期刊文献+
共找到154篇文章
< 1 2 8 >
每页显示 20 50 100
基于K近邻算法的空中目标威胁度判断方法
1
作者 张健 李强 +2 位作者 张烨炜 米洋锐 贺泽仁 《兵器装备工程学报》 CAS CSCD 北大核心 2024年第9期214-219,共6页
针对传统的空中目标威胁度评估方法具有计算量大,实时性差,难以适用于数据缺失的情况,提出采用K近邻算法(KNN)对任意来袭目标实现威胁度评估的方法。该方法提取了空中目标的状态信息特征作为输入数据,使用离差最大化方法构建数据集,目... 针对传统的空中目标威胁度评估方法具有计算量大,实时性差,难以适用于数据缺失的情况,提出采用K近邻算法(KNN)对任意来袭目标实现威胁度评估的方法。该方法提取了空中目标的状态信息特征作为输入数据,使用离差最大化方法构建数据集,目标威胁度等级作为输出数据,利用K近邻算法构建了目标威胁度评估模型。仿真实验结果表明,该方法能够实现高准确度、实时化的目标威胁度评估,和TOPSIS方法与离差最大化方法进行对比,证明该方法对空中目标异常特征值具有更高的决策效率,更加适用于现代战场的高复杂性,进一步体现了该方法的优越性和可行性。 展开更多
关键词 k近邻算法 威胁度判断 对空目标 无人系统
在线阅读 下载PDF
基于聚类和K近邻算法的井下人员定位算法 被引量:13
2
作者 莫树培 唐琎 +2 位作者 汪郁 赖普坚 金礼模 《工矿自动化》 北大核心 2019年第4期43-48,76,共7页
针对现有基于指纹模的井下定位算法存在的计算量大、实时性低、定位精度较低的问题,提出了基于聚类和K近邻算法的井下人员定位算法。用二分k-means聚类算法对采集的RSSI数据进行分类,建立离线指纹数据库;无线移动终端和动态修正器实时采... 针对现有基于指纹模的井下定位算法存在的计算量大、实时性低、定位精度较低的问题,提出了基于聚类和K近邻算法的井下人员定位算法。用二分k-means聚类算法对采集的RSSI数据进行分类,建立离线指纹数据库;无线移动终端和动态修正器实时采集RSSI值,分别存储到在线定位数据库和动态修正数据库;根据待测点和动态修正器的离线数据和实时数据,采用软硬件动态修正加权K近邻算法计算权重值,结合离线指纹数据库中待测点的物理位置信息估算其实时位置。实验分析结果表明,所提定位算法的最小标准误差为0.46m,最大标准误差为3.26m,平均误差为1.62m。对比分析结果表明,与未进行聚类分析的算法相比,本文算法的精度更高,实时性更好;与未动态修正权重值的算法相比,本文算法的运算时间略有增加,但定位精度提高了37.21%。 展开更多
关键词 井下人员定位 指纹定位 二分k-means聚类算法 软硬件动态修正加权k近邻算法 动态修正
在线阅读 下载PDF
基于局部均值分解和K近邻算法的滚动轴承故障诊断方法 被引量:7
3
作者 蔡锷 李春明 +1 位作者 刘东民 谭晓伟 《现代电子技术》 北大核心 2015年第13期50-52,共3页
将局部均值分解(LMD)和K近邻(KNN)算法结合起来对滚动轴承进行了故障诊断。首先,将LMD应用在轴承振动信号的分解,故障信息被包含在不同的PF分量中,对每个PF分量从时域和频域两个方面进行特征值提取。针对获得的高维特征向量进行PCA降维... 将局部均值分解(LMD)和K近邻(KNN)算法结合起来对滚动轴承进行了故障诊断。首先,将LMD应用在轴承振动信号的分解,故障信息被包含在不同的PF分量中,对每个PF分量从时域和频域两个方面进行特征值提取。针对获得的高维特征向量进行PCA降维,最后在低维空间里,基于KNN算法,实现样本状态分类。实验结果表明,不同故障类型的滚动轴承样本均能被正确诊断。 展开更多
关键词 滚动轴承 局部均值分解 k近邻算法 特征提取 故障诊断
在线阅读 下载PDF
基于ASM和K近邻算法的人脸脸型分类 被引量:6
4
作者 张倩 丁友东 +1 位作者 蓝建梁 涂意 《计算机工程》 CAS CSCD 北大核心 2011年第11期212-214,217,共4页
