Statistical prediction is often required in reservoir simulation to quantify production uncertainty or assess potential risks.Most existing uncertainty quantification procedures aim to decompose the input random field...Statistical prediction is often required in reservoir simulation to quantify production uncertainty or assess potential risks.Most existing uncertainty quantification procedures aim to decompose the input random field to independent random variables,and may suffer from the curse of dimensionality if the correlation scale is small compared to the domain size.In this work,we develop and test a new approach,K-means clustering assisted empirical modeling,for efficiently estimating waterflooding performance for multiple geological realizations.This method performs single-phase flow simulations in a large number of realizations,and uses K-means clustering to select only a few representatives,on which the two-phase flow simulations are implemented.The empirical models are then adopted to describe the relation between the single-phase solutions and the two-phase solutions using these representatives.Finally,the two-phase solutions in all realizations can be predicted using the empirical models readily.The method is applied to both 2D and 3D synthetic models and is shown to perform well in the P10,P50 and P90 of production rates,as well as the probability distributions as illustrated by cumulative density functions.It is able to capture the ensemble statistics of the Monte Carlo simulation results with a large number of realizations,and the computational cost is significantly reduced.展开更多
Various types of plasma events emerge in specific parameter ranges and exhibit similar characteristics in diagnostic signals,which can be applied to identify these events.A semisupervised machine learning algorithm,th...Various types of plasma events emerge in specific parameter ranges and exhibit similar characteristics in diagnostic signals,which can be applied to identify these events.A semisupervised machine learning algorithm,the k-means clustering algorithm,is utilized to investigate and identify plasma events in the J-TEXT plasma.This method can cluster diverse plasma events with homogeneous features,and then these events can be identified if given few manually labeled examples based on physical understanding.A survey of clustered events reveals that the k-means algorithm can make plasma events(rotating tearing mode,sawtooth oscillations,and locked mode)gathering in Euclidean space composed of multi-dimensional diagnostic data,like soft x-ray emission intensity,edge toroidal rotation velocity,the Mirnov signal amplitude and so on.Based on the cluster analysis results,an approximate analytical model is proposed to rapidly identify plasma events in the J-TEXT plasma.The cluster analysis method is conducive to data markers of massive diagnostic data.展开更多
Classification systems such as Slope Mass Rating(SMR) are currently being used to undertake slope stability analysis. In SMR classification system, data is allocated to certain classes based on linguistic and experien...Classification systems such as Slope Mass Rating(SMR) are currently being used to undertake slope stability analysis. In SMR classification system, data is allocated to certain classes based on linguistic and experience-based criteria. In order to eliminate linguistic criteria resulted from experience-based judgments and account for uncertainties in determining class boundaries developed by SMR system,the system classification results were corrected using two clustering algorithms, namely K-means and fuzzy c-means(FCM), for the ratings obtained via continuous and discrete functions. By applying clustering algorithms in SMR classification system, no in-advance experience-based judgment was made on the number of extracted classes in this system, and it was only after all steps of the clustering algorithms were accomplished that new classification scheme was proposed for SMR system under different failure modes based on the ratings obtained via continuous and discrete functions. The results of this study showed that, engineers can achieve more reliable and objective evaluations over slope stability by using SMR system based on the ratings calculated via continuous and discrete functions.展开更多
K-means algorithm is one of the most widely used algorithms in the clustering analysis. To deal with the problem caused by the random selection of initial center points in the traditional al- gorithm, this paper propo...K-means algorithm is one of the most widely used algorithms in the clustering analysis. To deal with the problem caused by the random selection of initial center points in the traditional al- gorithm, this paper proposes an improved K-means algorithm based on the similarity matrix. The im- proved algorithm can effectively avoid the random selection of initial center points, therefore it can provide effective initial points for clustering process, and reduce the fluctuation of clustering results which are resulted from initial points selections, thus a better clustering quality can be obtained. The experimental results also show that the F-measure of the improved K-means algorithm has been greatly improved and the clustering results are more stable.展开更多
