期刊文献+
共找到13,143篇文章
< 1 2 250 >
每页显示 20 50 100
New density clustering-based approach for failure mode and effect analysis considering opinion evolution and bounded confidence
1
作者 WANG Jian ZHU Jingyi +1 位作者 SHI Hua LIU Huchen 《Journal of Systems Engineering and Electronics》 CSCD 2024年第6期1491-1506,共16页
Failure mode and effect analysis(FMEA)is a preven-tative risk evaluation method used to evaluate and eliminate fail-ure modes within a system.However,the traditional FMEA method exhibits many deficiencies that pose ch... Failure mode and effect analysis(FMEA)is a preven-tative risk evaluation method used to evaluate and eliminate fail-ure modes within a system.However,the traditional FMEA method exhibits many deficiencies that pose challenges in prac-tical applications.To improve the conventional FMEA,many modified FMEA models have been suggested.However,the majority of them inadequately address consensus issues and focus on achieving a complete ranking of failure modes.In this research,we propose a new FMEA approach that integrates a two-stage consensus reaching model and a density peak clus-tering algorithm for the assessment and clustering of failure modes.Firstly,we employ the interval 2-tuple linguistic vari-ables(I2TLVs)to express the uncertain risk evaluations provided by FMEA experts.Then,a two-stage consensus reaching model is adopted to enable FMEA experts to reach a consensus.Next,failure modes are categorized into several risk clusters using a density peak clustering algorithm.Finally,the proposed FMEA is illustrated by a case study of load-bearing guidance devices of subway systems.The results show that the proposed FMEA model can more easily to describe the uncertain risk information of failure modes by using the I2TLVs;the introduction of an endogenous feedback mechanism and an exogenous feedback mechanism can accelerate the process of consensus reaching;and the density peak clustering of failure modes successfully improves the practical applicability of FMEA. 展开更多
关键词 failure mode and effect analysis(FMEA) interval 2-tuple linguistic variable(I2TLV) consensus reaching density peak clustering algorithm
在线阅读 下载PDF
基于K-means++聚类分析的轮轨垂向力基线漂移预处理研究
2
作者 施亦非 王锋 +1 位作者 石佳 黄宇峰 《振动与冲击》 北大核心 2025年第9期127-134,168,共9页
采集轮轨垂向力等强冲击能量的振动信号时,受传感器特性和环境影响,测得信号中存在基线漂移,严重影响后续数据分析处理。曲线拟合和密度聚类是修正基线漂移的常见方法,通过选取特定信号区间作为基点进行拟合,可有效去除基线漂移;然而,... 采集轮轨垂向力等强冲击能量的振动信号时,受传感器特性和环境影响,测得信号中存在基线漂移,严重影响后续数据分析处理。曲线拟合和密度聚类是修正基线漂移的常见方法,通过选取特定信号区间作为基点进行拟合,可有效去除基线漂移;然而,由于基点选取极度依赖先验知识,限制了其应用范围。为解决该问题,提出一种基于K-means++聚类分析的轮轨垂向力基线漂移预处理方法。首先,选取基尼系数和方差,在欧氏空间准确表征载荷与无载荷数据段的差异,进而引导K-means++聚类;随后,基于K-means++聚类选取无载荷数据段,量化信号的基线漂移干扰;最后,以无载荷数据段为基点,拟合并修正基线漂移。经过仿真和实测数据分析,与最小二乘法、经验模态分解和密度聚类相比,该方法在信噪比、均方误差、基线去除误差和运行时间等方面均有一定优势。结果表明,基于基尼系数和方差的K-means++聚类分析,克服了密度聚类分析的先验知识依赖,可有效修正轮轨垂向力基线漂移,有望用于其他强冲击能量振动信号的数据预处理。 展开更多
