) occupied subband set(OSS) idle subband set(ISS) information theoretic criteria(ITC) noise uncertainty
在线阅读 下载PDF
PolSAR Image Segmentation by Mean Shift Clustering in the Tensor Space 被引量:6
10
作者 WANG Ying-Hua HAN Chong-Zhao 《自动化学报》 EI CSCD 北大核心 2010年第6期798-806,共9页
关键词 图像分割 图像处理 计算机 POLSAR
在线阅读 下载PDF
融合异常检测与区域分割的高效K-means聚类算法 被引量:2
11
作者 尹宏伟 杭雨晴 胡文军 《郑州大学学报(工学版)》 CAS 北大核心 2024年第3期80-88,共9页
传统K-means及其众多改进算法缺乏显式处理异常样本的能力,导致其聚类性能容易受到异常样本的影响。针对此问题,提出一种融合异常检测与区域分割的高效K-means聚类算法。首先,通过构建统一聚类模型,形成异常检测与聚类之间的交互协同,... 传统K-means及其众多改进算法缺乏显式处理异常样本的能力,导致其聚类性能容易受到异常样本的影响。针对此问题,提出一种融合异常检测与区域分割的高效K-means聚类算法。首先,通过构建统一聚类模型,形成异常检测与聚类之间的交互协同,以提高聚类性能。其次,利用近邻簇搜索技术对各类簇进行自适应的区域分割,以减少冗余计算,提高算法执行效率。最后,为验证所提方法的有效性,在多个合成数据集和真实数据集上分别进行测试。实验结果表明:所提算法聚类性能和执行效率优于其他算法;在添加10%异常样本的Wine数据集上准确度可达0.911。 展开更多
关键词 聚类 k-means 异常检测 区域分割 近邻簇搜索 自适应
在线阅读 下载PDF
基于K-means聚类和图像分割的紫色土发生层边界识别 被引量:2
12
作者 杨凯 慈恩 +2 位作者 刘彬 陈洋洋 谢宇 《土壤学报》 CAS CSCD 北大核心 2024年第4期939-951,共13页
土壤学始于对土壤剖面及其形态特征的观察,剖面发生层的划分与发生层边界特征的描述是土壤调查的基础。实地划分发生层需要丰富的土壤学实践经验,存在主观和缺乏统一划分标准的问题。以紫色土剖面图像为研究对象,采用K-means聚类和图像... 土壤学始于对土壤剖面及其形态特征的观察,剖面发生层的划分与发生层边界特征的描述是土壤调查的基础。实地划分发生层需要丰富的土壤学实践经验,存在主观和缺乏统一划分标准的问题。以紫色土剖面图像为研究对象,采用K-means聚类和图像分割技术,结合图像的颜色特征(CIELab色彩空间)和纹理特征(Entropy)识别紫色土剖面发生层边界,并与实地划分的结果进行比较。结果表明:(1)CIELab色彩空间的a、b通道和Entropy纹理特征,可以划分出供试剖面的主要发生层(A、B、C)和基岩(R);(2)聚类识别的发生层数量和发生层深度与实地识别的结果基本一致;除Z2剖面的C层和Z6剖面的Ap层聚类识别与实地识别的发生层下边界深度相差较大(分别为13cm和8cm)外,其余发生层下边界深度相差均在3 cm以内;(3)聚类识别的发生层边界形状更为不规则,明显度更为模糊。K-means聚类和图像分割技术实现了紫色土剖面发生层边界的客观识别,可为土壤剖面智能辨识系统的开发提供科学参考。 展开更多
关键词 剖面图像 发生层 k-means聚类 图像分割 颜色 纹理
在线阅读 下载PDF
结合K-means聚类的点云区域生长优化快速分割方法
13
作者 涂梨平 惠振阳 +3 位作者 范军林 刘飞鹏 惠婷 毛亚琴 《测绘通报》 CSCD 北大核心 2024年第12期128-131,154,共5页
