期刊文献+
共找到1,708篇文章
< 1 2 86 >
每页显示 20 50 100
基于改进K-means算法的室内可见光通信O-OFDM系统信道均衡技术
1
作者 贾科军 连江龙 +1 位作者 张常瑞 蔺莹 《电讯技术》 北大核心 2025年第1期96-102,共7页
在室内可见光通信中符号间干扰和噪声会严重影响系统性能,K均值(K-means)均衡方法可以抑制光无线信道的影响,但其复杂度较高,且在聚类边界处易出现误判。提出了改进聚类中心点的K-means(Improved Center K-means,IC-Kmeans)算法,通过随... 在室内可见光通信中符号间干扰和噪声会严重影响系统性能,K均值(K-means)均衡方法可以抑制光无线信道的影响,但其复杂度较高,且在聚类边界处易出现误判。提出了改进聚类中心点的K-means(Improved Center K-means,IC-Kmeans)算法,通过随机生成足够长的训练序列,然后将训练序列每一簇的均值作为K-means聚类中心,避免了传统K-means反复迭代寻找聚类中心。进一步,提出了基于神经网络的IC-Kmeans(Neural Network Based IC-Kmeans,NNIC-Kmeans)算法,使用反向传播神经网络将接收端二维数据映射至三维空间,以增加不同簇之间混合数据的距离,提高了分类准确性。蒙特卡罗误码率仿真表明,IC-Kmeans均衡和传统K-means算法的误码率性能相当,但可以显著降低复杂度,特别是在信噪比较小时。同时,在室内多径信道模型下,与IC-Kmeans和传统Kmeans均衡相比,NNIC-Kmeans均衡的光正交频分复用系统误码率性能最好。 展开更多
关键词 可见光通信 光正交频分复用 多径信道 信道均衡 K-means算法 反向传播神经网络
在线阅读 下载PDF
基于k-Harmonic means聚类分析的物流中心选址模型研究 被引量:3
2
作者 李强 赵茂先 杨龙飞 《物流技术》 2009年第11期87-89,94,共4页
通过对传统物流选址模型运输成本的讨论,运用k-Harmonic means聚类分析方法对传统物流选址模型中运输费用进行重新构建,将以往的辐射状点对点送货路径替换为更贴近实际的连续圈式送货路线,克服了传统模型不符合实际情况的弊端,并通过较... 通过对传统物流选址模型运输成本的讨论,运用k-Harmonic means聚类分析方法对传统物流选址模型中运输费用进行重新构建,将以往的辐射状点对点送货路径替换为更贴近实际的连续圈式送货路线,克服了传统模型不符合实际情况的弊端,并通过较大规模的数值实验验证了方法的优越性。 展开更多
关键词 聚类 物流中心选址 k-harmonic means
在线阅读 下载PDF
基于K-Means++算法和改进遗传算法的维保站维修调度方法的研究
3
作者 何晨曦 《科学技术创新》 2025年第3期49-52,共4页
传统的电梯维保工作模式是定期保养,即针对每台电梯而言,需要每半个月去保养一次,然而电梯设备的分布和保养进度的复杂性决定了人为排定的维保路线不能够最大限度地解决维保资源。为此提出基于K-Means++算法和改进遗传算法的维保站维修... 传统的电梯维保工作模式是定期保养,即针对每台电梯而言,需要每半个月去保养一次,然而电梯设备的分布和保养进度的复杂性决定了人为排定的维保路线不能够最大限度地解决维保资源。为此提出基于K-Means++算法和改进遗传算法的维保站维修调度方法,首先使用分解法的思想将问题进行拆分,然后采用K均值聚类算法将维保任务分配到合适的维保站,建立总路程最短的维保调度模型,最后利用改进遗传算法进行求解,获取最优路线规划结果,对缩减维保工作时间,提升维保工作效率,从而提升电梯使用的安全性和可靠性有一定的意义。 展开更多
关键词 电梯维保 维保调度 分解法 K-means++算法 改进遗传算法
在线阅读 下载PDF
WWCD优化Canopy-K-means的雷达信号分选算法
4
作者 王之腾 李尚远 +2 位作者 纪存孝 刘畅 严子路 《陆军工程大学学报》 2025年第1期20-26,共7页
