期刊文献+
共找到2,066篇文章
< 1 2 104 >
每页显示 20 50 100
基于K-means聚类粒子群算法的海洋结构迭代型损伤识别方法
1
作者 周旭涛 赵海旭 +2 位作者 蒋玉峰 王树青 刘雨 《中国海洋大学学报(自然科学版)》 北大核心 2025年第4期134-147,共14页
为了解决传统智能优化算法在结构损伤识别中易陷入局部最优解,导致损伤识别时误判单元较多且识别精度较差的问题,本文提出了一种迭代型结构损伤识别方法。该方法创新性地引入了基于K-means聚类的新型粒子群算法,以加快算法收敛和避免陷... 为了解决传统智能优化算法在结构损伤识别中易陷入局部最优解,导致损伤识别时误判单元较多且识别精度较差的问题,本文提出了一种迭代型结构损伤识别方法。该方法创新性地引入了基于K-means聚类的新型粒子群算法,以加快算法收敛和避免陷入局部最优解,同时,采用迭代思想对传统损伤识别方法进行改进,将损伤识别结果进行迭代更新,以获得准确的损伤位置及损伤程度。以某三腿海上风机结构为例:首先,探讨了非迭代型方法在无噪声和有噪声污染时的结构损伤识别效果;其次,分析所提出的迭代型方法在无噪声和有噪声污染两种情况下的结构损伤识别效果;然后,探究了所提出方法的收敛性及稳定性;最后,采用物理模型试验对提出的方法进行了验证。结果表明,提出的迭代型聚类粒子群算法相比传统结构损伤识别方法可获得更准确的损伤位置及损伤程度,并展现出良好的噪声鲁棒性,且算法迭代次数少,识别效果稳定。 展开更多
关键词 k-means聚类粒子群算法 损伤识别 海上风机结构 迭代型方法
在线阅读 下载PDF
基于主成分分析的K-Means聚类算法在实时洪水预报中的应用
2
作者 温娅惠 霍文博 刘龙庆 《水文》 北大核心 2025年第5期36-43,共8页
为更高效利用黄河源区宝贵水资源,挖掘更多历史洪水信息提高洪水预报精度,以龙羊峡水库入库站唐乃亥站洪水为研究对象,提出一种融合主成分分析与K-Means聚类的洪水分类及参数优化方法。基于1956—2023年长系列水文资料构建多维洪水特征... 为更高效利用黄河源区宝贵水资源,挖掘更多历史洪水信息提高洪水预报精度,以龙羊峡水库入库站唐乃亥站洪水为研究对象,提出一种融合主成分分析与K-Means聚类的洪水分类及参数优化方法。基于1956—2023年长系列水文资料构建多维洪水特征指标体系,通过主成分分析提取累积方差贡献率达90%以上的4个主成分,结合K-Means算法将77场历史洪水划分为短时缓涨型、均匀宽峰型和长时高峰型,并使用垂向混合产流模型和新安江模型对分类洪水进行模拟。结果表明:分类洪水模拟精度高于未分类洪水,率定期垂向混合产流模型洪峰、洪量精度分别提高1.45%、0.68%;新安江模型相应提升1.58%、0.34%。检验期分类参数使洪峰误差控制在10%以内,峰现时间合格率达100%,洪量误差最大降幅达12.78%。研究证实,融合主成分分析与K-Means聚类的洪水分类及参数优化方法可显著提升模型预报精度,为黄河流域防洪安全与水资源高效利用提供科学支撑。 展开更多
关键词 黄河源区 主成分分析 k-means聚类方法 实时预报 特征指标
在线阅读 下载PDF
一种嵌套K-means聚类的任意形状波束子阵划分方法
3
作者 张清河 李宇航 +1 位作者 沈钊阳 文方青 《电子学报》 北大核心 2025年第1期119-127,共9页
传统相控阵由于其高昂成本的限制,已经无法满足日益增长的广泛应用需求,而基于稀疏阵、子阵等技术的非传统相控阵技术则得到了广泛的关注和研究.如何有效地划分子阵,以及如何优化子阵的计算过程,是提高计算效率和性能的关键问题.本文提... 传统相控阵由于其高昂成本的限制,已经无法满足日益增长的广泛应用需求,而基于稀疏阵、子阵等技术的非传统相控阵技术则得到了广泛的关注和研究.如何有效地划分子阵,以及如何优化子阵的计算过程,是提高计算效率和性能的关键问题.本文提出一种融合群智能优化算法及聚类技术的嵌套迭代优化方法来解决任意形状波束子阵划分问题.该方法包含内、外两个嵌套循环迭代优化过程:(i)外循环采用群智能优化方法来实现用户定义任意方向图下的参考阵列,并利用谢昆诺夫多项式和基本代数理论分析得到多组不同的阵列单元复激励(由阵因子多项式分布在非谢昆诺夫单位圆上的根所决定);(ii)内循环基于激励匹配策略,专注于通过K-means聚类方法实现阵列天线的最优子阵布局及相应的子阵复激励系数,并最终产生一个逼近参考阵列的波束方向图.通过与传统K-means聚类方法、粒子群优化方法在方向图逼近、激励匹配误差、模式匹配误差、阵列性能参数及计算效率等方面的比较,验证了所提方法的有效性. 展开更多
关键词 任意形状波束阵列 子阵划分 嵌套k-means聚类 激励匹配策略 群智能优化方法
在线阅读 下载PDF
Blind source separation by weighted K-means clustering 被引量:5
4
作者 Yi Qingming 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第5期882-887,共6页
