期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
基于K-中心点聚类算法的论坛信息识别技术研究 被引量:3
1
作者 王燕 吴灏 毛天宇 《计算机工程与设计》 CSCD 北大核心 2009年第1期210-212,共3页
提出了一种从非确定结构的论坛页面自动获取信息区域的方法。该方法在对K-中心点聚类算法的研究基础上克服了算法中固定簇数的缺陷,并在算法的簇中心距离计算中引入Smith-Waterman改进算法,提高了算法聚类的精确度。通过对大量论坛网页... 提出了一种从非确定结构的论坛页面自动获取信息区域的方法。该方法在对K-中心点聚类算法的研究基础上克服了算法中固定簇数的缺陷,并在算法的簇中心距离计算中引入Smith-Waterman改进算法,提高了算法聚类的精确度。通过对大量论坛网页进行信息识别的实验显示,该方法切实可行并且具有较高的准确性。 展开更多
关键词 标签结构树 k-中心聚类算法 SMITH-WATERMAN算法 最小相异度 信息识别
在线阅读 下载PDF
正交小波变换k-中心点聚类算法在故障诊断中的应用 被引量:11
2
作者 李卫鹏 曹岩 李丽娟 《振动与冲击》 EI CSCD 北大核心 2021年第7期291-296,共6页
k-中心点聚类算法(k-medoids cluster algorithm,KCA)是改进的机器学习聚类算法,该方法通过初始聚类中心选取和聚类中心更新,对无标记训练样本的学习揭示数据的内在性质及规律,从而区分出机器的运行状态。提出了一种正交小波变换k-中心... k-中心点聚类算法(k-medoids cluster algorithm,KCA)是改进的机器学习聚类算法,该方法通过初始聚类中心选取和聚类中心更新,对无标记训练样本的学习揭示数据的内在性质及规律,从而区分出机器的运行状态。提出了一种正交小波变换k-中心点聚类算法(orthogonal wavelet transform k-medoids clustering algorithm,OWTKCA)诊断方法,利用正交小波变换(orthogonal wavelet transformation,OWT)方法提取各细节信号作为训练样本,用KCA方法进行分类。通过滚动轴承的试验数据分类结果显示,该方法相对于没有提取特征值的KCA能有效处理复杂机械振动信号,明显提高了故障数据聚类效果,缩短了聚类时间,提高了智能诊断效率。 展开更多
关键词 k-中心聚类算法(KCA) 机器学习 故障诊断 正交小波变换(OWT)
在线阅读 下载PDF
一种基于粒子群的聚类算法 被引量:14
3
作者 姚丽娟 罗可 孟颖 《计算机工程与应用》 CSCD 2012年第13期150-153,175,共5页
针对K-中心点算法对初始化敏感和容易陷入局部极值的缺点,提出一种基于粒子群算法和密度初始化改进的K-中心点聚类算法。该算法初始化时选择距离较远的k个候选范围作为k个聚类中心的选择范围,即粒子的初始值都在该k个范围内。通过粒子... 针对K-中心点算法对初始化敏感和容易陷入局部极值的缺点,提出一种基于粒子群算法和密度初始化改进的K-中心点聚类算法。该算法初始化时选择距离较远的k个候选范围作为k个聚类中心的选择范围,即粒子的初始值都在该k个范围内。通过粒子群算法优化聚类中心,以解决K-中心点算法因为聚类中心迭代计算较为复杂而导致的时间复杂度较高的问题。实验结果表明,该算法具有较高的正确率,较小的时间复杂度,综合性能更加稳定。 展开更多
关键词 粒子群算法 k-中心点算法 密度初始化 聚类
在线阅读 下载PDF
基于网格结构的快速PAM算法 被引量:2
4
作者 王世卿 张书春 《计算机工程与设计》 CSCD 北大核心 2011年第3期952-954,1005,共4页
为提高标准PAM算法处理大数据集合的效率,提出了一种改进的快速PAM算法。该算法结合空间网格结构的概念,通过优化初始代表对象的选择、限制迭代过程中遍历的对象数量来减少标准PAM算法的运算量。实验结果表明,相对于标准PAM算法,在保证... 为提高标准PAM算法处理大数据集合的效率,提出了一种改进的快速PAM算法。该算法结合空间网格结构的概念,通过优化初始代表对象的选择、限制迭代过程中遍历的对象数量来减少标准PAM算法的运算量。实验结果表明,相对于标准PAM算法,在保证聚类结果准确性的前提下,快速PAM算法可节省85%左右的执行时间,有效地改善了原算法的性能。 展开更多
关键词 聚类方法 k-中心点算法 PAM算法 时间复杂度 数据挖掘
在线阅读 下载PDF
基于优化人工鱼群算法的混合聚类研究 被引量:5
5
作者 田琳 田力威 刘启文 《计算机工程与设计》 CSCD 北大核心 2014年第3期1041-1045,共5页