The K-means algorithm is widely known for its simplicity and fastness in text clustering.However,the selection of the initial clus?tering center with the traditional K-means algorithm is some random,and therefore,the ...The K-means algorithm is widely known for its simplicity and fastness in text clustering.However,the selection of the initial clus?tering center with the traditional K-means algorithm is some random,and therefore,the fluctuations and instability of the clustering results are strongly affected by the initial clustering center.This paper proposed an algorithm to select the initial clustering center to eliminate the uncertainty of central point selection.The experiment results show that the improved K-means clustering algorithm is superior to the traditional algorithm.展开更多
To quantify unmanned aerial vehicle(UAV)flight risks in low-altitude airspace,we analyze the factors of UAV flight risks from three aspects:flight conflict,flight environment,and traffic characteristics.The aerial ris...To quantify unmanned aerial vehicle(UAV)flight risks in low-altitude airspace,we analyze the factors of UAV flight risks from three aspects:flight conflict,flight environment,and traffic characteristics.The aerial risk index and ground risk index of the UAV are constructed,the index screening model and the UAV flight risk assessment model are established,and a UAV flight risk assessment model based on K-means clustering has been proposed.Meanwhile,numerical simulations show the proposed method can not only evaluate the UAV flight risks effectively,but also provide technical support for UAV risk management and control.展开更多
Clustering is one of the recently challenging tasks since there is an ever.growing amount of data in scientific research and commercial applications. High quality and fast document clustering algorithms are in great d...Clustering is one of the recently challenging tasks since there is an ever.growing amount of data in scientific research and commercial applications. High quality and fast document clustering algorithms are in great demand to deal with large volume of data. The computational requirements for bringing such growing amount data to a central site for clustering are complex. The proposed algorithm uses optimal centroids for K.Means clustering based on Particle Swarm Optimization(PSO).PSO is used to take advantage of its global search ability to provide optimal centroids which aids in generating more compact clusters with improved accuracy. This proposed methodology utilizes Hadoop and Map Reduce framework which provides distributed storage and analysis to support data intensive distributed applications. Experiments were performed on Reuter's and RCV1 document dataset which shows an improvement in accuracy with reduced execution time.展开更多
Since webpage classification is different from traditional text classification with its irregular words and phrases,massive and unlabeled features,which makes it harder for us to obtain effective feature.To cope with ...Since webpage classification is different from traditional text classification with its irregular words and phrases,massive and unlabeled features,which makes it harder for us to obtain effective feature.To cope with this problem,we propose two scenarios to extract meaningful strings based on document clustering and term clustering with multi-strategies to optimize a Vector Space Model(VSM) in order to improve webpage classification.The results show that document clustering work better than term clustering in coping with document content.However,a better overall performance is obtained by spectral clustering with document clustering.Moreover,owing to image existing in a same webpage with document content,the proposed method is also applied to extract image meaningful terms,and experiment results also show its effectiveness in improving webpage classification.展开更多
We develop an x-ray Ti/Au transition-edge sensor(TES)with an Au absorber deposited on the center of TES and improved its energy resolution using the K-means clustering algorithm in combination with Wiener filter.We fi...We develop an x-ray Ti/Au transition-edge sensor(TES)with an Au absorber deposited on the center of TES and improved its energy resolution using the K-means clustering algorithm in combination with Wiener filter.We firstly extract the main parameters of each recorded pulse trace,which are adopted to classify these traces into several clusters in the K-means clustering algorithm.Then real traces are selected for energy resolution analysis.Following the baseline correction,the Wiener filter is used to improve the signal-to-noise ratio.Although the silicon underneath the TES has not been etched to reduce the thermal conductance,the energy resolution of the developed x-ray TES is improved from 94 eV to 44 eV at 5.9 keV.展开更多
