期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于多复合测井参数的复杂岩性核主元识别方法——以开鲁盆地陆西凹陷九佛堂组储层为例
1
作者 裴家学 郭晗 +5 位作者 周立国 张甲明 田涯 李皓 李雪英 隋强 《大庆石油地质与开发》 北大核心 2025年第2期136-146,共11页
开鲁盆地陆西凹陷九佛堂组储层复杂岩性与测井曲线之间存在非线性响应关系,致使常规岩性识别方法存在多解性和不确定性。为此引入4个与储层岩性相关的复合测井参数,增强测井曲线描述复杂岩性非线性响应特征能力;结合高斯核函数和多项式... 开鲁盆地陆西凹陷九佛堂组储层复杂岩性与测井曲线之间存在非线性响应关系,致使常规岩性识别方法存在多解性和不确定性。为此引入4个与储层岩性相关的复合测井参数,增强测井曲线描述复杂岩性非线性响应特征能力;结合高斯核函数和多项式核函数各自的优良特性,构建组合核函数,改善核主元分析方法的全局识别能力;采用K-折交叉验证法确定合理的核半径参数,从而建立一套基于多复合测井参数表征的复杂岩性核主元识别方法。实际岩性数据测试分析结果表明,引入多复合测井参数后,复杂岩性数据在核主元空间具有显著的线性可分性,岩性相对位置集中、固定且区带划分标准明确,表明该岩性划分方法具有良好的稳定性,后验识别符合率92.7%以上,证明该方法在复杂岩性识别中的有效性。研究成果为开鲁盆地复杂岩性区的岩性精确识别提供了一种新的技术思路。 展开更多
关键词 核主元分析 岩性识别 复合测井参数 组合核函数 k-折交叉验证
在线阅读 下载PDF
基于遗传算法优化支持向量机的大坝安全性态预测模型 被引量:32
2
作者 谷艳昌 吴云星 +1 位作者 黄海兵 庞琼 《河海大学学报(自然科学版)》 CAS CSCD 北大核心 2020年第5期419-425,共7页
为提高支持向量机对大坝安全性态的预测效果,提出基于遗传算法优化的GA-SVM大坝安全性态预测模型,以k-CV验证误差最小作为优化目标,引入遗传算法对支持向量机的惩罚参数c和核函数参数g进行寻优。模型以影响因子作为输入,以效应量作为输... 为提高支持向量机对大坝安全性态的预测效果,提出基于遗传算法优化的GA-SVM大坝安全性态预测模型,以k-CV验证误差最小作为优化目标,引入遗传算法对支持向量机的惩罚参数c和核函数参数g进行寻优。模型以影响因子作为输入,以效应量作为输出,采用训练样本对支持向量机进行训练,并使用训练好的模型预测效应量。根据概率统计理论中的3σ准则,建立大坝安全性态三级指标和判别准则。以某大型水库大坝为例,建立该大坝的GA-SVM模型,并与SVM模型和逐步回归模型进行了对比验证。预测结果表明,GA-SVM模型渗压预测值与实测值最接近,预测精度较SVM模型和逐步回归模型提高了约3倍。 展开更多
关键词 水库大坝 安全性态 预测模型 遗传算法 支持向量机 k-折交叉验证 小波去躁 逐步回归
在线阅读 下载PDF
基于极限学习机模型的中国西北地区参考作物蒸散量预报 被引量:8
3
作者 魏俊 崔宁博 +4 位作者 陈雨霖 张青雯 冯禹 龚道枝 王明田 《中国农村水利水电》 北大核心 2018年第8期35-39,共5页
为有效提高西北地区参考作物蒸散量(ET_0)预报精度,在西北地区选择6个代表性气象站点,以P-M模型计算的ET_0作为标准值,利用1993-2016年逐日气象资料构建10种极限学习机(extreme learning machine,ELM)ET_0预报模型,用k-折交叉验证估计... 为有效提高西北地区参考作物蒸散量(ET_0)预报精度,在西北地区选择6个代表性气象站点,以P-M模型计算的ET_0作为标准值,利用1993-2016年逐日气象资料构建10种极限学习机(extreme learning machine,ELM)ET_0预报模型,用k-折交叉验证估计模型泛化误差,并将其与Hargreaves-Samani、Chen、EI-Sebail和Bristow等4种在西北地区计算精度较高的模型进行比较。