机载LiDAR点云分割是点云数据处理的重要环节。区域生长法是点云分割的经典方法,但该方法通常是以点基元进行生长,在处理数据量较大的点云数据时,由初始种子点选取的不确定性,存在分割速度慢和分割性能不稳定等问题。针对这些问题,本文... 机载LiDAR点云分割是点云数据处理的重要环节。区域生长法是点云分割的经典方法,但该方法通常是以点基元进行生长,在处理数据量较大的点云数据时,由初始种子点选取的不确定性,存在分割速度慢和分割性能不稳定等问题。针对这些问题,本文提出了一种将K-means聚类法与区域生长法结合的点云优化快速分割算法。首先,对点云进行K-means聚类获取对象基元并计算质心点,判断各对象基元质心点是否满足角度和高差阈值,实现基于对象基元质心点的点云滤波;然后,遍历地物对象基元,通过计算对象基元内各点的邻近点的法向量角度和距离,判断其是否满足阈值生长条件,重复迭代直至分割结束;最后,采用3组不同区域的点云数据进行试验分析。试验结果表明,本文方法的分割精度可达到86.19%,相较于传统的K-means聚类法与区域生长法机载LiDAR点云分割的精度有大幅度提升。此外,本文方法相较于传统的区域生长法能够显著提高运算效率。 展开更多
关键词 机载LIDAR 点云分割 对象基元 k-means聚类 区域生长
在线阅读 下载PDF
基于K-means聚类方法的三维点云模型分割 被引量:24
14
作者 孙红岩 孙晓鹏 李华 《计算机工程与应用》 CSCD 北大核心 2006年第10期42-45,共4页
提出采用K-means聚类分析方法对三维点云模型进行分割。论文指出,对于分布呈现类内团聚状三维点云模型,K均值聚类分割可以得到较好的结果。与三维网格模型的K均值聚类分割、点云模型的谱系聚类分割的实验结果比较证实了这一点。
关键词 三维模型分割 聚类分割 三维点云模型 K均值聚类
在线阅读 下载PDF
基于Lab空间和K-Means聚类的叶片分割算法研究 被引量:26
15
作者 邹秋霞 杨林楠 +1 位作者 彭琳 郑强 《农机化研究》 北大核心 2015年第9期222-226,共5页
对植物叶片进行分类,在植物种类鉴别研究中有着重要的意义,而在植物叶片分类中,对叶片的准确分割是进行分类的必要前提。为此,对比分析了传统阈值分割中的最大类间方差法和K-Means聚类两种分割算法,实现对叶片的分割,并将RGB空间转换到... 对植物叶片进行分类,在植物种类鉴别研究中有着重要的意义,而在植物叶片分类中,对叶片的准确分割是进行分类的必要前提。为此,对比分析了传统阈值分割中的最大类间方差法和K-Means聚类两种分割算法,实现对叶片的分割,并将RGB空间转换到Lab空间,再利用两种算法分别进行分割。结果表明:传统的阈值分割和K-Means聚类分割无法将目标图像准确地分割出来;在Lab空间对a分量进行阈值分割可以去除阴影部分,但是分割结果为二值图像;而在Lab空间进行K-Means聚类分割,不仅能够有效地消除在拍摄图像过程中产生的阴影部分,而且分割后的图像为彩色图像,对纹理和颜色特征的提取更加方便,提高了分类识别的准确率。 展开更多
关键词 植物种类鉴别 阈值分割 k-means 聚类分割 LAB 空间
在线阅读 下载PDF
局部迭代的快速K-means聚类算法 被引量:10
16
作者 李峰 李明祥 张宇敬 《计算机工程与应用》 CSCD 北大核心 2020年第13期63-71,共9页
为了解决K-means算法在聚类数量增多的情况下,因选择了不合适的中心初值而影响到聚类效果这一问题,提出了一种局部迭代的快速K-means聚类算法(PIFKM+−)。该算法在K-means聚类的基础上,不断寻找能够被分割的聚类簇和能够被删除的聚类簇,... 为了解决K-means算法在聚类数量增多的情况下,因选择了不合适的中心初值而影响到聚类效果这一问题,提出了一种局部迭代的快速K-means聚类算法(PIFKM+−)。该算法在K-means聚类的基础上,不断寻找能够被分割的聚类簇和能够被删除的聚类簇,并对受影响的局部数据进行重新聚类处理,降低了整个聚类更新的时间复杂度,提高了聚类的效果。PIFKM+−算法在面对聚类数量众多的情况下,具有能够快速更新聚类、对聚类中心初值不敏感、能够提高聚类精确度等优势。通过与K-means和K-means++两种算法的比较,在仿真数据集和真实数据集的综合实验下,验证了该算法的精确性、高效率性和可扩展性,同时实验结果的统计分析表明该算法在提高了聚类精确度的同时并没有损失太多的时间效率。 展开更多
关键词 k-means算法 聚类分割 聚类删除 局部迭代聚类 聚类邻居
在线阅读 下载PDF
基于CUDA的并行K-means聚类图像分割算法优化 被引量:31
17
作者 霍迎秋 秦仁波 +2 位作者 邢彩燕 陈曦 方勇 《农业机械学报》 EI CAS CSCD 北大核心 2014年第11期47-53,74,共8页