Most clustering algorithms need to describe the similarity of objects by a predefined distance function. Three distance functions which are widely used in two traditional clustering algorithms k-means and hierarchical...Most clustering algorithms need to describe the similarity of objects by a predefined distance function. Three distance functions which are widely used in two traditional clustering algorithms k-means and hierarchical clustering were investigated. Both theoretical analysis and detailed experimental results were given. It is shown that a distance function greatly affects clustering results and can be used to detect the outlier of a cluster by the comparison of such different results and give the shape information of clusters. In practice situation, it is suggested to use different distance function separately, compare the clustering results and pick out the 搒wing points? And such points may leak out more information for data analysts.展开更多
In recent years, microarray technology has been widely applied in biological and clinical studies for simultaneous monitoring of gene expression in thousands of genes. Gene clustering analysis is found useful for disc...In recent years, microarray technology has been widely applied in biological and clinical studies for simultaneous monitoring of gene expression in thousands of genes. Gene clustering analysis is found useful for discovering groups of correlated genes potentially co-regulated or associated to the disease or conditions under investigation. Many clustering methods including k-means, fuzzy c-means, and hierarchical clustering have been widely used in literatures. Yet no comprehensive comparative study has been performed to evaluate the effectiveness of these methods, specially, in yeast saccharomyces cerevisiae. In this paper, these three gene clustering methods are compared. Classification accuracy and CPU time cost are employed for measuring performance of these algorithms. Our results show that hierarchical clustering outperforms k-means and fuzzy c-means clustering. The analysis provides deep insight to the complicated gene clustering problem of expression profile and serves as a practical guideline for routine microarray cluster analysis of gene expression.展开更多
Compared with hyperbolic velocity estimation methods,nonhyperbolic methods(such as shifted hyperbola)are better choices for large offsets or vertical transverse isotropy(VTI)media.Since local seismic event slope conta...Compared with hyperbolic velocity estimation methods,nonhyperbolic methods(such as shifted hyperbola)are better choices for large offsets or vertical transverse isotropy(VTI)media.Since local seismic event slope contains subsurface information,they can be used to estimate zero-offset two-way traveltime and normal moveout velocity.The traditional velocity estimation methods require a great deal of manual work and are also prone to human error.In order to estimate the traveltime parameters for VTI media automatically,in this paper,we propose to use predictive painting and similarity-weighted clustering to obtain traveltime parameters.The predictive painting is used to estimate zero-offset two-way traveltime,and the shifted-hyperbola traveltime equation is used to obtain velocity and anisotropy attributes.We first map local slopes to zero-offset two-way traveltime and moveout-parameters domain and then use similarity-weightedk-means clustering to find the maximum likelihood anisotropy parameters of the main subsurface structures.In order to demonstrate that,we apply the similarity-weighted clustering method to synthetic and field data examples and the results are of higher accuracy when compared to the ones obtained using multiparameter semblance-based method.From estimation error section,it can be seen that the estimation error of multiparameter semblance-based method is about 3-5 times that of the proposed method.展开更多
A decentralized network made up of mobile nodes is termed the Mobile Ad-hoc Network(MANET).Mobility and a finite battery lifespan are the two main problems with MANETs.Advanced methods are essential for enhancing MANE...A decentralized network made up of mobile nodes is termed the Mobile Ad-hoc Network(MANET).Mobility and a finite battery lifespan are the two main problems with MANETs.Advanced methods are essential for enhancing MANET security,network longevity,and energy efficiency.Hence,selecting an appropriate cluster.The cluster’s head further boosts the network’s energy effectiveness.As a result,a Hybrid Swallow Swarm Optimisation-Memetic Algorithm(SSO-MA)is suggested to develop the energy efficiency&of the MANET network.Then,to secure the network Abnormality Detection System(ADS)is proposed.The MATLAB-2021a platform is used to implement the suggested technique and conduct the analysis.In terms of network performance,the suggested model outperforms the current Genetic Algorithm,Optimised Link State Routing protocol,and Particle Swarm Optimisation techniques.The performance of the model has a minimum delay in the range of 0.82 seconds and a Packet Delivery Ratio(PDR)of 99.82%.Hence,the validation shows that the Hybrid SSO-MA strategy is superior to the other approaches in terms of efficiency.展开更多
