在室内可见光通信中符号间干扰和噪声会严重影响系统性能,K均值(K-means)均衡方法可以抑制光无线信道的影响,但其复杂度较高,且在聚类边界处易出现误判。提出了改进聚类中心点的K-means(Improved Center K-means,IC-Kmeans)算法,通过随...在室内可见光通信中符号间干扰和噪声会严重影响系统性能,K均值(K-means)均衡方法可以抑制光无线信道的影响,但其复杂度较高,且在聚类边界处易出现误判。提出了改进聚类中心点的K-means(Improved Center K-means,IC-Kmeans)算法,通过随机生成足够长的训练序列,然后将训练序列每一簇的均值作为K-means聚类中心,避免了传统K-means反复迭代寻找聚类中心。进一步,提出了基于神经网络的IC-Kmeans(Neural Network Based IC-Kmeans,NNIC-Kmeans)算法,使用反向传播神经网络将接收端二维数据映射至三维空间,以增加不同簇之间混合数据的距离,提高了分类准确性。蒙特卡罗误码率仿真表明,IC-Kmeans均衡和传统K-means算法的误码率性能相当,但可以显著降低复杂度,特别是在信噪比较小时。同时,在室内多径信道模型下,与IC-Kmeans和传统Kmeans均衡相比,NNIC-Kmeans均衡的光正交频分复用系统误码率性能最好。展开更多
雷达信号分选是电子战系统中的关键技术,是战场态势感知的重要环节,新体制雷达技术的快速发展给复杂电磁环境下信号分选带来了严峻挑战。针对传统K-means聚类算法在对雷达全脉冲数据进行信号分选时存在对聚类数K和初始点选择较为敏感的...雷达信号分选是电子战系统中的关键技术,是战场态势感知的重要环节,新体制雷达技术的快速发展给复杂电磁环境下信号分选带来了严峻挑战。针对传统K-means聚类算法在对雷达全脉冲数据进行信号分选时存在对聚类数K和初始点选择较为敏感的问题,提出了一种基于优化K-means的雷达信号分选算法。通过将水波中心扩散(water wave center diffusion,WWCD)优化算法和Canopy算法相结合,实现了Canopy算法距离阈值的优选,并为后续K-means聚类优化了K值的选择,有效降低了K-means算法对初始聚类数选择的敏感性。实验中,主要通过3个UCI公开数据集和3类频率跳变雷达脉冲数据进行聚类分选效果验证,并与常见的DBSCAN、OPTICS、Canopy-K-means等聚类算法进行了聚类效果对比。结果表明,所提方法有较高的聚类分选准确率,且对初始参数的设置不敏感。展开更多
针对K-means算法进行大跨屋盖结构表面风荷载分区中存在的分类数k值需凭经验事先给定以及所有初始聚类中心均需随机选取带来的分类情况数过多、从中寻找最优分类结果工作量大且效率低的问题,提出基于改进K-means算法的大跨屋盖结构表面...针对K-means算法进行大跨屋盖结构表面风荷载分区中存在的分类数k值需凭经验事先给定以及所有初始聚类中心均需随机选取带来的分类情况数过多、从中寻找最优分类结果工作量大且效率低的问题,提出基于改进K-means算法的大跨屋盖结构表面风荷载分区方法。首先,建立分类数k与其相应测点风荷载的误差平方和(Sum of the Squared Errors:SSE)关系曲线,引入手肘法基本思想,实现最优分类数kst值的精准识别;其次,在首个初始聚类中心随机选取基础上,引入轮盘法基本思想,完成对剩余初始聚类中心的高效选取;然后,根据类内紧凑、类间分散的原则,通过类内紧凑性判定指标S(k)和类间分散性判定指标D(k),构造并借助SD(k)值有效性检验,得到最优的风荷载分区结果;最后,以北京奥林匹克网球中心大跨悬挑屋盖结构为例,针对风洞试验所得风荷载测试结果,采用所提方法对其表面最不利风压系数进行分区计算,并与传统K-means算法进行对比,结果表明,所提方法能够高效实现大跨屋盖结构表面风压分区计算,具有较好的工程应用价值。展开更多
文摘在室内可见光通信中符号间干扰和噪声会严重影响系统性能,K均值(K-means)均衡方法可以抑制光无线信道的影响,但其复杂度较高,且在聚类边界处易出现误判。提出了改进聚类中心点的K-means(Improved Center K-means,IC-Kmeans)算法,通过随机生成足够长的训练序列,然后将训练序列每一簇的均值作为K-means聚类中心,避免了传统K-means反复迭代寻找聚类中心。进一步,提出了基于神经网络的IC-Kmeans(Neural Network Based IC-Kmeans,NNIC-Kmeans)算法,使用反向传播神经网络将接收端二维数据映射至三维空间,以增加不同簇之间混合数据的距离,提高了分类准确性。蒙特卡罗误码率仿真表明,IC-Kmeans均衡和传统K-means算法的误码率性能相当,但可以显著降低复杂度,特别是在信噪比较小时。同时,在室内多径信道模型下,与IC-Kmeans和传统Kmeans均衡相比,NNIC-Kmeans均衡的光正交频分复用系统误码率性能最好。
文摘雷达信号分选是电子战系统中的关键技术,是战场态势感知的重要环节,新体制雷达技术的快速发展给复杂电磁环境下信号分选带来了严峻挑战。针对传统K-means聚类算法在对雷达全脉冲数据进行信号分选时存在对聚类数K和初始点选择较为敏感的问题,提出了一种基于优化K-means的雷达信号分选算法。通过将水波中心扩散(water wave center diffusion,WWCD)优化算法和Canopy算法相结合,实现了Canopy算法距离阈值的优选,并为后续K-means聚类优化了K值的选择,有效降低了K-means算法对初始聚类数选择的敏感性。实验中,主要通过3个UCI公开数据集和3类频率跳变雷达脉冲数据进行聚类分选效果验证,并与常见的DBSCAN、OPTICS、Canopy-K-means等聚类算法进行了聚类效果对比。结果表明,所提方法有较高的聚类分选准确率,且对初始参数的设置不敏感。
文摘针对K-means算法进行大跨屋盖结构表面风荷载分区中存在的分类数k值需凭经验事先给定以及所有初始聚类中心均需随机选取带来的分类情况数过多、从中寻找最优分类结果工作量大且效率低的问题,提出基于改进K-means算法的大跨屋盖结构表面风荷载分区方法。首先,建立分类数k与其相应测点风荷载的误差平方和(Sum of the Squared Errors:SSE)关系曲线,引入手肘法基本思想,实现最优分类数kst值的精准识别;其次,在首个初始聚类中心随机选取基础上,引入轮盘法基本思想,完成对剩余初始聚类中心的高效选取;然后,根据类内紧凑、类间分散的原则,通过类内紧凑性判定指标S(k)和类间分散性判定指标D(k),构造并借助SD(k)值有效性检验,得到最优的风荷载分区结果;最后,以北京奥林匹克网球中心大跨悬挑屋盖结构为例,针对风洞试验所得风荷载测试结果,采用所提方法对其表面最不利风压系数进行分区计算,并与传统K-means算法进行对比,结果表明,所提方法能够高效实现大跨屋盖结构表面风压分区计算,具有较好的工程应用价值。