关键词 轮轨力 基线漂移 k-means++ 基尼系数 聚类分析
在线阅读 下载PDF
基于自组织K-means的城市道路VRU事故场景复杂度评价
3
作者 程瑞 卢春成 +3 位作者 袁泉 崔涛 To.Jeremy 王涛 《汽车安全与节能学报》 北大核心 2025年第3期386-395,共10页
为了满足智能汽车避撞系统验证中高风险测试环境的需要,同时丰富面向弱势道路使用者(VRU)的自动驾驶场景评价内容和方法,该文通过对广西桂林市2016—2020年交通事故案例收集整理,筛选得到1429例汽车与VRU碰撞事故数据;依据事故调查经验... 为了满足智能汽车避撞系统验证中高风险测试环境的需要,同时丰富面向弱势道路使用者(VRU)的自动驾驶场景评价内容和方法,该文通过对广西桂林市2016—2020年交通事故案例收集整理,筛选得到1429例汽车与VRU碰撞事故数据;依据事故调查经验选取了13种风险因素,基于自组织K-means聚类分析构建了10类适用于中国城市交通状况的汽车与VRU碰撞的典型场景;利用信息熵理论建立了VRU典型场景复杂度评价模型,通过联合logistic模型与反向神经(BP)网络确定变量状态及各维度权重,计算得到各类场景复杂度;运用Guass混合模型对复杂度进行聚类,最终获得4个场景复杂度等级。结果表明:在限速30km/h的道路上,夜间直行汽车与横穿马路的电动自行车在非人行横道区域发生侧面碰撞的场景复杂度最高。该文的研究成果可为智能汽车安全性测试提供具备中国城市道路特征的实验场景,同时为车外VRU避撞方案和决策的制定提供一定的依据。 展开更多
关键词 弱势道路使用者(VRU) 智能汽车 典型场景 自组织k-means聚类分析
在线阅读 下载PDF
多目标规划与K-means聚类的多波束测深测线设计
4
作者 黄丽均 朴宇豪 +1 位作者 王祎阳 李国东 《海洋测绘》 北大核心 2025年第1期16-20,共5页
为解决多波束测深在海底地形复杂情况下的多波束测线布设问题,提高测深效率,首先基于K-means聚类将海底区域划分为若干理想斜坡,接着基于多目标规划以测线长度最短和覆盖率最大为目标函数,并考虑条带重叠率以及两端测线覆盖边缘区域等... 为解决多波束测深在海底地形复杂情况下的多波束测线布设问题,提高测深效率,首先基于K-means聚类将海底区域划分为若干理想斜坡,接着基于多目标规划以测线长度最短和覆盖率最大为目标函数,并考虑条带重叠率以及两端测线覆盖边缘区域等限制条件,利用组合权重法建立多目标规划的测线布设模型。对假设矩形待测海域进行仿真计算,结果表明分区域规划后按照此测线布设模型得到的测线布设方案,测线的总长度达到最短,重叠率为18.42%,覆盖待测海域的面积比达到98.91%。本文提出的多波束测线设计方法可为提高多波束测深的效率提供理论依据。 展开更多
关键词 多波束测深 测线设计 多目标规划 仿真分析 k-means三维聚类 组合权重
在线阅读 下载PDF
Blind source separation by weighted K-means clustering 被引量:5
5
作者 Yi Qingming 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第5期882-887,共6页
Blind separation of sparse sources (BSSS) is discussed. The BSSS method based on the conventional K-means clustering is very fast and is also easy to implement. However, the accuracy of this method is generally not ... Blind separation of sparse sources (BSSS) is discussed. The BSSS method based on the conventional K-means clustering is very fast and is also easy to implement. However, the accuracy of this method is generally not satisfactory. The contribution of the vector x(t) with different modules is theoretically proved to be unequal, and a weighted K-means clustering method is proposed on this grounds. The proposed algorithm is not only as fast as the conventional K-means clustering method, but can also achieve considerably accurate results, which is demonstrated by numerical experiments. 展开更多
关键词 blind source separation underdetermined mixing sparse representation weighted k-means clustering.