In the multi-target localization based on Compressed Sensing(CS),the sensing matrix's characteristic is significant to the localization accuracy.To improve the CS-based localization approach's performance,we p...In the multi-target localization based on Compressed Sensing(CS),the sensing matrix's characteristic is significant to the localization accuracy.To improve the CS-based localization approach's performance,we propose a sensing matrix optimization method in this paper,which considers the optimization under the guidance of the t%-averaged mutual coherence.First,we study sensing matrix optimization and model it as a constrained combinatorial optimization problem.Second,the t%-averaged mutual coherence is adopted as the optimality index to evaluate the quality of different sensing matrixes,where the threshold t is derived through the K-means clustering.With the settled optimality index,a hybrid metaheuristic algorithm named Genetic Algorithm-Tabu Local Search(GA-TLS)is proposed to address the combinatorial optimization problem to obtain the final optimized sensing matrix.Extensive simulation results reveal that the CS localization approaches using different recovery algorithms benefit from the proposed sensing matrix optimization method,with much less localization error compared to the traditional sensing matrix optimization methods.展开更多
The simulation of wind power time series is a key process in renewable power allocation planning,operation mode calculation,and safety assessment.Traditional single-point modeling methods discretely generate wind powe...The simulation of wind power time series is a key process in renewable power allocation planning,operation mode calculation,and safety assessment.Traditional single-point modeling methods discretely generate wind power at each moment;however,they ignore the daily output characteristics and are unable to consider both modeling accuracy and efficiency.To resolve this problem,a wind power time series simulation model based on typical daily output processes and Markov algorithm is proposed.First,a typical daily output process classification method based on time series similarity and modified K-means clustering algorithm is presented.Second,considering the typical daily output processes as status variables,a wind power time series simulation model based on Markov algorithm is constructed.Finally,a case is analyzed based on the measured data of a wind farm in China.The proposed model is then compared with traditional methods to verify its effectiveness and applicability.The comparison results indicate that the statistical characteristics,probability distributions,and autocorrelation characteristics of the wind power time series generated by the proposed model are better than those of the traditional methods.Moreover,modeling efficiency considerably improves.展开更多
In this paper, the statistical properties of parameters of each path in wireless channel models are analyzed to prove that there is the static part in channel state information(CSI) which can be extracted from huge am...In this paper, the statistical properties of parameters of each path in wireless channel models are analyzed to prove that there is the static part in channel state information(CSI) which can be extracted from huge amounts of CSI data. Based on the analysis, the concept of the Tomographic Channel Model(TCM) is presented. With cluster algorithms, the static CSI database can be built in an off-line manner. The static CSI database can provide prior information to help pilot design to reduce overhead and improve accuracy in channel estimation. A new CSI prediction method and a new channel estimation method between different frequency bands are introduced based on the static CSI database. Using measurement data, the performance of the new channel prediction method is compared with that of the Auto Regression(AR) predictor. The results indicate that the prediction range of the new method is better than that of the AR method and the new method can predict with fewer pilot symbols. Using measurement data, the new channel estimation method between different frequency bands can estimate the CSI of one frequency band based on known CSI of another frequency band without any feedback.展开更多
In order to solve cruise missile route planning problem for low-altitude penetration , a hy- brid particle swarm optimization ( HPSO ) algorithm is proposed. Firstly, K-means clustering algo- rithm is applied to div...In order to solve cruise missile route planning problem for low-altitude penetration , a hy- brid particle swarm optimization ( HPSO ) algorithm is proposed. Firstly, K-means clustering algo- rithm is applied to divide the particle swarm into multiple isolated sub-populations, then niche algo- rithm is adopted to make all particles independently search for optimal values in their own sub-popu- lations. Finally simulated annealing (SA) algorithm is introduced to avoid the weakness of PSO algo- rithm, which can easily be trapped into the local optimum in the search process. The optimal value obtained by every sub-population search corresponds to an optimal route, multiple different optimal routes are provided for cruise missile. Simulation results show that the HPSO algorithm has a fast convergence rate, and the planned routes have flat ballisticpaths and short ranges which meet the low-altitude penetration requirements.展开更多