Blind separation of sparse sources (BSSS) is discussed. The BSSS method based on the conventional K-means clustering is very fast and is also easy to implement. However, the accuracy of this method is generally not ... Blind separation of sparse sources (BSSS) is discussed. The BSSS method based on the conventional K-means clustering is very fast and is also easy to implement. However, the accuracy of this method is generally not satisfactory. The contribution of the vector x(t) with different modules is theoretically proved to be unequal, and a weighted K-means clustering method is proposed on this grounds. The proposed algorithm is not only as fast as the conventional K-means clustering method, but can also achieve considerably accurate results, which is demonstrated by numerical experiments. 展开更多
关键词 blind source separation underdetermined mixing sparse representation weighted k-means clustering.
在线阅读 下载PDF
A K-means clustering based blind multiband spectrum sensing algorithm for cognitive radio 被引量:4
5
作者 LEI Ke-jun TAN Yang-hong +1 位作者 YANG Xi WANG Han-rui 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第10期2451-2461,共11页
In this paper,a blind multiband spectrum sensing(BMSS)method requiring no knowledge of noise power,primary signal and wireless channel is proposed based on the K-means clustering(KMC).In this approach,the KMC algorith... In this paper,a blind multiband spectrum sensing(BMSS)method requiring no knowledge of noise power,primary signal and wireless channel is proposed based on the K-means clustering(KMC).In this approach,the KMC algorithm is used to identify the occupied subband set(OSS)and the idle subband set(ISS),and then the location and number information of the occupied channels are obtained according to the elements in the OSS.Compared with the classical BMSS methods based on the information theoretic criteria(ITC),the new method shows more excellent performance especially in the low signal-to-noise ratio(SNR)and the small sampling number scenarios,and more robust detection performance in noise uncertainty or unequal noise variance applications.Meanwhile,the new method performs more stablely than the ITC-based methods when the occupied subband number increases or the primary signals suffer multi-path fading.Simulation result verifies the effectiveness of the proposed method. 展开更多
关键词 cognitive radio(CR) blind multiband spectrum sensing(BMSS) k-means clustering(KMC) occupied subband set(OSS) idle subband set(ISS) information theoretic criteria(ITC) noise uncertainty
在线阅读 下载PDF
一种基于K-means聚类算法的沙尘天气客观识别方法 被引量:6
6
作者 段赛男 焦瑞莉 吴成来 《气候与环境研究》 CSCD 北大核心 2024年第2期178-192,共15页
