期刊文献+
共找到153篇文章
< 1 2 8 >
每页显示 20 50 100
基于K-近邻算法改进粒子群-反向传播算法的织物质量预测技术 被引量:1
1
作者 孙长敏 戴宁 +5 位作者 沈春娅 徐开心 陈炜 胡旭东 袁嫣红 陈祖红 《纺织学报》 EI CAS CSCD 北大核心 2024年第7期72-77,共6页
为解决现有下机织物质量差异性较大且传统验布环节时间较长等问题,提出基于K-近邻(KNN)算法改进粒子群-反向传播(PSO-BP)算法的织物质量等级预测方法。首先分析织物质量预测模型,整理织物疵点类型与织物质量等级分类,并根据织物疵点特... 为解决现有下机织物质量差异性较大且传统验布环节时间较长等问题,提出基于K-近邻(KNN)算法改进粒子群-反向传播(PSO-BP)算法的织物质量等级预测方法。首先分析织物质量预测模型,整理织物疵点类型与织物质量等级分类,并根据织物疵点特征将疵点划分为6类;其次选取14种影响织物质量的因子作为模型输入量;然后详细介绍依据KNN与PSO原理进行织物质量预测流程;最后以浙江兰溪某纺织厂近3个月16186条织物生产数据为例,建立织物质量预测模型。结果显示:该技术对织物质量预测的准确率达到98.054%,且训练时长仅需4.8 s,在保证织物质量预测准确性的同时,极大缩短了检测时间,提高了织造车间生产效率。 展开更多
关键词 织布车间 织物质量 k-近邻算法 粒子群-反向传播神经网络算法 织物质量预测
在线阅读 下载PDF
基于WT-kNN的沥青混凝土心墙坝渗流监测数据异常检测 被引量:1
2
作者 毛建刚 阿尔娜古丽·艾买提 +1 位作者 颜志光 廖攀 《西北水电》 2024年第3期54-60,共7页
安全监测数据的质量,对沥青混凝土心墙坝安全状况分析具有重要意义。时间效应导致的趋势性问题是渗流监测数据异常检测的难点。模态分解方法能较好地对时间序列的趋势项进行分离,进而识别处异常信号。但是,土石坝渗流监测数据中的异常... 安全监测数据的质量,对沥青混凝土心墙坝安全状况分析具有重要意义。时间效应导致的趋势性问题是渗流监测数据异常检测的难点。模态分解方法能较好地对时间序列的趋势项进行分离,进而识别处异常信号。但是,土石坝渗流监测数据中的异常值和真实信号往往存在模态混叠。为了解决上述问题,通过引入了小波变换结合局部kNN加权回归(WT-kNN)异常检测方法,使用连续小波变换分离趋势项,通过局部kNN加权回归进一步对小波变换的检测结果进行筛选,提高模型的异常检测准确率。工程应用结果表明:对于粗差占比2.5%~10%的监测序列,WT-kNN的召回率均高于95%,误判率低于5%;该模型与WT-MAD方法和SSA-DBSCAN方法对比实验验证了WT-kNN的有效性和优越性。敏感性分析结果表明,提出模型对异常值数量占总数据量比例和异常值波动范围大小敏感性低,可为后续监测数据分析处理及预测预警建立基础。 展开更多
关键词 小波变换 局部k近邻算法 大坝安全监测 异常检测
在线阅读 下载PDF
基于KNN-TCN模型的蒸发皿蒸发量预测研究
3
作者 谢育珽 郑翔天 +6 位作者 史俊才 刘萍 申文明 程文飞 李新华 杨静 邢云飞 《人民黄河》 CAS 北大核心 2024年第6期113-118,125,共7页