在线阅读 下载PDF
A K-means clustering based blind multiband spectrum sensing algorithm for cognitive radio 被引量:3
6
作者 LEI Ke-jun TAN Yang-hong +1 位作者 YANG Xi WANG Han-rui 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第10期2451-2461,共11页
In this paper,a blind multiband spectrum sensing(BMSS)method requiring no knowledge of noise power,primary signal and wireless channel is proposed based on the K-means clustering(KMC).In this approach,the KMC algorith... In this paper,a blind multiband spectrum sensing(BMSS)method requiring no knowledge of noise power,primary signal and wireless channel is proposed based on the K-means clustering(KMC).In this approach,the KMC algorithm is used to identify the occupied subband set(OSS)and the idle subband set(ISS),and then the location and number information of the occupied channels are obtained according to the elements in the OSS.Compared with the classical BMSS methods based on the information theoretic criteria(ITC),the new method shows more excellent performance especially in the low signal-to-noise ratio(SNR)and the small sampling number scenarios,and more robust detection performance in noise uncertainty or unequal noise variance applications.Meanwhile,the new method performs more stablely than the ITC-based methods when the occupied subband number increases or the primary signals suffer multi-path fading.Simulation result verifies the effectiveness of the proposed method. 展开更多
关键词 cognitive radio(CR) blind multiband spectrum sensing(BMSS) k-means clustering(KMC) occupied subband set(OSS) idle subband set(ISS) information theoretic criteria(ITC) noise uncertainty
在线阅读 下载PDF
Using genetic algorithm based fuzzy adaptive resonance theory for clustering analysis 被引量:3
7
作者 LIU Bo WANG Yong WANG Hong-jian 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2006年第B07期547-551,共5页
关键词 聚类分析 遗传算法 模糊自适应谐振理论 人工神经网络
在线阅读 下载PDF
Clustering Analysis of Black-start Decision-making with a Large Group of Decision-makers
8
作者 Liu, Weijia Lin, Zhenzhi +4 位作者 Wen, Fushuan Xue, Yusheng Dai, Yan Sun, Weizhen Wang, Chao 《电力系统自动化》 EI CSCD 北大核心 2012年第8期154-160,共7页
The optimization of black-start decision-making plays an important role in the rapid restoration of a power system after a major failure/outage.With the introduction of the concept of smart grids and the development o... The optimization of black-start decision-making plays an important role in the rapid restoration of a power system after a major failure/outage.With the introduction of the concept of smart grids and the development of real-time communication networks,the black-start decision-makers are no longer limited to only one or a few power system experts such as dispatchers,but rather a large group of professional people in practice.The overall behaviors of a large decision-making group of decision-makers/experts are more complicated and unpredictable.However,the existing methods for black-start decision-making cannot handle the situations with a large group of decision-makers.Given this background,a clustering algorithm is presented to optimize the black-start decision-making problem with a large group of decision-makers.Group decision-making preferences are obtained by clustering analysis,and the final black-start decision-making results are achieved by combining the weights of black-start indexes and the preferences of the decision-making group.The effectiveness of the proposed method is validated by a practical case.This work extends the black-start decision-making problem to situations with a large group of decision-makers. 展开更多