雷达信号分选是电子战系统中的关键技术,是战场态势感知的重要环节,新体制雷达技术的快速发展给复杂电磁环境下信号分选带来了严峻挑战。针对传统K-means聚类算法在对雷达全脉冲数据进行信号分选时存在对聚类数K和初始点选择较为敏感的... 雷达信号分选是电子战系统中的关键技术,是战场态势感知的重要环节,新体制雷达技术的快速发展给复杂电磁环境下信号分选带来了严峻挑战。针对传统K-means聚类算法在对雷达全脉冲数据进行信号分选时存在对聚类数K和初始点选择较为敏感的问题,提出了一种基于优化K-means的雷达信号分选算法。通过将水波中心扩散(water wave center diffusion,WWCD)优化算法和Canopy算法相结合,实现了Canopy算法距离阈值的优选,并为后续K-means聚类优化了K值的选择,有效降低了K-means算法对初始聚类数选择的敏感性。实验中,主要通过3个UCI公开数据集和3类频率跳变雷达脉冲数据进行聚类分选效果验证,并与常见的DBSCAN、OPTICS、Canopy-K-means等聚类算法进行了聚类效果对比。结果表明,所提方法有较高的聚类分选准确率,且对初始参数的设置不敏感。 展开更多
关键词 雷达信号分选 水波中心扩散优化 Canopy算法 K-means算法
在线阅读 下载PDF
基于异构大数据平台的并行化K-means算法设计与实现
5
作者 张适显 黄万兵 熊文 《无线互联科技》 2025年第4期88-91,119,共5页
K-means算法是数据挖掘和机器学习中用于聚类分析的基础工具,广泛应用于文档聚类、异常值检测等多个领域。然而,随着大数据时代的来临,传统方法难以满足大规模数据聚类分析的处理需求。为此,文章基于Spark和GPU构建异构大数据平台,对K-m... K-means算法是数据挖掘和机器学习中用于聚类分析的基础工具,广泛应用于文档聚类、异常值检测等多个领域。然而,随着大数据时代的来临,传统方法难以满足大规模数据聚类分析的处理需求。为此,文章基于Spark和GPU构建异构大数据平台,对K-means算法进行并行化设计与实现,以提高K-means算法的数据处理效率和资源利用率。文章在4个公开的真实数据集上验证了该方法的有效性,与传统的并行化K-means方法进行对比,实验结果证明该方法相较传统方法具备更好的性能。 展开更多
关键词 并行计算 异构计算 大数据技术 数据挖掘 K-means算法 聚类分析
在线阅读 下载PDF
启发式k-means聚类算法的改进研究 被引量:2
6
作者 殷丽凤 栗庆杰 《大连交通大学学报》 CAS 2024年第2期115-119,共5页
启发式k-means聚类算法通过在k-means第一次迭代后查看附近的集群来预测每个数据点可能会被划分到的集群子集,有效地加快了算法的运行速度。但由于启发式算法存在随机选择初始聚类中心以及无法有效识别数据集中离群点的缺陷,导致聚类结... 启发式k-means聚类算法通过在k-means第一次迭代后查看附近的集群来预测每个数据点可能会被划分到的集群子集,有效地加快了算法的运行速度。但由于启发式算法存在随机选择初始聚类中心以及无法有效识别数据集中离群点的缺陷,导致聚类结果的误差平方和较大并且轮廓系数偏小。针对这一问题,提出了CHk-means算法,该算法引入仔细播种方法,克服了启发式k-means算法随机选择初始聚类中心带来的局部最优解问题;该算法引入局部异常因子LOF算法对离群点进行检测,降低了离群点数据对聚类结果的影响。在多个数据集上对3种算法进行对比试验,结果表明CHk-means算法可有效降低聚类结果的误差平方和,增强聚类的轮廓系数,使聚类质量得到明显改善。 展开更多
关键词 聚类算法 K-means 启发式算法 仔细播种 局部异常因子 离群点
在线阅读 下载PDF
基于信息熵和Canopy-K-Means算法的货车驾驶风格识别 被引量:1
7
作者 李浩 王肇飞 李微 《交通工程》 2024年第7期123-128,共6页