鉴于以往基于污染物浓度时间序列进行分析的沙尘天气识别方法在判断标准上存在一定的主观性,本文提出一种基于K-means聚类算法的沙尘天气客观识别方法。本方法利用环境监测总站的PM2.5和PM10小时浓度资料进行聚类,首先选取最优的分类数... 鉴于以往基于污染物浓度时间序列进行分析的沙尘天气识别方法在判断标准上存在一定的主观性,本文提出一种基于K-means聚类算法的沙尘天气客观识别方法。本方法利用环境监测总站的PM2.5和PM10小时浓度资料进行聚类,首先选取最优的分类数目K进行聚类,其次对聚类结果中离散程度较高的类别进行再次聚类,直到无需分类。将本方法应用于西安市2018年2~4月沙尘天气的识别中,结果表明,本方法可有效识别主要沙尘天气。此外,利用本方法可得到沙尘天气典型特征:PM2.5占PM10浓度的比例小于43.5%、PM10浓度高于228μg/m^(3,)符合沙尘天气期间PM10浓度较高且以粗颗粒物为主的物理特征。总体上看,本方法物理基础清晰,可操行性强,适用于大规模数据处理,具有较好的实用价值和应用前景。 展开更多
关键词 沙尘天气识别 k-means 聚类 客观识别 PM2.5 PM10
在线阅读 下载PDF
基于自组织映射和K-means聚类的分层设计空间动态缩减方法及其在船型优化中的应用 被引量:1
7
作者 于群 李鹏 +3 位作者 郑强 冯佰威 邱春良 曾大连 《中国舰船研究》 CSCD 北大核心 2024年第6期64-73,共10页
[目的]基于CFD的船型优化由于其高维、计算昂贵、“黑盒”等特点,通常会存在优化效率低,优化质量差的问题。针对以上问题,基于自组织映射方法和K-means聚类提出分层设计空间动态缩减方法(HSRM)。[方法]利用K-means聚类算法,对自组织映... [目的]基于CFD的船型优化由于其高维、计算昂贵、“黑盒”等特点,通常会存在优化效率低,优化质量差的问题。针对以上问题,基于自组织映射方法和K-means聚类提出分层设计空间动态缩减方法(HSRM)。[方法]利用K-means聚类算法,对自组织映射方法的可视化结果进行聚类,并提取感兴趣的区域。通过该方式,可在船型优化过程中,对样本仿真数据进行数据挖掘、提取设计知识、指导设计优化,以提高优化质量。最后将该方法应用于7500吨级散货船的船型优化设计过程以验证有效性。[结果]结果表明,利用传统粒子群优化算法(PSO)和HSRM得到的优化船型总阻力分别降低1.854%和2.266%,HSRM能得到更高质量的优化解。[结论]所提出的方法可以指导优化算法向着最优解的方向进行寻优,有效提高优化效率和优化质量。 展开更多
关键词 船舶设计 船型优化 自组织映射 设计空间缩减 聚类分析 分层设计空间动态缩减方法
在线阅读 下载PDF
Kernel method-based fuzzy clustering algorithm 被引量:2
8
作者 WuZhongdong GaoXinbo +1 位作者 XieWeixin YuJianping 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2005年第1期160-166,共7页
The fuzzy C-means clustering algorithm(FCM) to the fuzzy kernel C-means clustering algorithm(FKCM) to effectively perform cluster analysis on the diversiform structures are extended, such as non-hyperspherical data, d... The fuzzy C-means clustering algorithm(FCM) to the fuzzy kernel C-means clustering algorithm(FKCM) to effectively perform cluster analysis on the diversiform structures are extended, such as non-hyperspherical data, data with noise, data with mixture of heterogeneous cluster prototypes, asymmetric data, etc. Based on the Mercer kernel, FKCM clustering algorithm is derived from FCM algorithm united with kernel method. The results of experiments with the synthetic and real data show that the FKCM clustering algorithm is universality and can effectively unsupervised analyze datasets with variform structures in contrast to FCM algorithm. It is can be imagined that kernel-based clustering algorithm is one of important research direction of fuzzy clustering analysis. 展开更多
关键词 fuzzy clustering analysis kernel method fuzzy C-means clustering.