关键词 决策者 聚类分析 黑启动 大集 实时通信网络 决策问题 电力系统 电源系统
在线阅读 下载PDF
基于改进K-means聚类的轨道交通基础设施分布式光伏发电典型场景生成及出力特性分析 被引量:3
9
作者 陈凯 雷琪 李豆萌 《电气工程学报》 CSCD 北大核心 2024年第2期364-372,共9页
受限于自然条件,光伏出力具有很强的随机性。为准确评估轨道交通基础设施分布式光伏发电的光伏出力特性,提出一种基于改进K-means聚类算法的轨道交通基础设施分布式光伏发电典型场景生成方法,并基于此进行光伏出力特性分析。首先,基于... 受限于自然条件,光伏出力具有很强的随机性。为准确评估轨道交通基础设施分布式光伏发电的光伏出力特性,提出一种基于改进K-means聚类算法的轨道交通基础设施分布式光伏发电典型场景生成方法,并基于此进行光伏出力特性分析。首先,基于分布式光伏发电设施以及气象数据,利用PVsyst软件模拟光伏发电出力数据。然后,针对基本K-means聚类算法聚类参数和初始聚类中心盲目性高的问题,结合聚类有效性指标(Density based index,DBI)和层次聚类对其进行改进并利用改进K-means聚类算法生成光伏典型日出力场景。最后,基于华中地区某地轨道交通基础设施分布式光伏系统对所提方法的有效性和优越性进行验证,并通过定性和定量分析各典型场景的出力特性揭示轨道交通基础设施分布式光伏出力的规律和特点。 展开更多
关键词 分布式光伏出力 改进k-means聚类算法 典型出力场景 出力特性分析
在线阅读 下载PDF
基于K-means算法的病种成本聚类分析及精细化管理探究 被引量:4
10
作者 刘嘉慧 张萍 +1 位作者 曹瑾音 张芷菁 《卫生经济研究》 北大核心 2024年第8期37-40,44,共5页
目的:探索构建基于“投入-产出-频次”三个维度的病种成本分析模型,完善以病种为基础、以价值为导向的医院运营管理体系,助力精细化管理水平提升。方法:以某三甲医院为样本,基于某年度病案首页数据,运用K-means算法对病种进行聚类分析... 目的:探索构建基于“投入-产出-频次”三个维度的病种成本分析模型,完善以病种为基础、以价值为导向的医院运营管理体系,助力精细化管理水平提升。方法:以某三甲医院为样本,基于某年度病案首页数据,运用K-means算法对病种进行聚类分析。结果:将病种聚类为六类,从整体来看样本医院病种结构较好,但基层病种占比仍较大。结论:医院可以对病种进行精细化分类管理,对“重要价值病种”给予资源倾斜,对“一般价值病种”优化诊疗流程和模式,同时开展病种成本监测及分析,控制成本。 展开更多
关键词 聚类分析 病种成本 精细化管理
在线阅读 下载PDF
基于改进K-means聚类和皮尔逊相关系数户变关系异常诊断 被引量:11
11
作者 周纲 黄瑞 +3 位作者 刘度度 张芝敏 胡军华 高云鹏 《电测与仪表》 北大核心 2024年第3期76-82,152,共8页
用电信息采集系统易出现台区户变关系错误问题,传统诊断技术主要针对少用户台区出现异常用户情况,但对于多达数百用户台区,存在多相邻台区异常用户特征提取难题。文中首先通过主成分分析对GIS系统获取台区总表和用户电表电压数据实现降... 用电信息采集系统易出现台区户变关系错误问题,传统诊断技术主要针对少用户台区出现异常用户情况,但对于多达数百用户台区,存在多相邻台区异常用户特征提取难题。文中首先通过主成分分析对GIS系统获取台区总表和用户电表电压数据实现降维,建立改进K-means聚类提取电压数据特征,提出改进皮尔逊相关系数算法分析待检测用户,据此建立基于改进K-means聚类和改进皮尔逊相关系数的户变关系异常诊断方法,实现多异常用户所属正确台区诊断。实际算例分析结果表明,文中提出算法在识别同一台区一个及多个异常用户、不同台区多个异常用户情况下均能有效实现异常用户的准确检测与分析,相比传统检测方法,实现简单且准确性更高。 展开更多
关键词 户变关系 GIS系统 主成分分析 改进k-means聚类
在线阅读 下载PDF
融合专家领域知识和K-means聚类的三支风险评级方法 被引量:3
12
作者 段维怡 梁德翠 《陕西师范大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第3期26-36,共11页
金融和医疗等实际环境中的决策关键在于决策风险的权衡考虑,准确预测和分类风险级别非常必要。然而,传统的群体决策关注专家评价意见的一致性和共识,对于获得客观的专家评价意见和决策质量的考虑较少,在风险评级场景中难以量化和评估决... 金融和医疗等实际环境中的决策关键在于决策风险的权衡考虑,准确预测和分类风险级别非常必要。然而,传统的群体决策关注专家评价意见的一致性和共识,对于获得客观的专家评价意见和决策质量的考虑较少,在风险评级场景中难以量化和评估决策实际效果。因此,引入数据驱动的思想,利用数据和聚类结果辅助发现专家评估意见,在三支决策理论框架下优化群体意见,改进和计算逻辑回归的判别点,并基于UCI和Kaggle的4个信贷风险和疾病诊断公开数据集,完成风险评级分类。通过数据实验的结果可以发现:与经典的机器学习方法相比,文中提出的基于群体决策的三支分类方法更加关注风险的规避,在各个数据集上的分类表现均有稳定且较优的结果,说明通过发现专家领域知识,利用数据的客观信息辅助专家评估风险有助于解决不同背景的决策问题。 展开更多
关键词 专家领域知识 聚类分析 风险评级 三支决策 决策质量
在线阅读 下载PDF
Group decision-making method based on entropy and experts cluster analysis 被引量:12
13
作者 Xuan Zhou Fengming Zhang Xiaobin Hui Kewu Li 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第3期468-472,共5页
