期刊文献+
共找到5,647篇文章
< 1 2 250 >
每页显示 20 50 100
基于k-means算法的聚类个数确定方法改进 被引量:1
1
作者 王丙参 王国长 魏艳华 《统计与决策》 北大核心 2025年第7期59-64,共6页
文章基于k-means算法探讨了最优聚类个数k*的确定方法:第一类是统计量方法;第二类是聚类算法不稳定性方法,即基于两次聚类结果间的距离,利用交叉验证、随机抽样取交集、自助法来构建聚类算法估计不稳定性指标,并根据投票、最小化均值方... 文章基于k-means算法探讨了最优聚类个数k*的确定方法:第一类是统计量方法;第二类是聚类算法不稳定性方法,即基于两次聚类结果间的距离,利用交叉验证、随机抽样取交集、自助法来构建聚类算法估计不稳定性指标,并根据投票、最小化均值方法确定k^(*)。数值模拟结果显示:在给定k^(*)的情况下,聚类结果与标签的距离或相似度可作为评价聚类结果的指标,为聚类算法评价提供了新的借鉴;基于k-means算法确定k^(*)的前提是数据集根据欧氏距离可明显分为几簇,相对而言,聚类算法不稳定性方法优于统计量方法;对于不稳定性指标,交叉验证估计方法与随机抽样取交集估计方法对抽样个数稳健,抽样个数依次建议略少于样本容量的1/3、80%;自助抽样估计方法由于利用了全部样本,因此效率更高;4种不稳定性指标没有显著差异,投票与最小化均值方法也没有显著差异。 展开更多
关键词 k-meanS算法 个数 统计量 不稳定性
在线阅读 下载PDF
基于深度自适应K-means++算法的电抗器声纹聚类方法
2
作者 闵永智 郝大宇 +2 位作者 王果 何怡刚 贺建山 《电力系统保护与控制》 北大核心 2025年第8期1-13,共13页
在高压并联电抗器声纹信号监测系统中,长时海量无标签声纹的高维非平稳性导致特征提取困难、无监督聚类适应性差。由此提出了一种基于深度自适应K-means++算法(deep adaptive K-means++clustering algorithm,DAKCA)的750 kV电抗器声纹... 在高压并联电抗器声纹信号监测系统中,长时海量无标签声纹的高维非平稳性导致特征提取困难、无监督聚类适应性差。由此提出了一种基于深度自适应K-means++算法(deep adaptive K-means++clustering algorithm,DAKCA)的750 kV电抗器声纹聚类方法。首先通过采用两阶段无监督策略微调的改进堆叠稀疏自编码器(stacked sparse autoencoder,SSAE),对快速傅里叶变换后的归一化频域数据提取电抗器原始声纹32维深度特征。进一步提出了依据最近邻聚类有效性指标(clustering validation index based on nearest neighbors,CVNN)的自适应K-means++聚类算法,构建了能自适应确定最优聚类个数的电抗器声纹聚类模型。最后通过西北地区某750 kV电抗器实测声纹数据集进行了验证。结果表明,DAKCA算法对无标签声纹数据在不同样本均衡程度下能够稳定提取32维深度特征,并实现最优聚类,为直接高效利用电抗器无标签声纹数据提供了参考。 展开更多
关键词 750 kV电抗器 声纹 自适应算法 稀疏自编码器 深度自适应k-means++算法
在线阅读 下载PDF
基于k-means聚类与标记分水岭算法的二氧化氯浓度测试方法
3
作者 何家萌 黄豪中 +1 位作者 陈其勇 许桂霞 《广西大学学报(自然科学版)》 北大核心 2025年第1期186-199,共14页
