期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
用于不均衡数据集分类的KNN算法 被引量:9
1
作者 孙晓燕 张化祥 计华 《计算机工程与应用》 CSCD 北大核心 2011年第28期143-145,236,共4页
针对KNN在处理不均衡数据集时,少数类分类精度不高的问题,提出了一种改进的算法G-KNN。该算法对少数类样本使用交叉算子和变异算子生成部分新的少数类样本,若新生成的少数类样本到父代样本的欧几里德距离小于父代少数类之间的最大距离,... 针对KNN在处理不均衡数据集时,少数类分类精度不高的问题,提出了一种改进的算法G-KNN。该算法对少数类样本使用交叉算子和变异算子生成部分新的少数类样本,若新生成的少数类样本到父代样本的欧几里德距离小于父代少数类之间的最大距离,则认为是有效样本,并把这类样本加入到下轮产生少数类的过程中。在UCI数据集上进行测试,实验结果表明,该方法与KNN算法中应用随机抽样相比,在提高少数类的分类精度方面取得了较好的效果。 展开更多
关键词 不均衡数据集 k最近邻居(knn)算法 过抽样 交叉算子
在线阅读 下载PDF
K最近邻算法理论与应用综述 被引量:81
2
作者 毋雪雁 王水花 张煜东 《计算机工程与应用》 CSCD 北大核心 2017年第21期1-7,共7页
k最近邻算法(kNN)是一个十分简单的分类算法,该算法包括两个步骤:(1)在给定的搜索训练集上按一定距离度量,寻找一个k的值。(2)在这个kNN算法当中,根据大多数分为一致的类来进行分类。kNN算法具有的非参数性质使其非常易于实现,并且它的... k最近邻算法(kNN)是一个十分简单的分类算法,该算法包括两个步骤:(1)在给定的搜索训练集上按一定距离度量,寻找一个k的值。(2)在这个kNN算法当中,根据大多数分为一致的类来进行分类。kNN算法具有的非参数性质使其非常易于实现,并且它的分类误差受到贝叶斯误差的两倍的限制,因此,kNN算法仍然是模式分类的最受欢迎的选择。通过总结多篇使用了基于kNN算法的文献,详细阐述了每篇文献所使用的改进方法,并对其实验结果进行了分析;通过分析kNN算法在人脸识别、文字识别、医学图像处理等应用中取得的良好分类效果,对kNN算法的发展前景无比期待。 展开更多
关键词 k最近算法(knn) 人脸识别 文字识别 医学图像处理
在线阅读 下载PDF
基于KNN-TSVR算法的MIMO-OFDM系统信道估计 被引量:5
3
作者 李朔 雷为民 张伟 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2022年第2期176-181,242,共7页
为了提高多输入多输出正交频分复用(MIMO-OFDM)系统的信道估计性能,提出了一种基于K近邻加权孪生支持向量回归(KNN-TSVR)的信道频率响应估计算法.该算法的工作过程是首先用最小二乘算法对导频位置的信道参数进行估计,获取训练样本,然后... 为了提高多输入多输出正交频分复用(MIMO-OFDM)系统的信道估计性能,提出了一种基于K近邻加权孪生支持向量回归(KNN-TSVR)的信道频率响应估计算法.该算法的工作过程是首先用最小二乘算法对导频位置的信道参数进行估计,获取训练样本,然后用K近邻(KNN)算法对训练样本进行预处理,得到赋予各样本的权重,最后由加权TSVR对MIMO-OFDM系统所有位置的信道参数进行插值估计.本文提出的改进的加权TSVR信道估计方法不仅具有TSVR对非线性关系回归的优势,同时引入KNN算法对TSVR进行改进,使得该算法与传统TSVR相比,具有更好的回归性能和抗噪声能力.对非线性MIMO-OFDM信道进行估计的仿真实验结果证实了这一结论. 展开更多
关键词 信道估计 k最近邻(knn)算法 多进多出(MIMO)系统 正交频分复用(OFDM) 孪生支持向量回归(TSVR)
在线阅读 下载PDF
基于特别的特征表示方法的局部线性KNN算法 被引量:2