针对人脸特征分类问题,提出一种基于主动形状模型(ASM)和K近邻算法的人脸脸型分类方法。将Hausdorff距离作为K近邻算法的距离函数,利用ASM算法提取待测图像的特征点,对点集进行归一化后计算人脸轮廓特征点与样本库中所有样本点集的Hausd... 针对人脸特征分类问题,提出一种基于主动形状模型(ASM)和K近邻算法的人脸脸型分类方法。将Hausdorff距离作为K近邻算法的距离函数,利用ASM算法提取待测图像的特征点,对点集进行归一化后计算人脸轮廓特征点与样本库中所有样本点集的Hausdorff距离,根据该距离值,通过K近邻算法实现待测图像的脸型分类。实验结果证明,该方法分类正确率高、速度快、易于实现。 展开更多
关键词 人脸脸型分类 HAUSDORFF距离 k近邻算法 人脸特征提取 主动形状模型
在线阅读 下载PDF
基于自适应烟花算法和k近邻算法的特征选择算法 被引量:6
5
作者 黄欣 莫海淼 赵志刚 《计算机应用与软件》 北大核心 2020年第5期268-274,共7页
特征选择是从原始特征集中选取若干个特征子集,并降低数据维度和减少冗余信息,从而达到提高分类准确度的效果。为了达到此效果,将自适应烟花算法进行离散化处理,使用k近邻算法作为分类器,并提出新的特征选择算法。将特征子集引入目标函... 特征选择是从原始特征集中选取若干个特征子集,并降低数据维度和减少冗余信息,从而达到提高分类准确度的效果。为了达到此效果,将自适应烟花算法进行离散化处理,使用k近邻算法作为分类器,并提出新的特征选择算法。将特征子集引入目标函数,并使用惩罚因子来处理约束条件,采用十折交叉验证法来检验分类效果。使用机器学习常用的UCI数据集进行仿真实验,结果表明:与增强烟花算法、烟花算法、蝙蝠算法、粒子群算法和自适应粒子群算法相比,该算法的性能更优。 展开更多
关键词 自适应烟花算法 特征选择 分类 k近邻算法 十折交叉验证
在线阅读 下载PDF
改进K近邻算法在风功率预测及风水协同运行中的应用 被引量:20
6
作者 杨秀媛 裘微江 +5 位作者 金鑫城 陈勇 邹卫美 郑志伟 郭中华 秦泽阳 《电网技术》 EI CSCD 北大核心 2018年第3期772-778,共7页
风电输出功率的不确定性和不可控性成为了制约风电发展的根本问题。研究风功率预测技术,为电网运行提供准确的风电输出功率预测数据和信息,是解决风力发电发展的根本途径。提出基于改进K最邻近算法的风功率预测模型,并将模型应用到了风... 风电输出功率的不确定性和不可控性成为了制约风电发展的根本问题。研究风功率预测技术,为电网运行提供准确的风电输出功率预测数据和信息,是解决风力发电发展的根本途径。提出基于改进K最邻近算法的风功率预测模型,并将模型应用到了风水协同运行中,在风水协同运行计划的基础上增加了数据实时修正。通过Python语言实现仿真,通过实际仿真结果表明该方法具有较好的预测精度,提高了协同运行系统的精度和准确性。验证了该方法的有效性。 展开更多
关键词 PYTHON 风功率预测 改进k近邻算法 风水协同 实时修正
在线阅读 下载PDF
基于路由机制的时变路网k近邻算法 被引量:2
7
作者 张栋良 唐俊 《计算机科学》 CSCD 北大核心 2013年第2期30-34,共5页
针对现实生活中动态路网的地理信息查询问题,提出了一种基于路由机制的动态路网中k近邻查询的算法。其主导思想是利用空间换时间,用路由表保存历史查询结果,用查询路由表的方法代替传统的最短路径计算,通过历史数据减少系统重复计算并... 针对现实生活中动态路网的地理信息查询问题,提出了一种基于路由机制的动态路网中k近邻查询的算法。其主导思想是利用空间换时间,用路由表保存历史查询结果,用查询路由表的方法代替传统的最短路径计算,通过历史数据减少系统重复计算并对车辆行驶路径进行规划,用更新路由表的方法适应路况的变化。围绕路由表这一核心,改进相应的k近邻算法的过滤、精炼过程。通过路由表对动态路网进行少量的预处理,减少系统在k近邻搜索中的候选点数量,缩小查询范围,提高搜索效率。 展开更多