人为使用二氧化氯检测试纸与标准比色卡进行比对时无法得出具体的浓度结果,且受主观因素影响较大,测量结果准确性差的问题,对二氧化氯检测试纸进行图像采集,根据其颜色与形状特征,提出基于三通道彩色图片的k-means聚类算法与标记分水岭... 人为使用二氧化氯检测试纸与标准比色卡进行比对时无法得出具体的浓度结果,且受主观因素影响较大,测量结果准确性差的问题,对二氧化氯检测试纸进行图像采集,根据其颜色与形状特征,提出基于三通道彩色图片的k-means聚类算法与标记分水岭算法结合的分割算法,快速准确地完成对二氧化氯检测试纸的分割及定位,并对二氧化氯检测试纸的颜色值与对应溶液的浓度进行相关性分析与曲线拟合,在定位二氧化氯检测试纸后,提取其颜色值并根据拟合曲线计算出对应的二氧化氯溶液浓度。结果表明,该算法分割速度快,分割效果好,对二氧化氯溶液浓度的测量准确,质量浓度对误差不超过15 mg/L,引用误差不超过4%,能有效避免人为比对时产生的主观因素干扰以及估算误差。 展开更多
关键词 二氧化氯检测试纸 消杀效果评价 k-meanS算法 标记分水岭算法
在线阅读 下载PDF
基于改进平衡优化算法的K-means聚类及其应用
4
作者 朱学敏 刘升 +1 位作者 朱学林 游晓明 《运筹与管理》 北大核心 2025年第3期37-44,I0020-I0025,共8页
为解决传统的K-means聚类算法初始质心随机性大、易陷入局部最优的缺陷,提出基于改进的平衡优化算法的K-means聚类(IEO-K-means)。首先对平衡优化算法进行改进,引入多样性度量策略评估种群的多样性,若种群多样性超过阈值,则使用拟反射... 为解决传统的K-means聚类算法初始质心随机性大、易陷入局部最优的缺陷,提出基于改进的平衡优化算法的K-means聚类(IEO-K-means)。首先对平衡优化算法进行改进,引入多样性度量策略评估种群的多样性,若种群多样性超过阈值,则使用拟反射和拟反向的混合反向学习机制初始化种群,提升种群的多样性;进一步,引入非线性时间参数和黄金正弦策略更新平衡池内粒子浓度,以增强种群在迭代前期的全局搜索能力,且保证种群在迭代后期能够持续地开发。随后,将改进的平衡优化算法用以优化K-means聚类的初始质心,增强K-means跳出局部最优的能力。最后使用6个不同特点的UCI数据与超市顾客购物数据集进行了测试,并与一些著名算法进行了比较。实验结果表明IEO-K-means算法收敛速度更快,聚类效果更好,具有良好的寻优性能。 展开更多
关键词 k-meanS 平衡优化算法 混合反向学习 黄金正弦
在线阅读 下载PDF
基于K-means聚类粒子群算法的海洋结构迭代型损伤识别方法
5
作者 周旭涛 赵海旭 +2 位作者 蒋玉峰 王树青 刘雨 《中国海洋大学学报(自然科学版)》 北大核心 2025年第4期134-147,共14页
为了解决传统智能优化算法在结构损伤识别中易陷入局部最优解,导致损伤识别时误判单元较多且识别精度较差的问题,本文提出了一种迭代型结构损伤识别方法。该方法创新性地引入了基于K-means聚类的新型粒子群算法,以加快算法收敛和避免陷... 为了解决传统智能优化算法在结构损伤识别中易陷入局部最优解,导致损伤识别时误判单元较多且识别精度较差的问题,本文提出了一种迭代型结构损伤识别方法。该方法创新性地引入了基于K-means聚类的新型粒子群算法,以加快算法收敛和避免陷入局部最优解,同时,采用迭代思想对传统损伤识别方法进行改进,将损伤识别结果进行迭代更新,以获得准确的损伤位置及损伤程度。以某三腿海上风机结构为例:首先,探讨了非迭代型方法在无噪声和有噪声污染时的结构损伤识别效果;其次,分析所提出的迭代型方法在无噪声和有噪声污染两种情况下的结构损伤识别效果;然后,探究了所提出方法的收敛性及稳定性;最后,采用物理模型试验对提出的方法进行了验证。结果表明,提出的迭代型聚类粒子群算法相比传统结构损伤识别方法可获得更准确的损伤位置及损伤程度,并展现出良好的噪声鲁棒性,且算法迭代次数少,识别效果稳定。 展开更多
关键词 k-means粒子群算法 损伤识别 海上风机结构 迭代型方法
在线阅读 下载PDF
基于渐近式k-means聚类的多行动者确定性策略梯度算法
6
作者 刘全 刘晓松 +1 位作者 吴光军 刘禹含 《吉林大学学报(理学版)》 北大核心 2025年第3期885-894,共10页