为提高K-means聚类算法的运算速度,基于CUDA架构提出一种分块、并行的K-means算法,并采用'合并访问'、'多级规约求和'、'负载均衡'和'指令优化'等策略优化并行算法。实验结果表明,并行K-means算法的分... 为提高K-means聚类算法的运算速度,基于CUDA架构提出一种分块、并行的K-means算法,并采用'合并访问'、'多级规约求和'、'负载均衡'和'指令优化'等策略优化并行算法。实验结果表明,并行K-means算法的分割效果与串行K-means算法相同,但运行速度得到了极大的提高,加速比最高达到560,很好地解决了农业工程实际中由于分割算法带来的瓶颈问题,能够极大地提高农业劳动生产率。 展开更多
关键词 图像分割 聚类分割算法 统一计算架构 图形处理器并行优化
在线阅读 下载PDF
基于K-means聚类的植物叶片图像叶脉提取 被引量:31
18
作者 李灿灿 王宝 +1 位作者 王静 李丰果 《农业工程学报》 EI CAS CSCD 北大核心 2012年第17期157-162,共6页
植物的叶片是植物最基本、最主要的生命活动场所。叶脉的提取与分析对叶片和整株植物结构的分析有一定的应用价值。该文提出一种基于K-means聚类(clustering)的叶脉提取算法。该算法首先对叶片图像的HSI彩色空间中的I信息进行K-means聚... 植物的叶片是植物最基本、最主要的生命活动场所。叶脉的提取与分析对叶片和整株植物结构的分析有一定的应用价值。该文提出一种基于K-means聚类(clustering)的叶脉提取算法。该算法首先对叶片图像的HSI彩色空间中的I信息进行K-means聚类处理,根据聚类的结果提取叶片边界,并将叶片图像分为受光均匀和受光不均匀的2类。对于受光均匀的叶片图像在聚类结果中直接提取叶脉,而受光不均匀的叶片图像则需去除部分叶肉后再进行一次K-means聚类提取叶脉。结果表明:该算法能有效地降低叶脉提取的错分率。 展开更多
关键词 图像处理 图像分割 聚类算法 HSI彩色空间 叶脉提取
在线阅读 下载PDF
基于Markov随机场K-Means图像分割算法 被引量:21
19
作者 黄宇 付琨 吴一戎 《电子学报》 EI CAS CSCD 北大核心 2009年第12期2700-2704,共5页
传统的K-Means算法在图像分割中只与特征向量有关,从而忽略了像素间的空间位置关系,因而分割模型是不完整的.本文利用Markov随机场描述图像像素间的邻域关系,引入拒绝度的概念到聚类目标函数中的同时,提出了初始类别及初始中心点的确定... 传统的K-Means算法在图像分割中只与特征向量有关,从而忽略了像素间的空间位置关系,因而分割模型是不完整的.本文利用Markov随机场描述图像像素间的邻域关系,引入拒绝度的概念到聚类目标函数中的同时,提出了初始类别及初始中心点的确定方法,提出了较为完备的基于Markov随机场图像分割算法.并通过实验验证该分割方法在效果及效率上的有效性. 展开更多
关键词 k-means聚类 图像分割 MARKOV随机场 拒绝度
在线阅读 下载PDF
基于改进K-means聚类算法的大田麦穗自动计数 被引量:31
20
作者 刘哲 黄文准 王利平 《农业工程学报》 EI CAS CSCD 北大核心 2019年第3期174-181,共8页
单位种植面积的小麦麦穗数量是评估小麦产量和小麦种植密度的一个重要参量。为了实现高效、自动地麦穗计数,该文提出了基于改进K-means的小麦麦穗计数方法。该方法建立从图像低层颜色特征到图像中包含麦穗的一个直接分类关系,从而不需... 单位种植面积的小麦麦穗数量是评估小麦产量和小麦种植密度的一个重要参量。为了实现高效、自动地麦穗计数,该文提出了基于改进K-means的小麦麦穗计数方法。该方法建立从图像低层颜色特征到图像中包含麦穗的一个直接分类关系,从而不需要再对图像进行分割或检测。以颜色特征聚类为基础的这种方法能够估计麦穗在空间局部区域中数量,并且在不需要训练的情况下更具有可扩展性。统计试验结果表明,该文算法能够适应不同光照环境,麦穗计数的准确率达到94.69%,超过了传统基于图像颜色特征和纹理特征分割的麦穗计数方法 93.1%的准确率。 展开更多
关键词 图像分割 图像处理 算法 麦穗计数 k-means 聚类
在线阅读 下载PDF
上一页 1 2 65 下一页 到第
使用帮助 返回顶部