期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于非参数分类k最邻近节点算法的多维放射诊断数据评价(英文)
1
作者 Matthias Dietzel Andreas Dietzel +4 位作者 Ramy Zoubi Hartmut P. Burmeister Martin Bogdan Werner A. Kaiser Pascal A.T. Baltzer 《磁共振成像》 CAS 2012年第6期401-409,共9页
目的 k最近邻节点算法(k-nearest neighbor algorithm,kNN)可以将复杂的医疗信息集合成临床诊断信息(比如确定良性或恶性病变)。该研究旨在分析kNN算法应用于大量临床数据集时的AUC(ROC曲线下面积)。材料与方法该研究经IRB批准,且实验... 目的 k最近邻节点算法(k-nearest neighbor algorithm,kNN)可以将复杂的医疗信息集合成临床诊断信息(比如确定良性或恶性病变)。该研究旨在分析kNN算法应用于大量临床数据集时的AUC(ROC曲线下面积)。材料与方法该研究经IRB批准,且实验选取了543例经病理证实为乳腺病灶的MR图像进行分析,所有的病灶由两名经验丰富的放射科医师用现有的描述方法进行前瞻性评估。kNN算法应用于诊断恶性与良性病变的步骤如下:首先,用递归特征消除来确定单个特征描述的重要性,将其按照重要性排列。然后,采取多类别描述方法的策略,将对照组分为4组:top-3、top-7、top-12和top-18组,相应的特征描述作为kNN算法的输入向量。最后,用kNN算法对四组数据处理,对结果进行量化,比较各组数据的AUC(为了尽量消除数据模型和测试数据的偏差,运用了4倍交叉验证)。病理组织学显示,实验数据组共有196个良性病变和347个恶性病变。结果测得最高的AUC为0.940(用top-18描述)。如果用top-12来描述,AUC降为0.928(P=0.23)。减少特征描述输入向量的维数会显著降低(P<0.05)kNN算法的AUC("top-7":AUC=0.895;"top-3":AUC=0.816)。结论 kNN对预测恶性肿瘤的精确度较高(AUC为0.940),由于这种描述方法对n≥12是有效的,说明kNN算法对多维数据的评估更加有效。 展开更多
关键词 k最邻近节点算法 磁共振成像 早期肿瘤 影像诊断 计算机辅助诊断 病变特征
在线阅读 下载PDF
基于灰色关联分析的传感器节点连通算法 被引量:1
2
作者 张苏颖 竺兴妹 许曙青 《传感技术学报》 CAS CSCD 北大核心 2022年第1期127-131,共5页
为了解决传统传感器连通算法难以完全剔除连通干扰因子,导致节点连通性较差,提出将灰色关联分析方法应用在传感器节点连通算法设计中。采集传感器节点信息,确定各个节点之间的灰度关联关系,通过序列因子之间的极差转化剔除序列中的连通... 为了解决传统传感器连通算法难以完全剔除连通干扰因子,导致节点连通性较差,提出将灰色关联分析方法应用在传感器节点连通算法设计中。采集传感器节点信息,确定各个节点之间的灰度关联关系,通过序列因子之间的极差转化剔除序列中的连通干扰因子。采用K邻近搜索算法获得特征点附近邻域点,并凭借特征向量与特征值建造局部节点连通范围平面。最后提取节点连通点与线的特征,利用矩形节点连通区域进行分割,从而实现传感器节点的高效连通。仿真分析结果表明,与传统连通算法相比,提出的算法能够降低节点跳数,并能够保持较高连通率与连通稳定性。因此,说明提出的算法能够全方面提高节点连通性能。 展开更多
关键词 传感器节点 连通算法 灰色关联分析 k邻近搜索算法 干扰因子
在线阅读 下载PDF
改进混合二进制蝗虫优化特征选择算法 被引量:5
3
作者 赵泽渊 代永强 《计算机科学与探索》 CSCD 北大核心 2021年第7期1339-1349,共11页