针对深度确定性策略梯度(deep deterministic policy gradient,DDPG)算法在一些大状态空间任务中存在学习效果不佳及波动较大等问题,提出一种基于渐近式k-means聚类算法的多行动者深度确定性策略梯度(multi-actor deep deterministic po... 针对深度确定性策略梯度(deep deterministic policy gradient,DDPG)算法在一些大状态空间任务中存在学习效果不佳及波动较大等问题,提出一种基于渐近式k-means聚类算法的多行动者深度确定性策略梯度(multi-actor deep deterministic policy gradient based on progressive k-means clustering,MDDPG-PK-Means)算法.在训练过程中,对每一时间步下的状态进行动作选择时,根据k-means算法判别结果辅佐行动者网络的决策,同时随训练时间步的增加,逐渐增加k-means算法类簇中心的个数.将MDDPG-PK-Means算法应用于MuJoCo仿真平台上,实验结果表明,与DDPG等算法相比,MDDPG-PK-Means算法在大多数连续任务中都具有更好的效果. 展开更多
关键词 深度强化学习 确定性策略梯度算法 k-meanS 多行动者
在线阅读 下载PDF
基于同态加密和K-means聚类算法的用户充电模式聚类和需求响应潜力评估
7
作者 杨景旭 郑楷洪 +1 位作者 周尚礼 曾璐琨 《电力自动化设备》 北大核心 2025年第4期101-109,117,共10页
为解决利用单充电站数据进行用户充电模式提取不准确、不全面的问题,提出在保证用户隐私安全的前提下充分利用区域内多个充电站充电数据来提取用户的充电模式,基于同态加密和K-means聚类算法提出用户充电模式聚类模型和需求响应潜力评... 为解决利用单充电站数据进行用户充电模式提取不准确、不全面的问题,提出在保证用户隐私安全的前提下充分利用区域内多个充电站充电数据来提取用户的充电模式,基于同态加密和K-means聚类算法提出用户充电模式聚类模型和需求响应潜力评估方法。综合考虑不同充电模式在起始充电时间、充电时长和充电功率方面的差异,提出充电模式综合误差作为新的充电模式聚类标准,基于此提出基于手肘法的最优聚类数确定方法。提出基于同态加密算法的用户充电模式提取方案,阐述了方案的参与主体、密钥和随机数管理、数据链式加密操作、算法步骤。提出综合考虑用户日充电频率、充电模式的需求响应时段重合度、充电功率以及充电概率的用户需求响应潜力评估和排序方法,基于此提出充电站充电负荷需求响应潜力计算方法。通过算例验证了所提方法的有效性。 展开更多
关键词 电动汽车 同态加密 充电模式 需求响应 充电站 k-meanS算法
在线阅读 下载PDF
基于主成分分析算法和K均值聚类算法的药品库存分类管理 被引量:1
8
作者 唐蕾 邱磊 +1 位作者 俞佳慧 冀召帅 《医药导报》 北大核心 2025年第4期682-686,共5页
目的针对目前药品分类主观性较强、分类标准模糊、影响因素繁杂的问题,探讨一种科学的药品分类方法,以降低库存成本,提高库存的有效性。方法在北京某三级医院2021—2022年历史数据中随机抽取700种药品为研究对象,通过主成分分析(PCA)算... 目的针对目前药品分类主观性较强、分类标准模糊、影响因素繁杂的问题,探讨一种科学的药品分类方法,以降低库存成本,提高库存的有效性。方法在北京某三级医院2021—2022年历史数据中随机抽取700种药品为研究对象,通过主成分分析(PCA)算法和K均值聚类(K-means)算法对研究对象进行分类。结果确定轮廓系数为0.3470的分类数4为最佳分类数,将700种药品分为4类,其中有363种归为第一类,186种归为第二类,94种归为第三类,57种归为第四类。将该文研究的药品分类方法模拟运用到某三级医院2023年第二季度的药品库存管理中,模拟结果表明该分类方法能够降低库存成本,提高库存有效性。结论基于PCA算法和K-means聚类算法的药品分类方法能够为药品库存分类管理提供可靠依据。 展开更多
关键词 药品分 主成分分析算法 K均值算法 药品库存管理
在线阅读 下载PDF
基于随机映射的隐私保护聚类算法
9