结果表明:ELM_1(输入T_(max)、T_(min)、RH、n和u_2)、ELM_2(输入T_(max)、T_(min)、n和u_2)、ELM_4(输入T_(max)、T_(min)、RH和u_2)及ELM_7(输入T_(max)、T_(min)和u^2)模型均具有较高模拟精度,其MAE分别为0.199、0.209、0.250、0.273 mm/d,RMSE分别为0.270、0.285、0.341、0.422 mm/d,NSE分别为0.983、0.981、0.973、0.987,R^2分别为0.984、0.982、0.975、0.960,整体评价指标(global performance indicator,GPI)排名分别为1、2、3、4;模型可移植性分析表明,ELM模型具有较强的泛化能力,除了ELM_7在喀什站、敦煌站的模拟精度相对较低之外,其余ELM模型在西北地区各站点模拟结果的MAE均在0.40 mm/d以下、RMSE均在0.49以下、NSE均在0.95以上、R^2均在0.96以上;在相同输入的情况下ELM模型模拟精度均高于HargreavesSamani、Chen、EI-Sebail和Bristow。因此,在气象资料缺乏情景下ELM模型可作为西北地区ET_0计算的推荐模型。 展开更多
关键词 蒸散量 预报模型 极限学习机 k-折交叉验证 西北地区 可移植性
在线阅读 下载PDF
基于改进的PSO-BP神经网络的边坡稳定性研究 被引量:16
4
作者 胡少伟 李原昊 +2 位作者 单常喜 薛翔 杨辉琴 《防灾减灾工程学报》 CSCD 北大核心 2023年第4期854-861,共8页
边坡稳定性研究对于重大地质灾害防治极其重要,但由于影响边坡稳定性的因素具有非线性、多样性以及模糊性等特征,边坡稳定性分析一直是地质灾害防治领域的热难点问题。已有研究表明神经网络预测模型可有效应用边坡稳定性分析,但同时存... 边坡稳定性研究对于重大地质灾害防治极其重要,但由于影响边坡稳定性的因素具有非线性、多样性以及模糊性等特征,边坡稳定性分析一直是地质灾害防治领域的热难点问题。已有研究表明神经网络预测模型可有效应用边坡稳定性分析,但同时存在预测精度低、鲁棒性差、收敛速度慢等缺点。为改善上述问题,在粒子群算法优化的BP神经网络(简称PSO-BP神经网络)算法基础上提出一种改进的边坡稳定性预测模型。该模型以容重、内聚力、内摩擦角、边坡角、高度、孔隙压力比作为输入参数,以安全系数作为输出参数。通过借鉴遗传算法中的变异思想来提升模型全局寻优的能力,利用能量函数负梯度下降原理提高模型的收敛速度。将所收集到百余条边坡数据进行数据清洗,最终得到80条高质量边坡数据,随机选取其中的50条边坡数据作为模型的试验数据。最后采用十折交叉验证的方法对模型的准确性进行验证,并在多维度与其余边坡稳定性神经网络预测模型进行对比分析。结果表明:①该模型相比于其余模型收敛速度、准确率、鲁棒性均有明显提高;②将K折交叉验证应用在小样本数据下的边坡稳定性神经网络预测模型,可有效避免结果的偶然性。③该模型的预测误差仅为4.31%,满足工程精度需求,可在实际工程中为边坡稳定性分析与灾害防治提供参考。 展开更多
关键词 边坡稳定性 BP神经网络 粒子群算法 k-折交叉验证
在线阅读 下载PDF
基于优化的K近邻法的特长隧道风机养护平台
5
作者 沈航 裴洋 《中国交通信息化》 2023年第S01期372-375,共4页
隧道风机作为特长型隧道内部的重要机电设备,在火灾等紧急事故发生时至关重要。体积过大、内部结构复杂以及所处环境不稳定等因素,均是隧道风机日常养护和运维的重大阻碍。特长型隧道内部环境的特殊性导致运维人员无法进行频繁的人工检... 隧道风机作为特长型隧道内部的重要机电设备,在火灾等紧急事故发生时至关重要。体积过大、内部结构复杂以及所处环境不稳定等因素,均是隧道风机日常养护和运维的重大阻碍。特长型隧道内部环境的特殊性导致运维人员无法进行频繁的人工检修或者维护,且过度依赖运维人员经验进行养护无法保证其运维的高效性和准确性。本文依据相应国家交通数字化改革政策,通过合理的科学数据推算,提出特长隧道风机养护平台。其基于k近邻法生成养护预案自适应匹配措施,供运维人员参考。非专业技术人员也可以进行常规的风机养护且无需进行频繁的人工巡检。 展开更多
关键词 数据服务 K近邻法 主成分分析法 k-折交叉验证 IoT统一接入平台
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部