在线阅读 下载PDF
基于K-means聚类及模糊判别的卷烟包灰性能综合评价方法 被引量:3
9
作者 楚文娟 郭丽霞 +5 位作者 程东旭 王红霞 崔廷 冯银龙 王建民 鲁平 《轻工学报》 CAS 北大核心 2024年第6期93-100,共8页
为实现卷烟包灰性能的综合评价和评价结果具象化,以49个卷烟的灰色、裂口率、缩灰率、碳线宽度、碳线整齐度测定结果为原始变量,先运用K-means聚类、模糊判别法将原始变量转换为具象化的得分数据,再运用Critic赋权法赋予各项指标权重,... 为实现卷烟包灰性能的综合评价和评价结果具象化,以49个卷烟的灰色、裂口率、缩灰率、碳线宽度、碳线整齐度测定结果为原始变量,先运用K-means聚类、模糊判别法将原始变量转换为具象化的得分数据,再运用Critic赋权法赋予各项指标权重,建立了一种卷烟包灰性能综合评价方法。结果表明:将原始变量转换成区间为60~100、平均值在80左右的得分,可使评价结果具象化且更加符合认知习惯;5项指标的权重由高到低依次为裂口率(0.27)>缩灰率(0.25)>灰色(0.18)>碳线整齐度(0.16)>碳线宽度(0.14);卷烟包灰性能可划分为优、良、差三档,各档得分区间依次为(85,100]、[75,85]、[60,75);不同档次代表性卷烟的灰柱视觉效果对比结果证明,综合得分可客观反映卷烟包灰性能的优劣。 展开更多
关键词 卷烟 包灰性能 k-means聚类 模糊判别 Critic赋权法
在线阅读 下载PDF
Refracturing candidate selection for MFHWs in tight oil and gas reservoirs using hybrid method with data analysis techniques and fuzzy clustering 被引量:5
10
作者 TAO Liang GUO Jian-chun +1 位作者 ZHAO Zhi-hong YIN Qi-wu 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第1期277-287,共11页
The selection of refracturing candidate is one of the most important jobs faced by oilfield engineers. However, due to the complicated multi-parameter relationships and their comprehensive influence, the selection of ... The selection of refracturing candidate is one of the most important jobs faced by oilfield engineers. However, due to the complicated multi-parameter relationships and their comprehensive influence, the selection of refracturing candidate is often very difficult. In this paper, a novel approach combining data analysis techniques and fuzzy clustering was proposed to select refracturing candidate. First, the analysis techniques were used to quantitatively calculate the weight coefficient and determine the key factors. Then, the idealized refracturing well was established by considering the main factors. Fuzzy clustering was applied to evaluate refracturing potential. Finally, reservoirs numerical simulation was used to further evaluate reservoirs energy and material basis of the optimum refracturing candidates. The hybrid method has been successfully applied to a tight oil reservoir in China. The average steady production was 15.8 t/d after refracturing treatment, increasing significantly compared with previous status. The research results can guide the development of tight oil and gas reservoirs effectively. 展开更多
关键词 tight oil and gas reservoirs idealized refracturing well fuzzy clustering refracturing potential hybrid method
在线阅读 下载PDF
Modelling method with missing values based on clustering and support vector regression 被引量:2
11
作者 Ling Wang Dongmei Fu Qing Li Zhichun Mu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第1期142-147,共6页
Most real application processes belong to a complex nonlinear system with incomplete information. It is difficult to estimate a model by assuming that the data set is governed by a global model. Moreover, in real proc... Most real application processes belong to a complex nonlinear system with incomplete information. It is difficult to estimate a model by assuming that the data set is governed by a global model. Moreover, in real processes, the available data set is usually obtained with missing values. To overcome the shortcomings of global modeling and missing data values, a new modeling method is proposed. Firstly, an incomplete data set with missing values is partitioned into several clusters by a K-means with soft constraints (KSC) algorithm, which incorporates soft constraints to enable clustering with missing values. Then a local model based on each group is developed by using SVR algorithm, which adopts a missing value insensitive (MVI) kernel to investigate the missing value estimation problem. For each local model, its valid area is gotten as well. Simulation results prove the effectiveness of the current local model and the estimation algorithm. 展开更多
关键词 MODELING missing value k-means with soft constraints clustering missing value insensitive kernel.