作者 何丽丽 张成林 +1 位作者 曹明增 张磊 《计算机应用研究》 北大核心 2025年第8期2511-2517,共7页
针对聚类隐私保护算法中隐私开销随数据维度增加而提升的问题,提出了一种基于随机映射的隐私保护算法(RPPP)。该算法首先利用对称不确定性方法筛选相关特征,并通过独立同分布的高斯序列生成随机矩阵。为增强距离保持特性,随机矩阵经Gram... 针对聚类隐私保护算法中隐私开销随数据维度增加而提升的问题,提出了一种基于随机映射的隐私保护算法(RPPP)。该算法首先利用对称不确定性方法筛选相关特征,并通过独立同分布的高斯序列生成随机矩阵。为增强距离保持特性,随机矩阵经Gram-Schmidt正交化处理确保正交性,随后分解成多个独立子矩阵,对降维特征进行映射,生成特征匹配域和加噪干扰域。为进一步增强隐私保护性能,在干扰域中注入随机噪声。实验分析表明,RPPP在隐私攻击防御方面具有较强能力。通过Cancer和Diabetes数据集实验验证,结果显示RPPP在隐私保护性和聚类效率上均优于传统算法,与UPA、GCCG和AKA相比,聚类效率分别提升约16.34%、23.44%和32.94%。综合来看,RPPP算法在提升隐私保护性的同时显著提高了聚类效率,验证了其有效性。 展开更多
关键词 高维数据 隐私保护 随机映射 k-meanS
在线阅读 下载PDF
改进的密度峰值聚类算法在岩体结构面优势分组中的应用
10
作者 王述红 高晨翔 侯钦宽 《东北大学学报(自然科学版)》 北大核心 2025年第3期130-137,共8页
岩体稳定性评价依赖于合理的结构面分组,但传统方法存在易受边缘点与异常点影响的弊端.为此,提出一种改进的密度峰值聚类算法用于结构面优势分组.首先,将结构面产状转换为空间坐标,并以单位法向量夹角正弦值的平方作为相似性度量.随后,... 岩体稳定性评价依赖于合理的结构面分组,但传统方法存在易受边缘点与异常点影响的弊端.为此,提出一种改进的密度峰值聚类算法用于结构面优势分组.首先,将结构面产状转换为空间坐标,并以单位法向量夹角正弦值的平方作为相似性度量.随后,基于有效性评价指标构建目标函数,并利用乌鸦算法优化截断距离以获取最佳分组结果.通过模拟数据集验证了该算法能够有效减少人为干预,避免异常点干扰,确保聚类结果更加可靠和合理.结果表明,所提方法不仅与传统方法一致性良好,还具有更高的适用性,为工程中结构面优势分组提供了可靠的参考. 展开更多
关键词 密度峰值 乌鸦算法 有效性评价指标 结构面 优势分组
在线阅读 下载PDF
基于K-means聚类和特征空间增强的噪声标签深度学习算法 被引量:2
11
作者 吕佳 邱小龙 《智能系统学报》 CSCD 北大核心 2024年第2期267-277,共11页
深度学习中神经网络的性能依赖于高质量的样本,然而噪声标签会降低网络的分类准确率。为降低噪声标签对网络性能的影响,噪声标签学习算法被提出。该算法首先将训练样本集划分成干净样本集和噪声样本集,然后使用半监督学习算法对噪声样... 深度学习中神经网络的性能依赖于高质量的样本,然而噪声标签会降低网络的分类准确率。为降低噪声标签对网络性能的影响,噪声标签学习算法被提出。该算法首先将训练样本集划分成干净样本集和噪声样本集,然后使用半监督学习算法对噪声样本集赋予伪标签。然而,错误的伪标签以及训练样本数量不足的问题仍然限制着噪声标签学习算法性能的提升。为解决上述问题,提出基于K-means聚类和特征空间增强的噪声标签深度学习算法。首先,该算法利用K-means聚类算法对干净样本集进行标签聚类,并根据噪声样本集与聚类中心的距离大小筛选出难以分类的噪声样本,以提高训练样本的质量;其次,使用mixup算法扩充干净样本集和噪声样本集,以增加训练样本的数量;最后,采用特征空间增强算法抑制mixup算法新生成的噪声样本,从而提高网络的分类准确率。并在CIFAR10、CIFAR100、MNIST和ANIMAL-10共4个数据集上试验验证了该算法的有效性。 展开更多
关键词 噪声标签学习 深度学习 半监督学习 机器学习 神经网络 k-meanS 特征空间增强 mixup算法
