提出了一种基于K-means聚类算法的复杂网络社团结构划分方法。算法基于Fortunato等人提出的边的信息中心度,定义了节点的关联度,并通过节点关联度矩阵来进行聚类中心的选择和节点聚类,从而将复杂网络划分成k个社团,然后通过模块度来确...提出了一种基于K-means聚类算法的复杂网络社团结构划分方法。算法基于Fortunato等人提出的边的信息中心度,定义了节点的关联度,并通过节点关联度矩阵来进行聚类中心的选择和节点聚类,从而将复杂网络划分成k个社团,然后通过模块度来确定网络理想的社团结构。该算法有效地避免了K-means聚类算法对初始化选值敏感性的问题。通过Zachary Karate Club和College Football Network两个经典模型验证了该算法的可行性。展开更多
文摘提出了一种基于K-means聚类算法的复杂网络社团结构划分方法。算法基于Fortunato等人提出的边的信息中心度,定义了节点的关联度,并通过节点关联度矩阵来进行聚类中心的选择和节点聚类,从而将复杂网络划分成k个社团,然后通过模块度来确定网络理想的社团结构。该算法有效地避免了K-means聚类算法对初始化选值敏感性的问题。通过Zachary Karate Club和College Football Network两个经典模型验证了该算法的可行性。