在线阅读 下载PDF
Reconstructing bubble profiles from gas-liquid two-phase flow data using agglomerative hierarchical clustering method 被引量:2
12
作者 WU Dong-ling SONG Yan-po +1 位作者 PENG Xiao-qi GAO Dong-bo 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第8期2056-2067,共12页
The knowledge of bubble profiles in gas-liquid two-phase flows is crucial for analyzing the kinetic processes such as heat and mass transfer, and this knowledge is contained in field data obtained by surface-resolved ... The knowledge of bubble profiles in gas-liquid two-phase flows is crucial for analyzing the kinetic processes such as heat and mass transfer, and this knowledge is contained in field data obtained by surface-resolved computational fluid dynamics (CFD) simulations. To obtain this information, an efficient bubble profile reconstruction method based on an improved agglomerative hierarchical clustering (AHC) algorithm is proposed in this paper. The reconstruction method is featured by the implementations of a binary space division preprocessing, which aims to reduce the computational complexity, an adaptive linkage criterion, which guarantees the applicability of the AHC algorithm when dealing with datasets involving either non-uniform or distorted grids, and a stepwise execution strategy, which enables the separation of attached bubbles. To illustrate and verify this method, it was applied to dealing with 3 datasets, 2 of them with pre-specified spherical bubbles and the other obtained by a surface-resolved CFD simulation. Application results indicate that the proposed method is effective even when the data include some non-uniform and distortion. 展开更多
关键词 bubble profile reconstruction gas-liquid two-phase flow clustering method surface-resolved computational fluid dynamics (CFD) distorted bubble shape
在线阅读 下载PDF
APPLICATION OF THE CLUSTERING METHOD IN ANALYSING SHALLOW WATER MASSES AND MODIFIED WATER MASSES IN THE HUANGHAI SEA AND EAST CHINA SEA
13
作者 Su Yusong, Yu Zuxiang and Li Fengqi(Shandong College of Oceanology,Qingdao) 《中国海洋大学学报(自然科学版)》 CAS CSCD 1989年第S1期385-402,共18页
The idea of modified water masses is introduced and a cluster analysis is used for determining the boundary of modified water masses and its variety in the shallow water area of the Huanghai Sea (Yellow Sea) and the E... The idea of modified water masses is introduced and a cluster analysis is used for determining the boundary of modified water masses and its variety in the shallow water area of the Huanghai Sea (Yellow Sea) and the East China Sea. According to the specified standards to make the cluster, we have determined the number and boundary of the water masses and the mixed zones.The results obtained by the cluster method show that there are eight modified water masses in this area. According to the relative index of temperature and salinity,the