为识别货车的激进驾驶行为,保障货车行车安全,提出1种基于信息熵和Canopy-K-Means算法的货车驾驶风格识别方法。首先,从货车自然驾驶数据中提取出604个驾驶片段,根据信息熵理论计算各个驾驶片段的速度熵值、横向加速度熵值和纵向加速度... 为识别货车的激进驾驶行为,保障货车行车安全,提出1种基于信息熵和Canopy-K-Means算法的货车驾驶风格识别方法。首先,从货车自然驾驶数据中提取出604个驾驶片段,根据信息熵理论计算各个驾驶片段的速度熵值、横向加速度熵值和纵向加速度熵值,构成货车驾驶风格表征指标集;其次,针对K-Means算法的聚类数量主观选取、初始聚类中心随机选取的问题,使用Canopy算法改进K-Means算法(Canopy-K-Means算法);最后,分别使用K-Means算法和Canopy-K-Means算法对货车驾驶风格进行识别。研究结果显示,Canopy-K-Means算法的轮廓系数和Calinski-Harabasz指数均大于K-Means算法,表现出更优的聚类性能。根据Canopy-K-Means算法,可将货车驾驶风格分为沉稳型、常规型和激进型3类,其中激进型货车驾驶风格的指标熵值和极差均较大,存在较高的安全隐患,需要引起相关部门的高度重视。 展开更多
关键词 交通工程 驾驶风格 Canopy-K-means算法 信息熵 货车
在线阅读 下载PDF
基于K-Means聚类与熵权TOPSIS法的岩石可爆性评价研究
8
作者 叶海旺 雷丙响 +5 位作者 周汉红 余梦豪 雷涛 王其洲 李宁 Doumbouya Sekou 《爆破》 CSCD 北大核心 2024年第2期112-119,共8页
露天矿山的爆破块度分布,直接影响到后续的采装、运输和破碎工作。为了控制石墨矿山不同区域爆破块度分布,基于K-means无监督聚类学习法与熵权TOPSIS评价法建立了一种新的岩石可爆性评价模型,选取岩石密度、动力能量耗散率、动态抗压强... 露天矿山的爆破块度分布,直接影响到后续的采装、运输和破碎工作。为了控制石墨矿山不同区域爆破块度分布,基于K-means无监督聚类学习法与熵权TOPSIS评价法建立了一种新的岩石可爆性评价模型,选取岩石密度、动力能量耗散率、动态抗压强度、平均应变率、脆性指数作为评价指标,通过熵权计算,发现岩石破碎程度受脆性指数影响最大,受平均应变率影响最小。将此模型应用于实际石墨矿山,可爆性分为10个等级,统计不同分级下的岩石平均破碎粒径,发现可爆性分级等级越高平均粒径越大,有明显的分级特征,验证了模型的有效性。从爆破石墨矿石岩体类型看,岩石可爆性从易到难排序为:片岩、片麻岩、变粒岩、混合岩。结合石墨矿石微观观测结果分析可知:岩性从片岩向混合岩转变,岩石内部石墨晶质呈下降趋势,石墨矿石可爆性等级也随之越来越高。岩石密度、能量耗散率、动态抗压强度之间呈线性正相关,岩石可爆性与平均应变率、脆性指数存在负相关性。研究成果为矿山矿岩可爆性评价提供了一条新思路,对露天矿山爆破块度优化具有一定的理论和实践指导意义。 展开更多
关键词 岩体爆破 可爆性评价 岩石力学 K-means算法 熵权TOPSIS评价
在线阅读 下载PDF
基于K-means算法的建筑群震害分析模型缩减方法
9
作者 陈夏楠 张令心 +1 位作者 林旭川 王祺 《世界地震工程》 北大核心 2024年第1期72-79,共8页
基于建筑群模型和弹塑性时程分析的精细化城市震害模拟技术能够为防震减灾及应急救援决策提供必要的依据和参考。为了减小城市建筑群震害模拟的计算量和计算时间,本文提出一种基于聚类算法的建筑群模型缩减方法。该方法采用K-means聚类... 基于建筑群模型和弹塑性时程分析的精细化城市震害模拟技术能够为防震减灾及应急救援决策提供必要的依据和参考。为了减小城市建筑群震害模拟的计算量和计算时间,本文提出一种基于聚类算法的建筑群模型缩减方法。该方法采用K-means聚类算法,首先基于建筑结构属性向量对建筑群进行聚类,将相似的建筑结构聚为一组;然后从每组选取一个代表建筑组成建筑群缩减模型,通过减少需要分析的建筑结构数量来减少建筑群震害模拟的计算量。本文对传统的K-means算法进行改进,通过设定组内建筑结构的差异上限自动调整聚类分组数量;提出将具体地震动作用下结构地震损伤指数作为结构属性向量进行聚类,并通过算例对比分别采用两种缩减模型,即基于损伤指数聚类的缩减模型与基于结构力学模型参数聚类的缩减模型,计算结构损伤状态准确程度。对比结果表明:在聚类分组数量相同的情况下,基于损伤指数的分组明显优于基于模型参数的分组,采用模型缩减方法能够在保证足够计算精度前提下显著减少建筑群震害模拟计算量和计算时间。 展开更多