To explore the potential of conventional image processing techniques in the classification of cervical cancer cells, in this work, a co-occurrence histogram method was employed for image feature extraction and an ense...To explore the potential of conventional image processing techniques in the classification of cervical cancer cells, in this work, a co-occurrence histogram method was employed for image feature extraction and an ensemble classifier was developed by combining the base classifiers, namely, the artificial neural network(ANN),random forest(RF), and support vector machine(SVM), for image classification. The segmented pap-smear cell image dataset was constructed by the k-means clustering technique and used to evaluate the performance of the ensemble classifier which was formed by the combination of above considered base classifiers. The result was also compared with that achieved by the individual base classifiers as well as that trained with color, texture, and shape features. The maximum average classification accuracy of 93.44% was obtained when the ensemble classifier was applied and trained with co-occurrence histogram features, which indicates that the ensemble classifier trained with co-occurrence histogram features is more suitable and advantageous for the classification of cervical cancer cells.展开更多
基金the funding supported by Beijing Natural Science Foundation(Grant No.3222037)the PetroChina Innovation Foundation(Grant No.2020D-5007-0203)by the Science Foundation of China University of Petroleum,Beijing(Nos.2462021YXZZ010,2462018QZDX13,and 2462020YXZZ028)
文摘Statistical prediction is often required in reservoir simulation to quantify production uncertainty or assess potential risks.Most existing uncertainty quantification procedures aim to decompose the input random field to independent random variables,and may suffer from the curse of dimensionality if the correlation scale is small compared to the domain size.In this work,we develop and test a new approach,K-means clustering assisted empirical modeling,for efficiently estimating waterflooding performance for multiple geological realizations.This method performs single-phase flow simulations in a large number of realizations,and uses K-means clustering to select only a few representatives,on which the two-phase flow simulations are implemented.The empirical models are then adopted to describe the relation between the single-phase solutions and the two-phase solutions using these representatives.Finally,the two-phase solutions in all realizations can be predicted using the empirical models readily.The method is applied to both 2D and 3D synthetic models and is shown to perform well in the P10,P50 and P90 of production rates,as well as the probability distributions as illustrated by cumulative density functions.It is able to capture the ensemble statistics of the Monte Carlo simulation results with a large number of realizations,and the computational cost is significantly reduced.
基金supported by the National Magnetic Confinement Fusion Science Program of China(Nos.2018YFE0301104 and 2018YFE0301100)National Natural Science Foundation of China(Nos.12075096 and 51821005)。
文摘Various types of plasma events emerge in specific parameter ranges and exhibit similar characteristics in diagnostic signals,which can be applied to identify these events.A semisupervised machine learning algorithm,the k-means clustering algorithm,is utilized to investigate and identify plasma events in the J-TEXT plasma.This method can cluster diverse plasma events with homogeneous features,and then these events can be identified if given few manually labeled examples based on physical understanding.A survey of clustered events reveals that the k-means algorithm can make plasma events(rotating tearing mode,sawtooth oscillations,and locked mode)gathering in Euclidean space composed of multi-dimensional diagnostic data,like soft x-ray emission intensity,edge toroidal rotation velocity,the Mirnov signal amplitude and so on.Based on the cluster analysis results,an approximate analytical model is proposed to rapidly identify plasma events in the J-TEXT plasma.The cluster analysis method is conducive to data markers of massive diagnostic data.
文摘Classification systems such as Slope Mass Rating(SMR) are currently being used to undertake slope stability analysis. In SMR classification system, data is allocated to certain classes based on linguistic and experience-based criteria. In order to eliminate linguistic criteria resulted from experience-based judgments and account for uncertainties in determining class boundaries developed by SMR system,the system classification results were corrected using two clustering algorithms, namely K-means and fuzzy c-means(FCM), for the ratings obtained via continuous and discrete functions. By applying clustering algorithms in SMR classification system, no in-advance experience-based judgment was made on the number of extracted classes in this system, and it was only after all steps of the clustering algorithms were accomplished that new classification scheme was proposed for SMR system under different failure modes based on the ratings obtained via continuous and discrete functions. The results of this study showed that, engineers can achieve more reliable and objective evaluations over slope stability by using SMR system based on the ratings calculated via continuous and discrete functions.