4
作者 卞则康 王士同 王宇翔 《计算机科学与探索》 CSCD 北大核心 2018年第1期134-142,共9页
提出了一种特别的特征表示方法,并在此基础上提出了一种基于特别的特征表示方法的局部线性K最近邻算法(locally linear K-nearest neighbor method,L^2KNN),并将之应用到人脸识别中。特别的特征表示方法是在传统的稀疏表示的基础上,加... 提出了一种特别的特征表示方法,并在此基础上提出了一种基于特别的特征表示方法的局部线性K最近邻算法(locally linear K-nearest neighbor method,L^2KNN),并将之应用到人脸识别中。特别的特征表示方法是在传统的稀疏表示的基础上,加入了非负约束,改进了传统的稀疏表示的方法,在目标函数中增加了集群正则化项,然后优化新的目标函数得到一个新的近似的特征表示。L^2KNN算法具有最近邻集群效应(clustering effect of nearest neighbors,CENN),不仅可以增强测试样本与同类的训练样本之间的相关性,而且可以增强同类训练样本之间的相关性。L^2KNN算法进一步应用到L^2KNNc(L^2KNN-based classifier)分类器中,并提出一种系数截断的方法增加L^2KNNc分类器的泛化性能,进一步提高分类器的分类性能。在人脸数据集上的实验结果证明了上述结论。 展开更多
关键词 特别的特征表示 局部线性k最近算法(L^2knn) 最近邻集群效应(CENN) 系数截断方法
在线阅读 下载PDF
基于Spark的输变电线路实时故障监测研究 被引量:4
5
作者 陈建峡 朱季骐 +3 位作者 张月 张晓星 吕俊涛 白德盟 《计算机工程与应用》 CSCD 北大核心 2018年第5期265-270,共6页
输变电线路状态监测数据是智能电网中数据量很大的一部分,不仅包括在线的状态监测数据,还包括设备的基本信息、实验数据、缺陷记录等,在数据处理的可靠性和实时性方面的要求都很高。根据实际应用中输变电线路的故障类型,设计并实现了输... 输变电线路状态监测数据是智能电网中数据量很大的一部分,不仅包括在线的状态监测数据,还包括设备的基本信息、实验数据、缺陷记录等,在数据处理的可靠性和实时性方面的要求都很高。根据实际应用中输变电线路的故障类型,设计并实现了输变电线路实时数据故障监测模型。其中,利用高效处理实时数据的Spark系统,研发出基于Spark的分布式ISODATA和模糊KNN大数据分析算法,与单机KNN算法相比,在时间性能上提高了70.75%效率,具有明显的计算效率优势。 展开更多
关键词 实时大数据 输变电线路 故障监测 分布式迭代自组织数据分析算法(ISODATA) 分布式模糊k最近邻分类算法(knn)
在线阅读 下载PDF
基于Web的公钥基础设施优化与实现 被引量:1
6
作者 石永革 虞艳琼 石峰 《计算机工程与设计》 CSCD 北大核心 2009年第9期2129-2131,共3页
基于实践,针对传统公钥基础设施的不足,引入XKMS的技术优点,采用Web Service技术对外发布XKMS服务,从而把PKI的复杂性从客户端转移到XKMS服务端,屏蔽了PKI底层的实现过程,降低了部署实施PKI的复杂度。同时,针对传统PKI存在的数据传输安... 基于实践,针对传统公钥基础设施的不足,引入XKMS的技术优点,采用Web Service技术对外发布XKMS服务,从而把PKI的复杂性从客户端转移到XKMS服务端,屏蔽了PKI底层的实现过程,降低了部署实施PKI的复杂度。同时,针对传统PKI存在的数据传输安全隐患,应用KNN算法提出了缓存分级加密机制,解决了数据在传输缓存中以明文方式存储的安全隐患。 展开更多
关键词 电子政务 公钥基础设施 XML密钥管理规范 网络服务 k最近邻居算法
在线阅读 下载PDF
结合主动学习与置信度投票的集成自训练方法 被引量:8
7