在线阅读 下载PDF
多元时间序列聚类算法综述 被引量:1
12
作者 郑德生 孙涵明 +2 位作者 王立远 段垚鑫 李晓瑜 《计算机科学与探索》 北大核心 2025年第3期582-601,共20页
多元时间序列(MTS)作为众多领域智能化技术的关键数据依据,其随时间推移记录了系统中多个变量的状态变化。聚类技术作为一个数据挖掘核心工具可以将数据按照其结构相似性划分为不同的簇,通过识别数据的结构和内在关系挖掘系统发展规律... 多元时间序列(MTS)作为众多领域智能化技术的关键数据依据,其随时间推移记录了系统中多个变量的状态变化。聚类技术作为一个数据挖掘核心工具可以将数据按照其结构相似性划分为不同的簇,通过识别数据的结构和内在关系挖掘系统发展规律和变量相关关系。面对多元时间序列数据结构的复杂性、变量之间的关联性以及数据高维性等为聚类分析带来的挑战,国内外已经开展了大量相关研究工作。鉴于此,对多元时间序列数据场景下的聚类分析算法进行综述。基于特征提取方式、相似性度量算法、聚类划分框架等分类标准,对现有多元时间序列聚类算法进行对比分析。对于每一类多元时间序列聚类技术,从算法原理、代表性方法、算法优缺点以及解决的问题等方面进行详细总结与剖析。进一步讨论了常用的评价标准,以及多元时间序列聚类相关公开数据集。从多变量时序数据结构特殊性出发对现有多元时间序列聚类存在的挑战及未来发展方向进行了总结与展望。 展开更多
关键词 多元时间序列 算法 特征表示 相似性度量 评估指标
在线阅读 下载PDF
IIoT环境下基于聚类的工作流多雾协同调度算法 被引量:1
13
作者 吴宏伟 江凌云 陈海峰 《计算机工程与设计》 北大核心 2025年第1期52-59,共8页
为解决在IIoT(industrial internet of things)环境下,现有的调度算法调度工作流中通信频繁、数据传输量大的任务所带来的完工时间上升、成本增加等影响的问题,提出一种基于聚类的工作流多雾协同调度算法。通过二分K均值算法对工作流中... 为解决在IIoT(industrial internet of things)环境下,现有的调度算法调度工作流中通信频繁、数据传输量大的任务所带来的完工时间上升、成本增加等影响的问题,提出一种基于聚类的工作流多雾协同调度算法。通过二分K均值算法对工作流中的任务进行聚类,基于聚类结果,在多个雾服务器之间使用改进的免疫粒子群优化算法进行任务调度。实验结果表明,该算法相比其它一些传统的调度算法在完工时间、成本、负载均衡方面都有一定提升。 展开更多
关键词 工业物联网 工作流 二分K均值算法 多雾 免疫粒子群优化算法 调度算法
在线阅读 下载PDF
融合变异萤火虫算法的三支聚类方法
14
作者 李兆彬 叶军 +2 位作者 周浩岩 汪一心 韩宇贞 《系统仿真学报》 北大核心 2025年第3期646-656,共11页
为解决三支聚类算法随机选取初始聚类中心会导致算法出现早熟现象,以及q近邻概念中q的取值需要通过不断重复实验得到等问题,提出一种变异萤火虫优化的三支聚类算法。通过萤火虫算法来解决初始中心点敏感的问题,以目标函数值作为萤火虫... 为解决三支聚类算法随机选取初始聚类中心会导致算法出现早熟现象,以及q近邻概念中q的取值需要通过不断重复实验得到等问题,提出一种变异萤火虫优化的三支聚类算法。通过萤火虫算法来解决初始中心点敏感的问题,以目标函数值作为萤火虫光亮强度进行聚类中心点的搜索,将求得的最优解作为算法的聚类中心进行迭代;提出边界域归属度公式以及自适应阈值,使得边界域中样本满足阈值条件情况下尽可能地划分到核心域当中,避免了边界域样本过多的问题。通过UCI数据集实验结果表明:改进后的算法大幅降低了迭代次数,提高了聚类结果准确率,也验证了该算法的稳定性和有效性。 展开更多
关键词 算法 k-meanS 三支决策 萤火虫算法 变异策略
在线阅读 下载PDF
基于聚类算法的路径频散曲线拾取方法
15
作者 何建 张建中 黄忠来 《中国海洋大学学报(自然科学版)》 CAS 北大核心 2025年第1期149-157,共9页