为了提高混合聚类算法的准确率,提出基于优化人工鱼群算法的混合聚类算法。引入人工鱼群算法,辅以鲁棒性更强的K中心点算法优化了混合聚类方法的聚集效果。通过对人工鱼的行为和参数进行改善,避免了聚类效果易受离群点影响的问题,对理... 为了提高混合聚类算法的准确率,提出基于优化人工鱼群算法的混合聚类算法。引入人工鱼群算法,辅以鲁棒性更强的K中心点算法优化了混合聚类方法的聚集效果。通过对人工鱼的行为和参数进行改善,避免了聚类效果易受离群点影响的问题,对理噪声数据的处理更好。结合K-中心点算法与人工鱼群算法的优势,解决了聚类算法初值依赖性,克服了鱼群算法后期迭代速度慢问题。仿真结果表明,该算法全局优化性能稳定,收敛速度加快,聚类效果明显提高,获得了较优的中心点与清晰地聚类划分。 展开更多
关键词 混合聚类 人工鱼群算法 优化参数 k-中心点算法 聚类效果
在线阅读 下载PDF
红斑鳞状皮肤病的聚类分析 被引量:4
6
作者 张宜 谢娟英 +3 位作者 李静 陈媛媛 贺瑞瑞 李燕 《济南大学学报(自然科学版)》 北大核心 2017年第3期181-187,共7页
针对红斑鳞状皮肤病鉴别诊断难题,提出利用聚类分析进行诊断;采用3种k-均值、2种k-中心点、最小生成树以及密度峰值点快速搜索聚类算法对该疾病数据进行分析,比较各算法对该疾病的聚类误差平方和、聚类结果 Rand指数、Jaccard系数、调整... 针对红斑鳞状皮肤病鉴别诊断难题,提出利用聚类分析进行诊断;采用3种k-均值、2种k-中心点、最小生成树以及密度峰值点快速搜索聚类算法对该疾病数据进行分析,比较各算法对该疾病的聚类误差平方和、聚类结果 Rand指数、Jaccard系数、调整Rand指数以及聚类准确率;比较各算法对预处理的数据子集的聚类结果与文献中采用k-均值算法对未预处理的该数据子集的聚类结果。结果表明:邻域k-中心点算法对红斑鳞状皮肤病有很好的聚类效果,聚类准确率、聚类结果 Rand指数、Jaccard系数、调整Rand指数均优于对比算法,密度全局k-均值算法的聚类效果次之,全局k-均值算法取得最佳聚类误差平方和;k-均值算法对预处理数据子集的聚类准确率最高,邻域k-中心点与密度全局k-均值算法的聚类准确率相等;数据预处理可提高k-均值算法对该疾病的诊断准确率。 展开更多
关键词 红斑鳞状皮肤病 k-均值算法 k-中心点算法 最小生成树 密度峰值 聚类分析
在线阅读 下载PDF
失稳模态识别方法及其在动态安全域中的运用 被引量:9
7
作者 闵亮 余贻鑫 +1 位作者 Stephen T Lee Pei Zhang 《电力系统自动化》 EI CSCD 北大核心 2004年第11期28-32,共5页
提出了一种快速识别初始运行点附近失稳模态的方法,该方法基于大量计算观察到的初始运行点附近不同运行点注入下模型的可达性格纳姆矩阵元素近乎不变的性质,将基于K-中心点算法的同调识别和初加速度法相结合,快速识别初始运行点附近的... 提出了一种快速识别初始运行点附近失稳模态的方法,该方法基于大量计算观察到的初始运行点附近不同运行点注入下模型的可达性格纳姆矩阵元素近乎不变的性质,将基于K-中心点算法的同调识别和初加速度法相结合,快速识别初始运行点附近的失稳模态,为实用动态安全域(PDSR)直接法提供了临界点搜索建议,改善了PDSR法。该方法的有效性在New England 10机39节点系统得到了验证。 展开更多
关键词 实用动态安全域 可达性格纳姆矩阵 k-中心点算法 同调识别 失稳模态
在线阅读 下载PDF
WEKA数据挖掘平台及其二次开发 被引量:35
8
作者 陈慧萍 林莉莉 +1 位作者 王建东 苗新蕊 《计算机工程与应用》 CSCD 北大核心 2008年第19期76-79,共4页
在开源数据挖掘平台WEKA上进行了挖掘测试和分析,并分析了其存在的主要问题。为了克服WEKA系统在聚类方面的薄弱性,在WEKA的开源环境下进行二次开发,扩充了聚类算法。介绍了将k-中心点轮换算法嵌入到WEKA平台的过程,充分利用了开源WEKA... 在开源数据挖掘平台WEKA上进行了挖掘测试和分析,并分析了其存在的主要问题。为了克服WEKA系统在聚类方面的薄弱性,在WEKA的开源环境下进行二次开发,扩充了聚类算法。介绍了将k-中心点轮换算法嵌入到WEKA平台的过程,充分利用了开源WEKA中的类和可视化功能,并对嵌入的算法和原有聚类算法进行了对比分析。该算法改进了传统的k-中心点算法,避免陷入局部最优,而且它对初始点不太敏感,可以获取更好的聚类效果。 展开更多
关键词 数据挖掘 WEKA平台 聚类 k-中心轮换算法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部