关键词 城市建筑群 K-means算法 模型缩减 结构模型参数 地震损伤指数
在线阅读 下载PDF
基于改进K-means聚类和遗传算法的混合算法求解异构车辆路径问题
10
作者 吴麟麟 吕一鸣 +1 位作者 何美玲 韩珣 《物流技术》 2024年第7期48-62,共15页
由于目前单一车型配送存在资源浪费和效率低下等问题,选取确定数量的不同车型对各客户点进行配送服务往往可以得到更优的配送路径方案。针对这一点,描述了一种异构车辆路径问题,并建立了具有固定车辆数且考虑固定成本、可变成本以及时... 由于目前单一车型配送存在资源浪费和效率低下等问题,选取确定数量的不同车型对各客户点进行配送服务往往可以得到更优的配送路径方案。针对这一点,描述了一种异构车辆路径问题,并建立了具有固定车辆数且考虑固定成本、可变成本以及时间窗惩罚成本的混合整数规划模型。同时,提出了一种基于改进K-means聚类和遗传算法的混合算法对模型进行求解。实验仿真先求解不考虑时间窗的问题初步证明混合算法的有效性,再在带时间窗的问题中求解不同规模算例的单一及异构车型结果,以证明异构车型配送更优。最后,对该混合算法的求解结果与其他混合算法的求解结果进行对比分析,证明了混合算法的优越性。研究结果表明:该混合算法求解的异构车型结果优于单一车型,并且比其他混合算法求解的异构车型结果更优,异构车辆配送使用的配送车辆数更少,总成本也更低,该混合算法具有更好的效率和性能。 展开更多
关键词 异构车辆路径问题 改进K-means聚类算法 遗传算法 混合算法
在线阅读 下载PDF
一种基于改进差分进化的K-Means聚类算法研究 被引量:2
11
作者 刘红达 王福顺 +3 位作者 孙小华 张广辉 王斌 何振学 《现代电子技术》 北大核心 2024年第18期156-162,共7页
为改进传统K-Means聚类算法中因随机选取初始聚类中心而导致聚类结果不稳定且效率低的缺点,提出一种基于改进差分进化的K-Means聚类算法(AGDE-KM)。首先,设计自适应操作算子来提升算法前期的全局搜索能力和后期的收敛速度;其次,设计多... 为改进传统K-Means聚类算法中因随机选取初始聚类中心而导致聚类结果不稳定且效率低的缺点,提出一种基于改进差分进化的K-Means聚类算法(AGDE-KM)。首先,设计自适应操作算子来提升算法前期的全局搜索能力和后期的收敛速度;其次,设计多变异策略并引入权重系数,在算法的不同进化阶段发挥不同变异策略的优势,平衡算法的全局和局部搜索能力,加快算法的收敛速度;最后,提出一种基于当前种群最佳个体的高斯扰动交叉操作,为个体提供更优进化方向的同时保持种群在“维”上的多样性,避免算法陷入局部最优。将算法停止执行时输出的最优解作为初始聚类中心替代传统K-Means随机选取的聚类中心。将提出算法在UCI公共数据库中的Vowel、Iris、Glass数据集和合成数据集Jcdx上进行对比实验,误差平方和(SSE)相对于传统K-Means分别减小5.65%、19.59%、13.31%、6.1%,聚类时间分别减少83.03%、81.33%、77.47%、92.63%。实验结果表明,提出的改进算法具有更快的收敛速度和更好的寻优能力,显著提升了聚类的效果、效率和稳定性。 展开更多
关键词 K-means聚类算法 差分进化算法 多变异策略 高斯扰动 UCI数据库 聚类中心优化
在线阅读 下载PDF
基于随机森林算法和K-means算法的网络攻击识别方法 被引量:3
12
作者 荣文晶 高锐 +2 位作者 赵弘洋 云雷 彭辉 《电子产品可靠性与环境试验》 2024年第1期8-12,共5页