modified water masses are divided into nine different characteristic parts. The water, masses may also be divided into three salinity types. On the TS-Diagram, the points concerning temperature and safinity of different modified mater masses are distributed around a curve, from which the characteristics of gradual modification may be embodied. The variation ranges of different modified water masses are all large, explaining the intensive modification of water masses in 展开更多
关键词 WATER MASS MODIFIED WATER MASS the HUANGHAI SEA the East China SEA clustering method the MODIFIED regression curve
在线阅读 下载PDF
A bottom-up method for module-based product platform development through mapping,clustering and matching analysis
14
作者 张萌 李国喜 +2 位作者 曹建平 龚京忠 吴宝中 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第3期623-635,共13页
Designing product platform could be an effective and efficient solution for manufacturing firms. Product platforms enable firms to provide increased product variety for the marketplace with as little variety between p... Designing product platform could be an effective and efficient solution for manufacturing firms. Product platforms enable firms to provide increased product variety for the marketplace with as little variety between products as possible. Developed consumer products and modules within a firm can further be investigated to find out the possibility of product platform creation. A bottom-up method is proposed for module-based product platform through mapping, clustering and matching analysis. The framework and the parametric model of the method are presented, which consist of three steps:(1) mapping parameters from existing product families to functional modules,(2) clustering the modules within existing module families based on their parameters so as to generate module clusters, and selecting the satisfactory module clusters based on commonality, and(3) matching the parameters of the module clusters to the functional modules in order to capture platform elements. In addition, the parameter matching criterion and mismatching treatment are put forward to ensure the effectiveness of the platform process, while standardization and serialization of the platform element are presented. A design case of the belt conveyor is studied to demonstrate the feasibility of the proposed method. 展开更多
关键词 product platform development bottom-up method MAPPING clustering MATCHING
在线阅读 下载PDF
粗糙核k-means聚类算法 被引量:15
15
作者 周涛 张艳宁 +2 位作者 袁和金 陆惠玲 邓方安 《系统仿真学报》 EI CAS CSCD 北大核心 2008年第4期921-925,共5页
通过研究核聚类算法,以及粗糙集,提出了一个新的用于聚类分析的粗糙核聚类方法。通过mercer核映射把输入空间中的样本映射到Hilbert空间,使样本空间中没有显现的特征在特征空间中突现出来,在这种样本差异加大的基础上,结合粗糙集的思想... 通过研究核聚类算法,以及粗糙集,提出了一个新的用于聚类分析的粗糙核聚类方法。通过mercer核映射把输入空间中的样本映射到Hilbert空间,使样本空间中没有显现的特征在特征空间中突现出来,在这种样本差异加大的基础上,结合粗糙集的思想,把样本分别划到相应聚类中心的上、下近似中,上、下近似中的样本按照一定的比例来共同决定新的聚类中心。这样不但聚类精度大大提高,而且算法收敛速度也较快。仿真实验的结果表明该算法的可行性和有效性。 展开更多