文摘K-means algorithm is one of the most widely used algorithms in the clustering analysis. To deal with the problem caused by the random selection of initial center points in the traditional al- gorithm, this paper proposes an improved K-means algorithm based on the similarity matrix. The im- proved algorithm can effectively avoid the random selection of initial center points, therefore it can provide effective initial points for clustering process, and reduce the fluctuation of clustering results which are resulted from initial points selections, thus a better clustering quality can be obtained. The experimental results also show that the F-measure of the improved K-means algorithm has been greatly improved and the clustering results are more stable.
文摘The K-means algorithm is widely known for its simplicity and fastness in text clustering.However,the selection of the initial clus?tering center with the traditional K-means algorithm is some random,and therefore,the fluctuations and instability of the clustering results are strongly affected by the initial clustering center.This paper proposed an algorithm to select the initial clustering center to eliminate the uncertainty of central point selection.The experiment results show that the improved K-means clustering algorithm is superior to the traditional algorithm.
基金supported in part by the National Natural Science Foundation of China (Nos. 71971114,61573181)Open Grant of State Key Laboratory of Air Traffic Management System and Technique(No. SKLATM201801).
文摘To quantify unmanned aerial vehicle(UAV)flight risks in low-altitude airspace,we analyze the factors of UAV flight risks from three aspects:flight conflict,flight environment,and traffic characteristics.The aerial risk index and ground risk index of the UAV are constructed,the index screening model and the UAV flight risk assessment model are established,and a UAV flight risk assessment model based on K-means clustering has been proposed.Meanwhile,numerical simulations show the proposed method can not only evaluate the UAV flight risks effectively,but also provide technical support for UAV risk management and control.
文摘Clustering is one of the recently challenging tasks since there is an ever.growing amount of data in scientific research and commercial applications. High quality and fast document clustering algorithms are in great demand to deal with large volume of data. The computational requirements for bringing such growing amount data to a central site for clustering are complex. The proposed algorithm uses optimal centroids for K.Means clustering based on Particle Swarm Optimization(PSO).PSO is used to take advantage of its global search ability to provide optimal centroids which aids in generating more compact clusters with improved accuracy. This proposed methodology utilizes Hadoop and Map Reduce framework which provides distributed storage and analysis to support data intensive distributed applications. Experiments were performed on Reuter's and RCV1 document dataset which shows an improvement in accuracy with reduced execution time.
基金supported by the National Natural Science Foundation of China under Grants No.61100205,No.60873001the HiTech Research and Development Program of China under Grant No.2011AA010705the Fundamental Research Funds for the Central Universities under Grant No.2009RC0212
文摘Since webpage classification is different from traditional text classification with its irregular words and phrases,massive and unlabeled features,which makes it harder for us to obtain effective feature.To cope with this problem,we propose two scenarios to extract meaningful strings based on document clustering and term clustering with multi-strategies to optimize a Vector Space Model(VSM) in order to improve webpage classification.The results show that document clustering work better than term clustering in coping with document content.However,a better overall performance is obtained by spectral clustering with document clustering.Moreover,owing to image existing in a same webpage with document content,the proposed method is also applied to extract image meaningful terms,and experiment results also show its effectiveness in improving webpage classification.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12293032,120101002,12173097,and U1931123)the National Key Basic Research and Development Program of China(Grant Nos.2020YFC2201703 and 2018YFA0404701)Chinese Academy of Sciences(Grant No.GJJSTD20210002)。
文摘We develop an x-ray Ti/Au transition-edge sensor(TES)with an Au absorber deposited on the center of TES and improved its energy resolution using the K-means clustering algorithm in combination with Wiener filter.We firstly extract the main parameters of each recorded pulse trace,which are adopted to classify these traces into several clusters in the K-means clustering algorithm.Then real traces are selected for energy resolution analysis.Following the baseline correction,the Wiener filter is used to improve the signal-to-noise ratio.Although the silicon underneath the TES has not been etched to reduce the thermal conductance,the energy resolution of the developed x-ray TES is improved from 94 eV to 44 eV at 5.9 keV.
文摘Most clustering algorithms need to describe the similarity of objects by a predefined distance function. Three distance functions which are widely used in two traditional clustering algorithms k-means and hierarchical clustering were investigated. Both theoretical analysis and detailed experimental results were given. It is shown that a distance function greatly affects clustering results and can be used to detect the outlier of a cluster by the comparison of such different results and give the shape information of clusters. In practice situation, it is suggested to use different distance function separately, compare the clustering results and pick out the 搒wing points? And such points may leak out more information for data analysts.