5G网络与核电的深度融合能够提升核电厂生产安全管控水平,减少人为事故,促进核电行业安全和经济发展。但由于网络的接入,为核电安全生产带来了一定的安全风险,恶意攻击者会通过向核电5G网络发起攻击进而破坏核电生产。为了解决核电5G网... 5G网络与核电的深度融合能够提升核电厂生产安全管控水平,减少人为事故,促进核电行业安全和经济发展。但由于网络的接入,为核电安全生产带来了一定的安全风险,恶意攻击者会通过向核电5G网络发起攻击进而破坏核电生产。为了解决核电5G网络场景下面临的网络异常和恶意攻击的问题,提出了一种在核电5G网络场景下基于随机森林算法和K-means算法的实时网络异常检测和网络攻击识别方法,对于提高核电网络安全具有重要的意义。 展开更多
关键词 随机森林算法 K-means算法 网络异常检测 网络攻击识别
在线阅读 下载PDF
基于改进K-means聚类算法的网络异常数据挖掘与分类方法
13
作者 贺萌 《无线互联科技》 2024年第18期119-122,共4页
为了解决网络异常数据挖掘过程中漏报率、误报率较高的问题,文章提出一种基于改进K-means聚类算法的网络异常数据挖掘与分类方法。文章通过构建并行化频繁项集挖掘环境加速数据处理,利用局部离群点检测剔除异常值,同时引入K-means聚类... 为了解决网络异常数据挖掘过程中漏报率、误报率较高的问题,文章提出一种基于改进K-means聚类算法的网络异常数据挖掘与分类方法。文章通过构建并行化频繁项集挖掘环境加速数据处理,利用局部离群点检测剔除异常值,同时引入K-means聚类对数据的最大最小距离展开计算,融合隶属度函数与密度峰值优化算法,改进聚类初始中心选择及簇边界调整,从而提高异常识别准确性和分类效率。通过实验结果证明,该方法能够明显改善聚类效果与性能。 展开更多
关键词 K-means聚类算法 网络异常 数据挖掘 数据分类 离群点检测
在线阅读 下载PDF
基于改进的Canopy-k-means的大跨屋盖表面风荷载分区方法 被引量:1
14
作者 李玉学 纪君 董阳 《河北科技大学学报》 CAS 北大核心 2024年第5期530-538,共9页
针对k-means聚类算法在大跨屋盖结构表面风荷载分区计算中,聚类数k值随机选取容易导致结果不稳定和计算效率低等问题,提出改进的Canopy-k-means聚类算法。首先,引入Canopy算法并对其初始阈值和聚类中心的选取方式进行改进,减少初始值选... 针对k-means聚类算法在大跨屋盖结构表面风荷载分区计算中,聚类数k值随机选取容易导致结果不稳定和计算效率低等问题,提出改进的Canopy-k-means聚类算法。首先,引入Canopy算法并对其初始阈值和聚类中心的选取方式进行改进,减少初始值选取的盲目性,以提高风荷载分区结果的可靠性;其次,通过改进Canopy算法对风荷载数据集进行预处理,快速准确地确定聚类数k值;第三,将改进Canopy算法与k-means结合使用,实现最优分类数k值的精准识别,使得改进的Canopy-k-means聚类算法进行大跨屋盖结构表面风荷载分区时能够快速准确地得到分区结果;最后,以一大跨柱面屋盖干煤棚结构为例,基于风洞试验所得结构表面风荷载数据测试结果,采用所提改进的Canopy-k-means聚类算法对其表面风荷载进行分区计算。结果表明,采用改进的Canopy-k-means聚类算法,将0°、50°和90°风向角时大跨屋盖表面风荷载划分为了3个不同的分区,其对应的SD值分别为2.36、3.51和2.52,较传统k-means聚类算法所得对应值明显降低,类内紧凑性和类间分散性明显提升。所提改进Canopy-k-means聚类算法能够快速准确地得到最优分区结果,对大跨屋盖表面风荷载分区具有工程参考价值。 展开更多
关键词 薄壳结构 风荷载测压 风荷载分区 K-means聚类算法 Canopy算法
在线阅读 下载PDF
基于K-means聚类和极限学习机组合算法的短期光伏功率预测 被引量:5
15
作者 黄牧涛 邢芳菲 +1 位作者 陈兴邦 卢明 《水电能源科学》 北大核心 2024年第2期217-220,216,共5页