According to the aggregation method of experts' evaluation information in group decision-making,the existing methods of determining experts' weights based on cluster analysis take into account the expert's preferen... According to the aggregation method of experts' evaluation information in group decision-making,the existing methods of determining experts' weights based on cluster analysis take into account the expert's preferences and the consistency of expert's collating vectors,but they lack of the measure of information similarity.So it may occur that although the collating vector is similar to the group consensus,information uncertainty is great of a certain expert.However,it is clustered to a larger group and given a high weight.For this,a new aggregation method based on entropy and cluster analysis in group decision-making process is provided,in which the collating vectors are classified with information similarity coefficient,and the experts' weights are determined according to the result of classification,the entropy of collating vectors and the judgment matrix consistency.Finally,a numerical example shows that the method is feasible and effective. 展开更多
关键词 group decision-making judgment matrix ENTROPY information similarity coefficient cluster analysis.
在线阅读 下载PDF
基于改进K-means算法的排水管网监测点位优化 被引量:2
14
作者 赵文涓 程雨涵 李梅 《环境监测管理与技术》 CSCD 北大核心 2024年第1期79-83,共5页
为切实提高工程监测成效,合理利用资源,提出基于改进K-means算法的排水管网监测点布置优化方法。以华东区域H市排水管网为案例,以23个原始监测点的监测数据为基础,通过原始数据处理,BIRCH预聚类确定优化监测点个数和初步优化监测点,再用... 为切实提高工程监测成效,合理利用资源,提出基于改进K-means算法的排水管网监测点布置优化方法。以华东区域H市排水管网为案例,以23个原始监测点的监测数据为基础,通过原始数据处理,BIRCH预聚类确定优化监测点个数和初步优化监测点,再用K-means聚类确定最终优化监测点后,输出16个保留监测点位。经验证,监测点优化后对H市排水管网的数据输出无影响。 展开更多
关键词 监测点位优化 BIRCH聚类分析 k-means聚类分析 排水管网
在线阅读 下载PDF
Vertical Migrating and Cluster Analysis of Soil Mesofauna at Dongying Halophytes Garden in Yellow River Delta 被引量:3
15
作者 He Fu-xia Xie Tong-yin +1 位作者 Xie Gui-lin Fu Rong-shu 《Journal of Northeast Agricultural University(English Edition)》 CAS 2014年第1期25-30,共6页
For the first time, we used Tullgren method made a study on vertical migrating and cluster analysis of the soil mesofauna in Dongying Halophytes Garden in the Yellow River Delta (YRD), Shandong Province. The results... For the first time, we used Tullgren method made a study on vertical migrating and cluster analysis of the soil mesofauna in Dongying Halophytes Garden in the Yellow River Delta (YRD), Shandong Province. The results showed that the soil mesofauna tended to gather on soil surface in most samples at most times, but the vertical migrating greatly varied in different seasons or environment conditions. Acari was the dominant group. The index of diversity of the soil fauna was correlated with the index of evenness. The Acari's number of individuals infected other species and numbers. Dominant group-Aeari made greater contribution to the result of cluster analysis, and there were significant differences between communities in different habitats by cluster analysis with both Bray-Curtis and Jaccard similarity coefficient. 展开更多
关键词 HALOPHYTES soil mesofauna vertical migrating cluster analysis
在线阅读 下载PDF
Correlation and Path Coefficient and Chi-square Distance Cluster Analysis for Several Characteristics in Tobacco Germplasm Resource 被引量:1
16
作者 LI Wenping ZHU Lieshu +3 位作者 ZHAO Songyi LIANG Qizheng WANG Yuchao TAN Xi 《Journal of Northeast Agricultural University(English Edition)》 CAS 2010年第1期10-15,共6页