基金supported by the National Natural Science Foundation of China under Grant No. 30525030,60701015, and 60736029
文摘In recent years, microarray technology has been widely applied in biological and clinical studies for simultaneous monitoring of gene expression in thousands of genes. Gene clustering analysis is found useful for discovering groups of correlated genes potentially co-regulated or associated to the disease or conditions under investigation. Many clustering methods including k-means, fuzzy c-means, and hierarchical clustering have been widely used in literatures. Yet no comprehensive comparative study has been performed to evaluate the effectiveness of these methods, specially, in yeast saccharomyces cerevisiae. In this paper, these three gene clustering methods are compared. Classification accuracy and CPU time cost are employed for measuring performance of these algorithms. Our results show that hierarchical clustering outperforms k-means and fuzzy c-means clustering. The analysis provides deep insight to the complicated gene clustering problem of expression profile and serves as a practical guideline for routine microarray cluster analysis of gene expression.
基金supported by the National Natural Science Foundation of China(41574113)the Important National Science and Technology Specific Projects of China(Grant 2016ZX05026-002-006).
文摘Compared with hyperbolic velocity estimation methods,nonhyperbolic methods(such as shifted hyperbola)are better choices for large offsets or vertical transverse isotropy(VTI)media.Since local seismic event slope contains subsurface information,they can be used to estimate zero-offset two-way traveltime and normal moveout velocity.The traditional velocity estimation methods require a great deal of manual work and are also prone to human error.In order to estimate the traveltime parameters for VTI media automatically,in this paper,we propose to use predictive painting and similarity-weighted clustering to obtain traveltime parameters.The predictive painting is used to estimate zero-offset two-way traveltime,and the shifted-hyperbola traveltime equation is used to obtain velocity and anisotropy attributes.We first map local slopes to zero-offset two-way traveltime and moveout-parameters domain and then use similarity-weightedk-means clustering to find the maximum likelihood anisotropy parameters of the main subsurface structures.In order to demonstrate that,we apply the similarity-weighted clustering method to synthetic and field data examples and the results are of higher accuracy when compared to the ones obtained using multiparameter semblance-based method.From estimation error section,it can be seen that the estimation error of multiparameter semblance-based method is about 3-5 times that of the proposed method.
文摘A decentralized network made up of mobile nodes is termed the Mobile Ad-hoc Network(MANET).Mobility and a finite battery lifespan are the two main problems with MANETs.Advanced methods are essential for enhancing MANET security,network longevity,and energy efficiency.Hence,selecting an appropriate cluster.The cluster’s head further boosts the network’s energy effectiveness.As a result,a Hybrid Swallow Swarm Optimisation-Memetic Algorithm(SSO-MA)is suggested to develop the energy efficiency&of the MANET network.Then,to secure the network Abnormality Detection System(ADS)is proposed.The MATLAB-2021a platform is used to implement the suggested technique and conduct the analysis.In terms of network performance,the suggested model outperforms the current Genetic Algorithm,Optimised Link State Routing protocol,and Particle Swarm Optimisation techniques.The performance of the model has a minimum delay in the range of 0.82 seconds and a Packet Delivery Ratio(PDR)of 99.82%.Hence,the validation shows that the Hybrid SSO-MA strategy is superior to the other approaches in terms of efficiency.
文摘In the multi-target localization based on Compressed Sensing(CS),the sensing matrix's characteristic is significant to the localization accuracy.To improve the CS-based localization approach's performance,we propose a sensing matrix optimization method in this paper,which considers the optimization under the guidance of the t%-averaged mutual coherence.First,we study sensing matrix optimization and model it as a constrained combinatorial optimization problem.Second,the t%-averaged mutual coherence is adopted as the optimality index to evaluate the quality of different sensing matrixes,where the threshold t is derived through the K-means clustering.With the settled optimality index,a hybrid metaheuristic algorithm named Genetic Algorithm-Tabu Local Search(GA-TLS)is proposed to address the combinatorial optimization problem to obtain the final optimized sensing matrix.Extensive simulation results reveal that the CS localization approaches using different recovery algorithms benefit from the proposed sensing matrix optimization method,with much less localization error compared to the traditional sensing matrix optimization methods.