多道地震资料面波分析方法是目前确定近地表横波速度的有效工具,但由于反演的一维横波速度模型仅反映了检波器排列中点垂直方向上的横波速度变化,因此其横向分辨率较差。与面波分析方法相比,面波层析反演方法具有更大的潜力来提高近地... 多道地震资料面波分析方法是目前确定近地表横波速度的有效工具,但由于反演的一维横波速度模型仅反映了检波器排列中点垂直方向上的横波速度变化,因此其横向分辨率较差。与面波分析方法相比,面波层析反演方法具有更大的潜力来提高近地表特征的横向分辨率。但是面波层析反演方法需要从大量检波器对之间(路径)的平均频散能量谱中拾取频散曲线,人工拾取将耗费大量的时间成本。针对这个问题,本文进行了聚类算法自动从路径平均频散能量谱中拾取相速度频散曲线的研究。理论模型正演数据以及实际资料面波数据的实验结果都验证了本文方法的正确性。 展开更多
关键词 算法 频散曲线 面波层析反演 横波速度
在线阅读 下载PDF
基于EM算法与混合模型的动态聚类分析
16
作者 金向阳 章惠民 +1 位作者 王语涵 林建华 《厦门大学学报(自然科学版)》 北大核心 2025年第4期727-739,共13页
[目的]对2022年福建漳州烟草公司品牌销售数据开展动态聚类,以揭示数据深层结构,支撑市场策略优化.[方法]研究综合运用EM算法与高斯混合模型进行参数估计及动态聚类.依托统计软件实现算法流程,包括参数初始化、EM迭代优化及基于概率分... [目的]对2022年福建漳州烟草公司品牌销售数据开展动态聚类,以揭示数据深层结构,支撑市场策略优化.[方法]研究综合运用EM算法与高斯混合模型进行参数估计及动态聚类.依托统计软件实现算法流程,包括参数初始化、EM迭代优化及基于概率分布的聚类,严格遵循统计原则保障结果客观性.[结果]新算法有效估计概率模型参数,实现烟草品牌精准动态聚类.分析揭示了各品牌类别的差异化特征,为市场策略定制及产品组合优化提供依据.算法准确计算品牌在各类别中的概率分布,增强了决策的精准性.同时,算法具备灵活性与适应性,可随市场变化动态调整.[结论]本研究提出的基于混合高斯分布与EM算法的数据分析方法,为市场数据分析提供了新视角.该方法提高了数据分析的精度与效率,助力企业在复杂市场环境中制定科学策略,具有良好的应用价值与推广前景. 展开更多
关键词 概率模型 EM算法 混合分布 动态
在线阅读 下载PDF
基于先验聚类的机电设备环境参数异常检测算法
17
作者 邢鹏 李新娥 《现代电子技术》 北大核心 2025年第6期78-84,共7页
传统的聚类异常数据检测算法在处理高维度、大数据量且异常值分布杂乱的机电设备环境参数时,存在聚类效果差和检测效率低的问题。为此,在原有异常检测算法的基础上提出一种基于先验聚类的机电设备环境参数异常检测算法。该算法改用历史... 传统的聚类异常数据检测算法在处理高维度、大数据量且异常值分布杂乱的机电设备环境参数时,存在聚类效果差和检测效率低的问题。为此,在原有异常检测算法的基础上提出一种基于先验聚类的机电设备环境参数异常检测算法。该算法改用历史数据构建先验聚类,确保聚类构建不会受太多异常环境参数所影响;在选取聚类中心时引入密集度的概念,以确保聚类中心的可靠性,并在选取聚类中心过程中去除已选聚类中心周围的数据点,防止选取的聚类中心集中在某一区域,以此提升聚类效果。进行异常检测时,依次将待检测数据放入先验聚类中进行匹配,一旦测试数据无法匹配任何一个已知聚类,则将其标记为异常数据。实验结果表明:所提算法在机电设备环境参数的异常检测方面具有检测率高、误报率低的特点,在2000例数据异常检测中,其检测准确率达到了97.5%,优于DBSCAN算法的97%以及基础K-means算法的86%;同时,误检率低至0.0106,优于DBSCAN算法的0.0239和基础K-means算法的0.0228。改进后的模型较基础K-means算法和DBSCAN算法在机电设备环境参数异常检测中检测效果更佳,在机电设备环境异常数据检测上具有良好的性能。 展开更多
关键词 机电设备 环境参数 异常数据检测 先验 k-means算法 密集度 匹配
在线阅读 下载PDF