考虑光伏功率的预测精度强依赖于天气模态和气候条件等因素影响,提出了基于极限学习机组合算法的短期光伏功率预测方法。首先,基于K-means聚类算法进行天气分型,分为4个季节下晴天、多云天气、阴雨天气共12组不同天气类别。其次,针对天... 考虑光伏功率的预测精度强依赖于天气模态和气候条件等因素影响,提出了基于极限学习机组合算法的短期光伏功率预测方法。首先,基于K-means聚类算法进行天气分型,分为4个季节下晴天、多云天气、阴雨天气共12组不同天气类别。其次,针对天气分型结果,基于极限学习机ELM、遗传算法改进的极限学习机GA-ELM、鸟群算法改进的极限学习机BSA-ELM3种算法构建光伏功率预测模型。最后,以某光伏电站数据进行所提模型验证。预测结果表明,BSA-ELM预测精度最高,12种天气预测精度达到90%左右,各季节中预测精度最高的天气类型均为晴天,多云天气精度高于阴雨天气精度,可为含高比例光伏并网的新型电力系统安全稳定运行提供有效数据支撑。 展开更多
关键词 光伏发电功率预测 K-means聚类 天气分型 极限学习机算法 遗传算法 鸟群算法
在线阅读 下载PDF
基于K-means聚类的多种群麻雀搜索算法 被引量:3
16
作者 闫少强 刘卫东 +2 位作者 杨萍 吴丰轩 阎哲 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2024年第2期508-518,共11页
为改善麻雀搜索算法(SSA)在单种群搜索中收敛速度过快导致其收敛速度出现冗余,易忽略优质解而陷入局部最优的缺陷,提出一种基于K-means聚类的多种群麻雀搜索算法(KSSA)。将多种群机制引入SSA,减弱单种群的收敛能力,并减小陷入局部最优... 为改善麻雀搜索算法(SSA)在单种群搜索中收敛速度过快导致其收敛速度出现冗余,易忽略优质解而陷入局部最优的缺陷,提出一种基于K-means聚类的多种群麻雀搜索算法(KSSA)。将多种群机制引入SSA,减弱单种群的收敛能力,并减小陷入局部最优的概率;采用K-means聚类划分子种群,增加子种群间的差异性,同时使子种群内个体在小范围内专注搜索,提升前期搜索效率;借助加权重心交流策略改善种群间交流的质量,减少自身种群的干扰,同时消减因某一子种群陷入局部最优而导致所有子种群陷入局部最优的风险;引入动态反向学习到警戒者中,增强其反捕食行为,改善因子种群数量增加而带来的收敛速度变慢和收敛精度不足的缺陷。经测试函数仿真实验表明:较SSA等算法,KSSA具有更优的寻优性能。 展开更多
关键词 麻雀搜索算法 优化算法 多种群 K-means聚类 种群交流
在线阅读 下载PDF
基于K-means聚类算法的人事管理异常数据识别和自动处理系统 被引量:1
17
作者 韩晓萃 胡业维 +2 位作者 吴庆艳 胡敏 曾思颖 《电子设计工程》 2024年第24期27-31,共5页
针对人事管理异常数据影响人事管理水平的问题,设计基于K-means聚类算法的人事管理异常数据识别和自动处理系统。利用全局优化K-means聚类算法,对人事管理数据进行聚类处理。该算法搜寻高密度的人事管理数据作为初始聚类中心,将人事管... 针对人事管理异常数据影响人事管理水平的问题,设计基于K-means聚类算法的人事管理异常数据识别和自动处理系统。利用全局优化K-means聚类算法,对人事管理数据进行聚类处理。该算法搜寻高密度的人事管理数据作为初始聚类中心,将人事管理数据聚类为多个簇。利用K-means聚类算法构建人事管理数据的自回归模型,确定人事管理数据参量的转移概率序列。转移概率序列非聚类簇中的数据时,对应数据即为人事管理异常数据识别结果。采用指数加权移动平均数方法自动修正处理所识别的人事管理异常数据。系统测试结果表明,所设计系统能够有效识别人事管理考勤数据、薪资数据中的异常数据,能够自动修正异常数据,使人事管理数据恢复正常。 展开更多
关键词 K-means聚类算法 人事管理 异常数据识别 自动处理系统 聚类中心 转移概率
在线阅读 下载PDF
基于改进K-means算法的大跨屋盖结构表面风荷载分区研究