基金supported by the China Datang Corporation project“Study on the performance improvement scheme of in-service wind farms”,the Fundamental Research Funds for the Central Universities(2020MS021)the Foundation of State Key Laboratory“Real-time prediction of offshore wind power and load reduction control method”(LAPS2020-07).
文摘The simulation of wind power time series is a key process in renewable power allocation planning,operation mode calculation,and safety assessment.Traditional single-point modeling methods discretely generate wind power at each moment;however,they ignore the daily output characteristics and are unable to consider both modeling accuracy and efficiency.To resolve this problem,a wind power time series simulation model based on typical daily output processes and Markov algorithm is proposed.First,a typical daily output process classification method based on time series similarity and modified K-means clustering algorithm is presented.Second,considering the typical daily output processes as status variables,a wind power time series simulation model based on Markov algorithm is constructed.Finally,a case is analyzed based on the measured data of a wind farm in China.The proposed model is then compared with traditional methods to verify its effectiveness and applicability.The comparison results indicate that the statistical characteristics,probability distributions,and autocorrelation characteristics of the wind power time series generated by the proposed model are better than those of the traditional methods.Moreover,modeling efficiency considerably improves.
基金supported by the National Natural Science Foundation of China (No.61631013)National Key Basic Research Program of China (973 Program)(No. 2013CB329002)National Major Project (NO. 2018ZX03001006003)
文摘In this paper, the statistical properties of parameters of each path in wireless channel models are analyzed to prove that there is the static part in channel state information(CSI) which can be extracted from huge amounts of CSI data. Based on the analysis, the concept of the Tomographic Channel Model(TCM) is presented. With cluster algorithms, the static CSI database can be built in an off-line manner. The static CSI database can provide prior information to help pilot design to reduce overhead and improve accuracy in channel estimation. A new CSI prediction method and a new channel estimation method between different frequency bands are introduced based on the static CSI database. Using measurement data, the performance of the new channel prediction method is compared with that of the Auto Regression(AR) predictor. The results indicate that the prediction range of the new method is better than that of the AR method and the new method can predict with fewer pilot symbols. Using measurement data, the new channel estimation method between different frequency bands can estimate the CSI of one frequency band based on known CSI of another frequency band without any feedback.
基金Supported by the National Natural Science Foundation of China(91016004)
文摘In order to solve cruise missile route planning problem for low-altitude penetration , a hy- brid particle swarm optimization ( HPSO ) algorithm is proposed. Firstly, K-means clustering algo- rithm is applied to divide the particle swarm into multiple isolated sub-populations, then niche algo- rithm is adopted to make all particles independently search for optimal values in their own sub-popu- lations. Finally simulated annealing (SA) algorithm is introduced to avoid the weakness of PSO algo- rithm, which can easily be trapped into the local optimum in the search process. The optimal value obtained by every sub-population search corresponds to an optimal route, multiple different optimal routes are provided for cruise missile. Simulation results show that the HPSO algorithm has a fast convergence rate, and the planned routes have flat ballisticpaths and short ranges which meet the low-altitude penetration requirements.
文摘To explore the potential of conventional image processing techniques in the classification of cervical cancer cells, in this work, a co-occurrence histogram method was employed for image feature extraction and an ensemble classifier was developed by combining the base classifiers, namely, the artificial neural network(ANN),random forest(RF), and support vector machine(SVM), for image classification. The segmented pap-smear cell image dataset was constructed by the k-means clustering technique and used to evaluate the performance of the ensemble classifier which was formed by the combination of above considered base classifiers. The result was also compared with that achieved by the individual base classifiers as well as that trained with color, texture, and shape features. The maximum average classification accuracy of 93.44% was obtained when the ensemble classifier was applied and trained with co-occurrence histogram features, which indicates that the ensemble classifier trained with co-occurrence histogram features is more suitable and advantageous for the classification of cervical cancer cells.