关键词 核方法 核聚类算法 k-means 粗糙集 粗糙聚类
在线阅读 下载PDF
基于最优划分的K-Means初始聚类中心选取算法 被引量:62
16
作者 张健沛 杨悦 +1 位作者 杨静 张泽宝 《系统仿真学报》 CAS CSCD 北大核心 2009年第9期2586-2590,共5页
针对传统K-Means算法聚类过程中,聚类数目k值难以准确预设和随机选取初始聚类中心造成聚类精度及效率降低等问题,提出一种基于最优划分的K-Means初始聚类中心选取算法,该算法利用直方图方法将数据样本空间进行最优划分,依据数据样本自... 针对传统K-Means算法聚类过程中,聚类数目k值难以准确预设和随机选取初始聚类中心造成聚类精度及效率降低等问题,提出一种基于最优划分的K-Means初始聚类中心选取算法,该算法利用直方图方法将数据样本空间进行最优划分,依据数据样本自身分布特点确定K-Means算法的初始聚类中心,无需预设k值,减少了算法结果对参数的依赖,提高算法运算效率及准确率。实验结果表明,利用该算法改进的K-Means算法,运算时间明显减少,其聚类结果准确率以及算法效率均得到显著提高。 展开更多
关键词 K—Means算法 初始聚类中心 直方图 最优划分方法
在线阅读 下载PDF
基于改进的密度峰值算法的K-means算法 被引量:12
17
作者 杜洪波 白阿珍 朱立军 《统计与决策》 CSSCI 北大核心 2018年第18期20-24,共5页
针对传统K-means算法存在的随机选取初始聚类中心和类簇数目需要人为选定,从而导致聚类结果不稳定,容易陷入局部最优解的问题,文章提出了一种基于改进的密度峰值算法(DPC)的K-means算法,该算法首先采用改进的DPC算法来选取初始聚类中... 针对传统K-means算法存在的随机选取初始聚类中心和类簇数目需要人为选定,从而导致聚类结果不稳定,容易陷入局部最优解的问题,文章提出了一种基于改进的密度峰值算法(DPC)的K-means算法,该算法首先采用改进的DPC算法来选取初始聚类中心,弥补了K-means算法初始聚类中心随机选取导致易陷入局部最优解的缺陷;其次运用K-means算法进行迭代,并且引入熵值法计算距离优化聚类。在UCI数据集上的实验表明,该算法得到较好的初始聚类中心和较稳定的聚类结果,并且收敛速度也较快,证明了该算法的可行性。 展开更多
关键词 k-means算法 改进的DPC算法 聚类 熵值法 初始聚类中心 优化聚类
在线阅读 下载PDF
基于K-means聚类与最大类间方差的磨粒彩色图像分割 被引量:10
18
作者 邱丽娟 宣征南 张兴芳 《润滑与密封》 CAS CSCD 北大核心 2014年第12期101-104,109,共5页
针对在HSI颜色空间下存在的图像的二维颜色分量分布散乱不紧密,存在聚类中心计算错误,利用二维颜色分量很难将背景和磨粒准确分割开,分割完的铁谱图像仍包含许多不需要的微小磨粒等问题,提出采用K-means聚类与最大类间方差的图像分割方... 针对在HSI颜色空间下存在的图像的二维颜色分量分布散乱不紧密,存在聚类中心计算错误,利用二维颜色分量很难将背景和磨粒准确分割开,分割完的铁谱图像仍包含许多不需要的微小磨粒等问题,提出采用K-means聚类与最大类间方差的图像分割方法。分别选取球粒、切削磨粒、严重滑动磨粒、红色氧化物、疲劳磨粒的彩色图像,在Lab颜色空间下利用二维颜色分量进行聚类分析及最大类间方差阈值分割,并进行三维数学形态学处理。结果表明,提出的方法实现了小磨粒与目标磨粒的有效分割,可以得到较为完整的彩色磨粒图像,为磨粒的颜色参数识别提供有效的依据。 展开更多
关键词 k-means聚类 Lab颜色空间 最大类间方差法
在线阅读 下载PDF
基于HS-Clustering的风电场机组分组功率预测 被引量:4
19
作者 高小力 张智博 +1 位作者 田启明 刘永前 《现代电力》 北大核心 2017年第3期12-18,共7页
为了寻求风电场功率预测精度和计算效率二者的平衡,提出了一种基于霍普金斯统计量与聚类算法(HSClustering)的风电场机组分组功率预测方法,该方法将霍普金斯统计量与聚类算法的优势有效结合,采用霍普金斯统计量确定场内机组分组个数,通... 为了寻求风电场功率预测精度和计算效率二者的平衡,提出了一种基于霍普金斯统计量与聚类算法(HSClustering)的风电场机组分组功率预测方法,该方法将霍普金斯统计量与聚类算法的优势有效结合,采用霍普金斯统计量确定场内机组分组个数,通过聚类算法识别不同机组的相似性将风电场分成不同的机组群,然后对每组机群分别建立功率预测模型,从而叠加得到整场输出功率;另外以实测风速、实测功率及二者组合作为机组分组模型输入,分析其对预测精度的影响程度。实例分析表明基于HSClustering的分组预测方法可以显著提高预测精度,同时保证较高的计算效率;风速是影响分组效果的主要因素,对于某些分组模型,功率又可以作为风速的重要补充。 展开更多
关键词 机组分组个数 功率预测 霍普金斯统计量 聚类算法
在线阅读 下载PDF
基于K-means聚类方法的早期聚落规模等级研究 被引量:6
20
作者 闫丽洁 张嫣文 +3 位作者 鲁鹏 陈盼盼 张莉 王霞 《地域研究与开发》 CSSCI CSCD 北大核心 2020年第2期176-180,共5页
选择聚落面积、文化层厚度、重要遗物、重要遗迹四大影响聚落规模等级的因子作为参评因子,通过数据预处理、数据归一化操作,利用K-means聚类方法对华夏文明核心区——环嵩山地区在裴李岗、仰韶、龙山、夏商4个时期的聚落规模等级进行划... 选择聚落面积、文化层厚度、重要遗物、重要遗迹四大影响聚落规模等级的因子作为参评因子,通过数据预处理、数据归一化操作,利用K-means聚类方法对华夏文明核心区——环嵩山地区在裴李岗、仰韶、龙山、夏商4个时期的聚落规模等级进行划分。结果表明:(1)不同时期一级聚落的面积越来越大,在每个文化时期聚落中所占的比例却是越来越小。(2)各个文化时期的聚落数量有明显的等级分布特点,呈金字塔型层级结构,等级越高数量越少,等级越低数量越多。(3)裴李岗时期聚落等级规模之间的差异不明显。仰韶时期,聚落规模等级开始出现,龙山时期聚落规模等级进一步分化,夏商时期聚落规模等级最终形成。K-means聚类方法是早期聚落规模等级划分的科学有效的定量方法,可为区域文明化进程及聚落分布形态、聚落功能等问题研究提供重要依据。 展开更多
关键词 早期聚落 规模等级 k-means聚类方法 环嵩山地区
在线阅读 下载PDF
上一页 1 2 104 下一页 到第
使用帮助 返回顶部