关键词 路由机制 k近邻算法 时变路网
在线阅读 下载PDF
可拓K近邻算法在数据聚类分析中的应用 被引量:1
8
作者 杨仪 向长城 魏代俊 《计算机工程与应用》 CSCD 北大核心 2010年第21期156-159,共4页
针对区间值数据的数据聚类问题,根据可拓学关联函数的定义,提出可拓距离的概念来度量数据之间的距离,利用K近邻的思想,根据可拓距离的大小对数据集的目标属性进行投票选择进行分类,设计了可拓K近邻算法(Extension K Nearest Neighbor,EK... 针对区间值数据的数据聚类问题,根据可拓学关联函数的定义,提出可拓距离的概念来度量数据之间的距离,利用K近邻的思想,根据可拓距离的大小对数据集的目标属性进行投票选择进行分类,设计了可拓K近邻算法(Extension K Nearest Neighbor,EKNN)。最后利用UCI的两个基准数据集Iris植物样本数据和糖尿病数据库PIDD进行验证,首先通过免疫网络约简算法对条件属性进行最小属性约简,然后利用EKNN算法分析和比较不同最小约简属性下的分类准确率。 展开更多
关键词 数据聚类 可拓距离 可拓k近邻算法 属性约简
在线阅读 下载PDF
基于改进K近邻算法的海量不完整数据近似查询系统 被引量:2
9
作者 徐宝磊 《现代电子技术》 2021年第15期177-181,共5页
由于现行海量不完整数据近似查询系统存在概率查询能力较差、查询时间过长、查询误差过大等问题,基于改进K近邻算法设计了一种新的海量不完整数据近似查询系统,并对系统的硬件和软件进行设计。通过信息源端、切换整合平台、查询端构建... 由于现行海量不完整数据近似查询系统存在概率查询能力较差、查询时间过长、查询误差过大等问题,基于改进K近邻算法设计了一种新的海量不完整数据近似查询系统,并对系统的硬件和软件进行设计。通过信息源端、切换整合平台、查询端构建整体架构,选用4路模拟量差分输入、8632C004的P1同两片TKB730的输入/输出连接、SJW000电路、82B250电路、CAN总线连接电路构成系统硬件结构。由数据采集、数据查询、数据判断实现软件查询,同时设定嵌入式仿真软件、用户审计控制软件完成信息查询。实验结果表明,基于改进K近邻算法的海量不完整数据近似查询系统能够有效提高概率查询能力,缩短查询时间,降低查询误差。 展开更多
关键词 近似查询系统 海量不完整数据 改进k近邻算法 数据采集 数据查询 不完整分析 近似分析
在线阅读 下载PDF
多示例学习的包层次覆盖k近邻算法
10
作者 赵姝 芮辰 +1 位作者 陈洁 张燕平 《小型微型计算机系统》 CSCD 北大核心 2014年第11期2511-2514,共4页
多示例学习是一种新型的机器学习框架,正包中大量的噪声使多示例数据集具有很大的歧义性.为了排除多示例数据集正包中大量的假正例,提高分类精度,结合邻域覆盖算法,提出一个新的多示例包层次覆盖k近邻算法.覆盖算法的学习结果是一系列... 多示例学习是一种新型的机器学习框架,正包中大量的噪声使多示例数据集具有很大的歧义性.为了排除多示例数据集正包中大量的假正例,提高分类精度,结合邻域覆盖算法,提出一个新的多示例包层次覆盖k近邻算法.覆盖算法的学习结果是一系列的球形邻域,在每一个球形邻域中只含有同类样本,本文利用的覆盖算法的这一特性重新组织多示例数据集的包结构.概括的说,为了排除正包中大量的假正例,首先对原有的多示例包结构进行重新构造,使用覆盖算法生成的球形邻域做为新的包结构,从而提高多示例样本在新的特征空间中的可分离性.然后,使用包层次的k近邻算法排除正包中大量的噪声并预测测试包的类别.实验表明,多示例学习的包层次覆盖k近邻算法具有很好的性能. 展开更多
关键词 机器学习 多示例学习 覆盖算法 k近邻算法
在线阅读 下载PDF
基于改进K近邻算法的船舶通航环境智能识别 被引量:4
11