18
作者 李玉学 杨君保 +1 位作者 陈铁 田玉基 《防灾减灾工程学报》 CSCD 北大核心 2024年第5期1106-1114,共9页
针对K-means算法进行大跨屋盖结构表面风荷载分区中存在的分类数k值需凭经验事先给定以及所有初始聚类中心均需随机选取带来的分类情况数过多、从中寻找最优分类结果工作量大且效率低的问题,提出基于改进K-means算法的大跨屋盖结构表面... 针对K-means算法进行大跨屋盖结构表面风荷载分区中存在的分类数k值需凭经验事先给定以及所有初始聚类中心均需随机选取带来的分类情况数过多、从中寻找最优分类结果工作量大且效率低的问题,提出基于改进K-means算法的大跨屋盖结构表面风荷载分区方法。首先,建立分类数k与其相应测点风荷载的误差平方和(Sum of the Squared Errors:SSE)关系曲线,引入手肘法基本思想,实现最优分类数kst值的精准识别;其次,在首个初始聚类中心随机选取基础上,引入轮盘法基本思想,完成对剩余初始聚类中心的高效选取;然后,根据类内紧凑、类间分散的原则,通过类内紧凑性判定指标S(k)和类间分散性判定指标D(k),构造并借助SD(k)值有效性检验,得到最优的风荷载分区结果;最后,以北京奥林匹克网球中心大跨悬挑屋盖结构为例,针对风洞试验所得风荷载测试结果,采用所提方法对其表面最不利风压系数进行分区计算,并与传统K-means算法进行对比,结果表明,所提方法能够高效实现大跨屋盖结构表面风压分区计算,具有较好的工程应用价值。 展开更多
关键词 大跨屋盖结构 风荷载分区 K-means算法 分类数 聚类中心
在线阅读 下载PDF
基于参数化角编码的量子K-means算法
19
作者 冯微军 郭躬德 林崧 《量子电子学报》 CAS CSCD 北大核心 2024年第1期113-124,共12页
结合K-means算法和角编码技术,提出了一种无需量子随机存储(QRAM)的量子K-means算法。该算法利用量子操作的并行性,仅需对数数量的时间复杂度就能完成数据的加载;并且通过对输入数据进行参数预处理操作,确定数据分量的参数阈值,解决了... 结合K-means算法和角编码技术,提出了一种无需量子随机存储(QRAM)的量子K-means算法。该算法利用量子操作的并行性,仅需对数数量的时间复杂度就能完成数据的加载;并且通过对输入数据进行参数预处理操作,确定数据分量的参数阈值,解决了样本不同特征尺度差异的问题。该算法由编码数据、相似度度量、量子最小值搜索和质心迭代更新四个主要步骤组成,细致描述了这些步骤所涉及的算子和线路构建,并对关键线路进行了仿真模拟。实验结果和经典预测结果一致,验证了所提量子K-means算法的可靠性。此外,理论分析表明所提出算法相比于经典算法在运行时间上有平方级加速。 展开更多
关键词 量子光学 量子K-means算法 角编码 量子相位估计 多量子比特交换测试
在线阅读 下载PDF
基于鲸鱼优化的k-means初始聚类中心选取研究
20
作者 刘衍俊 刘晓东 《电子设计工程》 2024年第22期42-46,共5页
传统的k-means算法存在两个主要问题:初始聚类中心的随机选取和在处理大规模数据集时的低运算效率。为了解决这些问题,提出利用鲸鱼优化算法来选取最佳的初始聚类中心,在改进后的算法中结合分布式计算框架Flink实现并行执行。为了进一... 传统的k-means算法存在两个主要问题:初始聚类中心的随机选取和在处理大规模数据集时的低运算效率。为了解决这些问题,提出利用鲸鱼优化算法来选取最佳的初始聚类中心,在改进后的算法中结合分布式计算框架Flink实现并行执行。为了进一步优化聚类效果和提高算法的可靠性,利用孤立森林算法进行异常数据检测,对数据进行分域处理。实验选取UCI机器学习库中的Iris扩张数据集,优化后的k-means算法的轮廓系数指数提升约23%,DBI指数下降约9%,聚类效果有显著提升。 展开更多
关键词 孤立森林 鲸鱼优化算法 K-means算法 Flink
在线阅读 下载PDF
上一页 1 2 86 下一页 到第
使用帮助 返回顶部