Correlation and path coefficient analyses were conducted for 10 characteristics of 24 pure lines of flue-cured tobacco such as plant height, knot distance, leaf number, the central leaf length and width, ratio of the ... Correlation and path coefficient analyses were conducted for 10 characteristics of 24 pure lines of flue-cured tobacco such as plant height, knot distance, leaf number, the central leaf length and width, ratio of the length to width, stem girth, dates of budding, leaf yield and ratio of the prime-medium tobacco. The leaf number and the central leaf length showed a positive or a strong positive correlation with the yield per plant. And the leaf number and leaf yield per plant showed a strong positive correlation with the ratio of prime-medium tobacco. The results showed that the leaf yield per plant among these characteristics played a major role in determining the ratio of prime-medium tobacco while the others were less related with the ratio. Square sum of deviation method cluster analyses showed that 24 pure lines of flue-cured tobacco were clustered into two groups. Of the pure lines, Line T1706 and Line T1245 had a far relationship with all other lines, and also had a heterosis when crossed with the other lines. Lines Guangdonghuang 1 and R72(3)B-2-1 were closely related. 展开更多
关键词 flue-cured tobacco correlation analysis path coefficient analysis cluster analysis
在线阅读 下载PDF
基于自组织映射和K-means聚类的分层设计空间动态缩减方法及其在船型优化中的应用
17
作者 于群 李鹏 +3 位作者 郑强 冯佰威 邱春良 曾大连 《中国舰船研究》 CSCD 北大核心 2024年第6期64-73,共10页
[目的]基于CFD的船型优化由于其高维、计算昂贵、“黑盒”等特点,通常会存在优化效率低,优化质量差的问题。针对以上问题,基于自组织映射方法和K-means聚类提出分层设计空间动态缩减方法(HSRM)。[方法]利用K-means聚类算法,对自组织映... [目的]基于CFD的船型优化由于其高维、计算昂贵、“黑盒”等特点,通常会存在优化效率低,优化质量差的问题。针对以上问题,基于自组织映射方法和K-means聚类提出分层设计空间动态缩减方法(HSRM)。[方法]利用K-means聚类算法,对自组织映射方法的可视化结果进行聚类,并提取感兴趣的区域。通过该方式,可在船型优化过程中,对样本仿真数据进行数据挖掘、提取设计知识、指导设计优化,以提高优化质量。最后将该方法应用于7500吨级散货船的船型优化设计过程以验证有效性。[结果]结果表明,利用传统粒子群优化算法(PSO)和HSRM得到的优化船型总阻力分别降低1.854%和2.266%,HSRM能得到更高质量的优化解。[结论]所提出的方法可以指导优化算法向着最优解的方向进行寻优,有效提高优化效率和优化质量。 展开更多
关键词 船舶设计 船型优化 自组织映射 设计空间缩减 聚类分析 分层设计空间动态缩减方法
在线阅读 下载PDF
基于K-Means-NCS-ANOVA的八大民窑颜色聚类与应用偏好研究 被引量:1
18
作者 杨宇渊 莫雁婷 +2 位作者 黄超逸 冯娜娜 陈赟 《印刷与数字媒体技术研究》 CAS 北大核心 2024年第2期25-36,共12页
中华陶瓷文化源远流长,颜色作为陶瓷的一种装饰,可以表达不同的设计理念、情感意识、地域特征和服务对象。为了更好地传承陶瓷艺术文化,本研究提出了一种基于K-means-NCS-ANOVA的颜色分类研究方法。首先,采用K-means颜色聚类、NCS颜色... 中华陶瓷文化源远流长,颜色作为陶瓷的一种装饰,可以表达不同的设计理念、情感意识、地域特征和服务对象。为了更好地传承陶瓷艺术文化,本研究提出了一种基于K-means-NCS-ANOVA的颜色分类研究方法。首先,采用K-means颜色聚类、NCS颜色体系提取宋代八大民窑的颜色特征,分析八大瓷窑的区域特征及设计理念;基于上述分析结果制作问卷调查;并利用描述性分析、单因素方差分析(One-Way ANOVA),探究现代设计师对八大民窑颜色的应用偏好。由实验结果可知,设计师性别、专业、工龄也会对八大民窑颜色的应用偏好产生影响;景德镇窑的颜色最受现代设计师欢迎,而耀州窑、磁州窑、定窑的颜色已经不太符合现代审美。本研究采用现代人工智能技术识别八大民窑特征,调研现代设计师对八大民窑颜色的使用偏好,为文物识别、陶瓷文化传承及人才培养提供理论和技术支持。 展开更多
关键词 k-means颜色聚类 NCS颜色体系定位 描述性分析 单因素方差分析 八大民窑 颜色应用偏好
在线阅读 下载PDF
The Definition of Sustainable Development of Private University- Based on the Method of Literature Review and Cluster Analysis 被引量:1
19
作者 Shi Meng Wang Dongling Dai Jiabao(译) 《学术界》 CSSCI 北大核心 2016年第2期314-319,共6页
The sustainable development of private university has become the focus of the academia and the private higher education after an approximately golden period.Through the method of literature review and cluster analysis... The sustainable development of private university has become the focus of the academia and the private higher education after an approximately golden period.Through the method of literature review and cluster analysis,this paper studies the concept of sustainable development of private university from the perspective of the connotation definition and epitaxial recognition,in order to effectively reveal the essence of the sustainable development of private university,hoping to provide some certain support for the theory and practice of sustainable development of private university. 展开更多