作者 王壮 李嘉源 +3 位作者 黄连忠 王凯 姜雅乔 马冉祺 《上海海事大学学报》 北大核心 2020年第3期36-41,共6页
为实现船舶能效的智能优化,从船舶通航环境出发,研究船舶通航环境的智能识别方法。基于所获得的船舶通航环境大数据,建立基于改进K均值聚类算法的船舶通航环境类别知识库,设计相关系数加权的K近邻算法,实现船舶通航环境的智能识别。实... 为实现船舶能效的智能优化,从船舶通航环境出发,研究船舶通航环境的智能识别方法。基于所获得的船舶通航环境大数据,建立基于改进K均值聚类算法的船舶通航环境类别知识库,设计相关系数加权的K近邻算法,实现船舶通航环境的智能识别。实例分析结果表明,此基于改进K近邻算法的智能识别方法的识别准确率可达97.25%,相对于未改进的K近邻算法,准确率提高7.81%。所提出的智能识别方法可为基于通航环境智能识别的船舶分段航速智能优化方法的研究奠定基础。 展开更多
关键词 通航环境 k均值聚类 k近邻算法 智能识别
在线阅读 下载PDF
基于图像处理和K近邻算法的示温漆判读方法 被引量:3
12
作者 胡明 葛俊锋 +3 位作者 薛秀生 张宇 高佳祺 张泽鹏 《航空发动机》 北大核心 2021年第6期80-84,共5页
为了提高示温漆温度判读的精度和效率,采用图像处理和K近邻算法进行示温漆自动判读。对样板图像颜色空间进行转换,提取颜色特征,建立判读模型;采用基于邻域颜色相似性的多尺度分割算法对试验件图像进行分割和颜色空间转换,提取颜色特征... 为了提高示温漆温度判读的精度和效率,采用图像处理和K近邻算法进行示温漆自动判读。对样板图像颜色空间进行转换,提取颜色特征,建立判读模型;采用基于邻域颜色相似性的多尺度分割算法对试验件图像进行分割和颜色空间转换,提取颜色特征。通过采用基于K近邻算法和颜色分布特征构建的温度判读模型,在KN3A示温漆矩形样板上进行了温度判读,结果表明:当允许误差在±10℃以内时,像素点温度判读准确率达到96%,区域温度判读准确率达到100%;在KN8蝶形样板上进行了温度判读,结果表明:热电偶附近像素点的温度值与热电偶温度值相比较,其误差在±10℃以内。 展开更多
关键词 示温漆 图像处理 k近邻算法 颜色分布 温度判读
在线阅读 下载PDF
用于动态心电图波形分类改进的K近邻算法研究 被引量:2
13
作者 苑静中 《天津师范大学学报(自然科学版)》 CAS 2008年第3期60-63,共4页
针对动态心电图波形数据量大且具有明显个体差异性的特点,提出了一种改进的K近邻分类算法,用于动态心电图波形分类.该算法首先将实例间的度量改为曼哈顿距离(City Block Distance),然后引入高斯核函数,将K近邻算法改进为非线性分类算法... 针对动态心电图波形数据量大且具有明显个体差异性的特点,提出了一种改进的K近邻分类算法,用于动态心电图波形分类.该算法首先将实例间的度量改为曼哈顿距离(City Block Distance),然后引入高斯核函数,将K近邻算法改进为非线性分类算法,以达到分类动态心电图波形的目的.实验结果表明,该算法在对动态心电图波形进行分类时,分类精度在90%以上. 展开更多
关键词 分类 曼哈顿距离 k近邻算法 动态心电图
在线阅读 下载PDF
基于K近邻算法的噪声种类识别和强度估计 被引量:6
14
作者 吴小莉 郑艺峰 《计算机应用》 CSCD 北大核心 2020年第1期264-270,共7页
对于目前噪声种类识别和强度估计方法都是针对单噪声,无法估计混合噪声中源噪声的强度的问题,提出了一种有距离阈值的K近邻(KNN)算法,实现对单噪声和混合噪声的种类识别,并结合混合噪声识别结果和噪声基重构估计混合噪声中源噪声的强度... 对于目前噪声种类识别和强度估计方法都是针对单噪声,无法估计混合噪声中源噪声的强度的问题,提出了一种有距离阈值的K近邻(KNN)算法,实现对单噪声和混合噪声的种类识别,并结合混合噪声识别结果和噪声基重构估计混合噪声中源噪声的强度。首先,选用频域数据分布作为特征向量;然后,采用噪声种类识别算法进行种类识别,并且在噪声基重构过程中以重构噪声与真实噪声的频域余弦距离作为强度估计算法的最优化评价标准;最后,实现对源噪声强度的估计。在两个测试数据库上的实验结果表明,所提算法的噪声种类识别的平均精度高达98.135%,混合噪声强度估计的误差率为20.96%。实验结果验证了噪声种类识别算法的准确性和泛化性,以及混合噪声强度估计算法的可行性,并且该方法为混合噪声强度估计提供了新思路。采用该方法获取的混合噪声种类和强度信息有助于去噪方法和去噪参数的确定,进而提高去噪效率。 展开更多