特征选择是从数据集的原始特征中选出最优或较优特征子集,从而在加快分类速度的同时提高分类准确率。提出了一种改进的混合二进制蝗虫优化特征选择算法:通过引入步长引导个体位置变化的二进制转化策略,降低了进制转换的盲目性,提高了算... 特征选择是从数据集的原始特征中选出最优或较优特征子集,从而在加快分类速度的同时提高分类准确率。提出了一种改进的混合二进制蝗虫优化特征选择算法:通过引入步长引导个体位置变化的二进制转化策略,降低了进制转换的盲目性,提高了算法在解空间中的搜索性能;通过引入混合复杂进化方法,将蝗虫群体划分子群并独立进化,提高了算法的多样性,降低了早熟收敛的概率。采用改进算法对UCI部分数据集进行特征选择,使用K-NN分类器对特征子集进行分类评价,实验结果表明:与基本二进制蝗虫优化算法、二进制粒子群优化算法和二进制灰狼优化算法相比,改进算法具有较优的搜索性能、收敛性能与较强的鲁棒性,能够获得更好的特征子集,取得更好的分类效果。 展开更多
关键词 二进制 蝗虫优化算法 混合复杂进化方法 特征选择 分类 k邻近(k-nn)算法
在线阅读 下载PDF
基于颜色和深度信息融合的目标识别方法 被引量:17
4
作者 吴鑫 王桂英 丛杨 《农业工程学报》 EI CAS CSCD 北大核心 2013年第A01期96-100,共5页
传统的机器视觉采用二维RGB图像,难以满足三维视觉检测的要求,深度图像能直接反映物体表面的三维特征,正逐渐受到重视。该文提出的方案将RGB和深度信息相结合,分割出物体所在区域,并利用梯度方向直方图(HOG,histograms of oriented grad... 传统的机器视觉采用二维RGB图像,难以满足三维视觉检测的要求,深度图像能直接反映物体表面的三维特征,正逐渐受到重视。该文提出的方案将RGB和深度信息相结合,分割出物体所在区域,并利用梯度方向直方图(HOG,histograms of oriented gradients)分别提取RGB图像和深度图像特征信息。在分类算法上,该文采用k最邻近节点算法(k-NN)对特征进行筛选,识别出目标物体。试验结果表明,综合利用深度信息和RGB信息,识别准确率很高,此方案能够对物体和手势进行很好识别。 展开更多
关键词 物体识别 图像处理 图像分割 深度图像 RGB图像 k最邻近节点算法(k-nn)
在线阅读 下载PDF
像素归一化方法在恶意代码可视分析中的应用 被引量:5
5
作者 任卓君 韩秀玲 +1 位作者 孔德凤 陈光 《计算机工程与应用》 CSCD 北大核心 2016年第21期121-125,共5页
恶意代码的编写者通常采用自动化的手段开发恶意代码变种,使得恶意代码的数量呈现迅猛增长的态势。由于自动化的方式会重复利用恶意代码中的核心模块,因此也为病毒研究人员辨识和区分恶意代码族提供了有利依据。借鉴灰度图的思想,利用K-... 恶意代码的编写者通常采用自动化的手段开发恶意代码变种,使得恶意代码的数量呈现迅猛增长的态势。由于自动化的方式会重复利用恶意代码中的核心模块,因此也为病毒研究人员辨识和区分恶意代码族提供了有利依据。借鉴灰度图的思想,利用K-Nearest Neighbor(KNN)分类算法,给出了一种新的研究恶意代码谱系分类的可视化方法。其基本思想是,通过将二进制文件转换成双色通道的位图和像素归一图,从可视化的角度标识恶意样本特性,以此实现恶意代码族的相似度比较及分类。实验结果表明采用了像素归一化的降维映射机制能显著地减小文件可视特征的呈现时间开销,且该方法以自动化操作的方式运用Jaccard距离算法进行快速相似度比较,实现了恶意代码样本的有效分类,提高了分析人员的识别效率。 展开更多
关键词 恶意代码 可视化 谱系分析 Jaccard距离 k最邻近节点算法(kNN)
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部