基于反向最近邻的密度估计聚类算法
18
作者 许梅梅 侯新民 《计算机工程与应用》 北大核心 2025年第1期165-173,共9页
基于相互最近邻的密度峰聚类算法(DenMune)通过相互最近邻计算数据点的局部密度,是一种有效的聚类手段。但该算法存在构建聚类骨架不合理的问题,在分配弱点时采用硬投票策略,易产生错误。因此提出一种新的基于反向最近邻的密度估计聚类... 基于相互最近邻的密度峰聚类算法(DenMune)通过相互最近邻计算数据点的局部密度,是一种有效的聚类手段。但该算法存在构建聚类骨架不合理的问题,在分配弱点时采用硬投票策略,易产生错误。因此提出一种新的基于反向最近邻的密度估计聚类算法(RNN-DEC)。该算法引入反向最近邻来计算数据点的局部密度,将数据点分成强点、弱点和噪声点。使用强点构建聚类算法的骨架,通过软投票的方式将弱点分配到与其相似度最高的簇中去。提出了一种基于反向最近邻的簇融合算法,将相似度高的子簇融合,得到最终的聚类结果。实验结果表明,在一些合成数据集和UCI真实数据集上,相比较于其他经典算法,该算法具有更好的聚类效果。 展开更多
关键词 反向最近邻 局部密度 密度算法 子簇融合
在线阅读 下载PDF
基于k-means聚类熵权评价的飞行器质心调整优化方法
19
作者 田小川 郁立勇 +2 位作者 白斌 陈思 何文凯 《导弹与航天运载技术(中英文)》 北大核心 2025年第1期37-41,共5页
针对飞行器质心调整流程复杂、耗时长的问题,运用k-means聚类方法,对飞行器配重历史数据进行聚类,基于样本聚类结果,计算出不同样本下飞行器标准配重,再通过模拟装配计算增加标准配重后的飞行器质心偏移,并得出一系列统计数据,最后采用... 针对飞行器质心调整流程复杂、耗时长的问题,运用k-means聚类方法,对飞行器配重历史数据进行聚类,基于样本聚类结果,计算出不同样本下飞行器标准配重,再通过模拟装配计算增加标准配重后的飞行器质心偏移,并得出一系列统计数据,最后采用基于熵权的综合评价方法对比质心调整效果,选出最优的飞行器标准配重,进而简化飞行器质心调整流程,大幅提升飞行器生产效率。 展开更多
关键词 k-meanS 熵权评价模型 飞行器质心调整
在线阅读 下载PDF
基于带约束谱聚类的启发式车辆路径规划算法优化方法
20
作者 罗蒙 高超 王震 《计算机应用》 北大核心 2025年第5期1387-1394,共8页
针对现有启发式算法在解决大规模多车场车辆路径规划问题(MDVRP)时存在的初始解质量较差的缺点,提出一种基于带约束谱聚类(CSC)的启发式车辆路径规划算法优化方法。首先,根据待配送客户点的地理位置和需求量生成配送点的地理信息特征矩... 针对现有启发式算法在解决大规模多车场车辆路径规划问题(MDVRP)时存在的初始解质量较差的缺点,提出一种基于带约束谱聚类(CSC)的启发式车辆路径规划算法优化方法。首先,根据待配送客户点的地理位置和需求量生成配送点的地理信息特征矩阵和需求信息特征矩阵;其次,根据地理信息特征矩阵和需求信息特征矩阵生成CSC的约束矩阵,并完成聚类操作;最后,使用谱聚类的结果生成启发式算法的初始解,选择合适的启发式算法完成车辆路径规划问题(VRP)的求解。在标准数据集的21个算例上的实验结果显示,CSC相较于SCSC(SelfConstrained-Spectral-Clustering)在标准化互信息(NMI)和Fowlkes-Mallows指数(FMI)上分别提升了18.75%和31.18%;在车辆路径规划任务中,使用CSC进行初始化的启发式算法在21个不同规模算例中的16个算例上求得了最短路径,并且启发式算法的运行时间相较于使用SCSC缩短了13.05%。实验结果表明,CSC能够有效提高客户点的聚类精度,进而能够有效提高VRP的求解速度和解的精度。 展开更多
关键词 车辆路径规划问题 多车场车辆路径规划问题 启发式算法 标准化互信息 Fowlkes-Mallows指数
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部