关键词 k近邻算法 距离阈值 噪声基重构 种类识别 强度估计 混合噪声
在线阅读 下载PDF
基于判别分析与K近邻算法对塑料吸管的红外光谱分析 被引量:6
15
作者 姜红 马枭 杜岩 《塑料工业》 CAS CSCD 北大核心 2020年第5期112-116,共5页
为建立一种塑料吸管物证的高效、准确分类方法,利用红外光谱法对来自全国的4个品牌共42个塑料吸管样本进行了检验。经过前期光谱预处理后,利用主成分分析法提取出了25个主成分,累积方差贡献率为99. 689%,并将其作为判别变量进行判别分... 为建立一种塑料吸管物证的高效、准确分类方法,利用红外光谱法对来自全国的4个品牌共42个塑料吸管样本进行了检验。经过前期光谱预处理后,利用主成分分析法提取出了25个主成分,累积方差贡献率为99. 689%,并将其作为判别变量进行判别分析。判别结果区分效果良好但交叉验证正确率仅为73. 8%,有待进一步提高。因此将判别得分作为特征变量导入K值为1的K近邻算法中,构建起了分类正确率为100%的K近邻算法模型,实现了对塑料吸管物证的准确分类。 展开更多
关键词 红外光谱法 判别分析 k近邻算法 塑料吸管
在线阅读 下载PDF
基于K近邻算法的来波方向估计方法 被引量:3
16
作者 陈中 王杰贵 +1 位作者 唐希雯 杨航 《探测与控制学报》 CSCD 北大核心 2022年第1期24-28,共5页
针对传统波达角估计方法只适用于特定天线阵列,计算量过大和实时性差的问题,提出采用K近邻算法(KNN)对任意天线阵列实现高精度来波方向估计的方法。该方法提取来波信号的相位和幅度信息作为输入数据,利用K近邻算法构建来波方向估计模型... 针对传统波达角估计方法只适用于特定天线阵列,计算量过大和实时性差的问题,提出采用K近邻算法(KNN)对任意天线阵列实现高精度来波方向估计的方法。该方法提取来波信号的相位和幅度信息作为输入数据,利用K近邻算法构建来波方向估计模型,实现了高精度、实时化的来波方向估计。仿真实验结果表明,该方法能够实现高精度的来波方向估计,和干涉仪测向方法进行对比,证明该方法对频率估计误差和信号入射范围有更好的鲁棒性,进一步体现了该方法的优越性和可行性。 展开更多
关键词 波达角估计 机器学习 k近邻算法
在线阅读 下载PDF
基于深度学习的K近邻图迭代静脉识别算法研究
17
作者 王闪闪 巩长庆 +3 位作者 秦华锋 王军 李艳涛 杨数强 《智能系统学报》 CSCD 北大核心 2024年第5期1149-1156,共8页
深度学习在计算机视觉中具有强大的特征表达能力,近年来广泛应用于静脉特征的提取与识别。通常,基于深度学习的静脉识别模型在训练阶段,每次仅输入1幅图像及其对应的标签,学习图像与标签之间的映射关系,然而,这种每次只处理单幅图像的方... 深度学习在计算机视觉中具有强大的特征表达能力,近年来广泛应用于静脉特征的提取与识别。通常,基于深度学习的静脉识别模型在训练阶段,每次仅输入1幅图像及其对应的标签,学习图像与标签之间的映射关系,然而,这种每次只处理单幅图像的方法,难以捕捉不同类别多幅静脉图像之间的关系。为了解决该问题,提出一种基于深度学习的K近邻图迭代静脉识别算法。用较优的深度学习模型提取掌静脉图像特征;利用K近邻算法通过特征距离在训练集中选出最近的K幅图像及其标签,通过这些特征向量生成标签传播矩阵和标签矩阵;利用图迭代算法预测待分类图像的标签,完成分类。在香港理工大学和同济大学提供的掌静脉数据集上进行实验,最高识别精度分别为99.67%和92.72%。 展开更多