关键词 可持续发展 民办高校 聚类分析 文献综述 定义 教育发展 学术界
在线阅读 下载PDF
The Fuzzy Cluster Analysis in Identification of Key Temperatures in Machine Tool
20
作者 ZHAO Da-quan 1, ZHENG Li 1, XIANG Wei-hong 1, LI Kang 1, LIU Da-cheng 1, ZHANG Bo-peng 2 (1. Department of Industrial Engineering, Tsinghua University, 2. Department of Precision Instruments and Mechanology, Tsinghua University, B eijing 100084, China) 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第S1期88-89,共2页
The thermal-induced error is a very important sour ce of machining errors of machine tools. To compensate the thermal-induced machin ing errors, a relationship model between the thermal field and deformations was need... The thermal-induced error is a very important sour ce of machining errors of machine tools. To compensate the thermal-induced machin ing errors, a relationship model between the thermal field and deformations was needed. The relationship can be deduced by virtual of FEM (Finite Element Method ), ANN (Artificial Neural Network) or MRA (Multiple Regression Analysis). MR A is on the basis of a total understanding of the temperature distribution of th e machine tool. Although the more the temperatures measured are, the more accura te the MRA is, too more temperatures will hinder the analysis calculation. So it is necessary to identify the key temperatures of the machine tool. The selectio n of key temperatures decides the efficiency and precision of MRA. Because of th e complexities and multi-input and multi-output structure of the relationships , the exact quantitative portions as well as the unclear portions must be taken into consideration together to improve the identification of key temperatures. I n this paper, a fuzzy cluster analysis was used to select the key temperatures. The substance of identifying the key temperatures is to group all temperatures b y their relativity, and then to select a temperature from each group as the repr esentation. A fuzzy cluster analysis can uncover the relationships between t he thermal field and deformations more truly and thoroughly. A fuzzy cluster ana lysis is the cluster analysis based on fuzzy sets. Given U={u i|i=0,...,N}, in which u i is the temperature measured, a fuzzy matrix R can be obta ined. The transfer close package t(R) can be deduced from R. A fuzzy clu ster of U then conducts on the basis of t(R). Based on the fuzzy cluster analysis discussed above, this paper identified the k ey temperatures of a horizontal machining center. The number of the temperatures measured was reduced to 4 from 32, and then the multiple regression relationshi p models between the 4 temperatures and the thermal deformations of the spindle were drawn. The remnant errors between the regression models and measured deform ations reached a satisfying low level. At the same time, the decreasing of tempe rature variable number improved the efficiency of measure and analysis greatly. 展开更多
关键词 The Fuzzy cluster analysis in Identification of Key Temperatures in Machine Tool
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部