作者 黎隽男 吕佳 《计算机工程与应用》 CSCD 北大核心 2016年第20期167-171,230,共6页
基于集成学习的自训练算法是一种半监督算法,不少学者通过集成分类器类别投票或平均置信度的方法选择可靠样本。基于置信度的投票策略倾向选择置信度高的样本或置信度低但投票却一致的样本进行标记,后者这种情形可能会误标记靠近决策边... 基于集成学习的自训练算法是一种半监督算法,不少学者通过集成分类器类别投票或平均置信度的方法选择可靠样本。基于置信度的投票策略倾向选择置信度高的样本或置信度低但投票却一致的样本进行标记,后者这种情形可能会误标记靠近决策边界的样本,而采用异构集成分类器也可能会导致各基分类器对高置信度样本的类别标记不同,从而无法将其有效加入到有标记样本集。提出了结合主动学习与置信度投票策略的集成自训练算法用来解决上述问题。该算法合理调整了投票策略,选择置信度高且投票一致的无标记样本加以标注,同时利用主动学习对投票不一致而置信度较低的样本进行人工标注,以弥补集成自训练学习只关注置信度高的样本,而忽略了置信度低的样本的有用信息的缺陷。在UCI数据集上的对比实验验证了该算法的有效性。 展开更多
关键词 集成自训练算法 主动学习 加权k最近邻(knn) 朴素贝叶斯 置信度
在线阅读 下载PDF
新奇检测综述 被引量:2
8
作者 雷恒林 古兰拜尔·吐尔洪 +1 位作者 买日旦·吾守尔 张东梅 《计算机工程与应用》 CSCD 北大核心 2021年第5期47-55,共9页
能够对异常信息进行检测是智能控制系统的基础能力,新奇检测是一类特殊的异常检测方法,其充分利用了正常数据来构建模型,在诸多智能系统中发挥着重要作用。该领域的综述,能够方便科研人员快速了解新奇检测领域的发展情况,找到适合自己... 能够对异常信息进行检测是智能控制系统的基础能力,新奇检测是一类特殊的异常检测方法,其充分利用了正常数据来构建模型,在诸多智能系统中发挥着重要作用。该领域的综述,能够方便科研人员快速了解新奇检测领域的发展情况,找到适合自己的方法进行应用研究。根据新奇检测方法的基本原理,从基于距离、基于概率、基于域和基于重构四个方面进行了阐述。此外,还介绍了各方法的具体应用以及在经典数据集上的性能表现,并在最后进行了总结分析。研究结果表明,新奇检测方法在工业制造、网络安全、医疗等领域得到了较多应用,具有较好的适应性和广阔的应用前景。 展开更多
关键词 新奇检测 k最近邻(knn)算法 高斯混合模型 一类支持向量机(OCSVM)算法 神经网络
在线阅读 下载PDF
基于Ridgelet变换的多文种文档图像文种识别
9
作者 热依汗古丽·卡森木 木特力铺·马木提 +2 位作者 吾尔尼沙·买买提 阿力木江·艾沙 库尔班·吾布力 《计算机工程与设计》 北大核心 2020年第11期3137-3142,共6页
为提高多文种文档图像的文种识别的效率,提出基于Ridgelet变换的多文种识别方法。对文档图像数据库进行Ridgelet变换,对得到的Ridgelet(脊波变换)系数矩阵提取脊波能量特征,生成特征向量。在分类决策中选择KNN、线性判别分析以及贝叶斯... 为提高多文种文档图像的文种识别的效率,提出基于Ridgelet变换的多文种识别方法。对文档图像数据库进行Ridgelet变换,对得到的Ridgelet(脊波变换)系数矩阵提取脊波能量特征,生成特征向量。在分类决策中选择KNN、线性判别分析以及贝叶斯3种分类模型分别对所提特征进行训练和分类。在包括英文、中文、阿拉伯文、土耳其文、吉尔吉斯斯坦文、俄文和国内少数民族文种(蒙文,藏文,维吾尔文)的9个文种共9000张文档图像数据库中进行实验,最高识别率为99.23%,验证了所提算法对多文种识别有较高的识别率和良好的鲁棒性。 展开更多
关键词 文种识别 Ridgelet变换 纹理特征 Ridgelet系数 knn(k最近算法)
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部