关键词 生物特征识别 掌静脉识别 图像处理 深度学习 k近邻算法 卷积神经网络 图迭代算法 图神经网络
在线阅读 下载PDF
基于特征提取的KNN路由优化算法
18
作者 赵莉 石昕宇 孙宗伟 《光通信技术》 北大核心 2025年第5期89-93,共5页
为提高大规模Benes光网络的路由效率与通信性能,提出一种基于特征提取的K近邻(KNN)路由优化算法。通过提取波导交叉位置及数量等关键特征构建特征路由表,对传统KNN路由优化算法进行预处理优化,并基于四电平脉冲幅度调制(PAM4)系统搭建... 为提高大规模Benes光网络的路由效率与通信性能,提出一种基于特征提取的K近邻(KNN)路由优化算法。通过提取波导交叉位置及数量等关键特征构建特征路由表,对传统KNN路由优化算法进行预处理优化,并基于四电平脉冲幅度调制(PAM4)系统搭建光网络仿真平台,对不同路由路径的消光比、带宽及误符号率进行测试分析。实验结果表明:所提方法将路由筛选准确率从34.48%提升至71.85%;在30 Gb/s传输速率下,改进的KNN路由优化算法使优势路径的最小接收功率要求比劣势路径低0.8 dBm。 展开更多
关键词 Benes光网络 k近邻算法 消光比 带宽 误符号率
在线阅读 下载PDF
结合局部敏感哈希的k近邻数据填补算法 被引量:5
19
作者 郑奇斌 刁兴春 +2 位作者 曹建军 周星 许永平 《计算机应用》 CSCD 北大核心 2016年第2期397-401,共5页
k近邻(kNN)算法是缺失数据填补的常用算法,但由于需要逐个计算所有记录对之间的相似度,因此其填补耗时较高。为提高算法效率,提出结合局部敏感哈希(LSH)的k NN数据填补算法LSH-k NN。首先,对不存在缺失的完整记录进行局部敏感哈希,为之... k近邻(kNN)算法是缺失数据填补的常用算法,但由于需要逐个计算所有记录对之间的相似度,因此其填补耗时较高。为提高算法效率,提出结合局部敏感哈希(LSH)的k NN数据填补算法LSH-k NN。首先,对不存在缺失的完整记录进行局部敏感哈希,为之后查找近似最近邻提供索引;其次,针对枚举型、数值型以及混合型缺失数据分别提出对应的局部敏感哈希方法,对每一条待填补的不完整记录进行局部敏感哈希,按得到的哈希值找到与其疑似相似的候选记录;最后在候选记录中通过逐个计算相似度来找到其中相似程度最高的k条记录,并按照k NN算法对不完整记录进行填补。通过在4个真实数据集上的实验表明,结合局部敏感哈希的k NN填补算法LSH-k NN相对经典的k NN算法能够显著提高填补效率,并且保持准确性基本不变。 展开更多
关键词 数据质量 数据完整性 数据填补 k近邻算法 局部敏感哈希
在线阅读 下载PDF
一种基于PSO同步进行特征选择及参数优化的核K近邻分类算法 被引量:5
20
作者 任江涛 姚树宇 纪庆革 《小型微型计算机系统》 CSCD 北大核心 2007年第8期1461-1464,共4页
特征选择及分类器参数优化是提高分类器性能的两个重要方面,传统上这两个问题是分开解决的.近年来,随着进化优化计算技术在模式识别领域的广泛应用,编码上的灵活性使得特征选择及参数的同步优化成为一种可能和趋势.为了解决此问题,本文... 特征选择及分类器参数优化是提高分类器性能的两个重要方面,传统上这两个问题是分开解决的.近年来,随着进化优化计算技术在模式识别领域的广泛应用,编码上的灵活性使得特征选择及参数的同步优化成为一种可能和趋势.为了解决此问题,本文研究采用二进制PSO算法进行特征选择及核K近邻分类器参数的同步优化.实验表明,该方法可有效地找出合适的特征子集及核函数参数,并取得较好的分类效果. 展开更多
关键词 特征选择 分类器参数 同步优化 粒子群算法 k近邻算法
在线阅读 下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部