蒸发量的精确预测对合理开发利用水资源、旱涝变化趋势研究和农作物灌溉用水量的估算具有十分重要的意义。选取我国北方地区14个地面国际交换站观测的7项气象数据,以时间卷积网络(TCN)模型为基础模型,运用K-近邻(KNN)算法对蒸发皿蒸发... 蒸发量的精确预测对合理开发利用水资源、旱涝变化趋势研究和农作物灌溉用水量的估算具有十分重要的意义。选取我国北方地区14个地面国际交换站观测的7项气象数据,以时间卷积网络(TCN)模型为基础模型,运用K-近邻(KNN)算法对蒸发皿蒸发量的空间因素进行筛选,构建KNN-TCN蒸发皿蒸发量预测模型,并利用平均绝对误差、均方根误差和判定系数3项指标对目标站点的蒸发量预测精度进行评价。结果表明:1)KNN-TCN模型预测结果明显优于LSTM模型;2)相比基础TCN模型,KNN-TCN模型预测结果的判定系数提升了2.52%,平均绝对误差、均方根误差分别降低了23.97%、13.06%。 展开更多
关键词 蒸发皿蒸发量 时间卷积网络 k-近邻算法 空间因素
在线阅读 下载PDF
量子K-近邻算法 被引量:7
4
作者 陈汉武 高越 张军 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2015年第4期647-651,共5页
为了提高经典K-近邻算法的效率,引入量子计算理论,将Grover算法中的Oracle算子以及相位估计算法嵌入经典K-近邻算法,提出一种量子K-近邻算法.该算法首先将样本点和待分类点的向量信息制备成量子叠加态,采用可逆的量子控制交换门并行计... 为了提高经典K-近邻算法的效率,引入量子计算理论,将Grover算法中的Oracle算子以及相位估计算法嵌入经典K-近邻算法,提出一种量子K-近邻算法.该算法首先将样本点和待分类点的向量信息制备成量子叠加态,采用可逆的量子控制交换门并行计算待分类点和样本点的相似度,然后利用相位估计算法将相似度信息存储到量子比特中,最后使用Grover算法一次性搜索出最相似的k个点.对嵌入的量子计算部分的理论分析结果表明,量子K-近邻算法可以明显降低经典计算复杂度,且提出的算法在已有算法计算复杂度O(RkM)的基础上,再次带来了k值的二次加速O(RkM),其中R为Oracle算子的执行次数,M为样本全局个数. 展开更多
关键词 机器学习 k-近邻算法 量子算法
在线阅读 下载PDF
基于改进的K-最近邻算法的病毒检测方法 被引量:3
5
作者 谢金晶 张艺濒 《现代电子技术》 2007年第3期51-53,共3页
由于计算机病毒检测的不可判定性,提出了一种基于改进的K最近邻检测方法来实现对计算机病毒的近似判别。此方法成功地克服了现有的特征码扫描技术只能检测已知病毒的缺点。首先改进了原始的K最近邻检测方法,使其更适合于对计算机病毒进... 由于计算机病毒检测的不可判定性,提出了一种基于改进的K最近邻检测方法来实现对计算机病毒的近似判别。此方法成功地克服了现有的特征码扫描技术只能检测已知病毒的缺点。首先改进了原始的K最近邻检测方法,使其更适合于对计算机病毒进行预测。并在此检测方法上,设计了一个病毒检测系统。此系统既可查杀已知病毒,也可分析评判可疑程序,诊断出被感染病毒以及病毒类型。 展开更多
关键词 k-最近邻算法 计算机病毒 病毒检测 INTERNET
在线阅读 下载PDF
K-最近邻分类技术的新发展与技术改进 被引量:5
6
作者 王娜 侯爽 《河北省科学院学报》 CAS 2009年第4期11-13,共3页
K-最近邻算法是数据挖掘分类方法中最常用的算法之一,在很多实际问题上都有应用。本文对近年来基于K-最近邻算法的各种改进技术进行了分析,从速度提高和准确度提高两个方面给予了归纳。
关键词 k-最近邻 分类 算法
在线阅读 下载PDF
基于PSO-ELM特征映射的KNN分类算法 被引量:1
7
作者 丁建立 刘涛 +1 位作者 王家亮 曹卫东 《现代电子技术》 北大核心 2019年第5期152-156,共5页
针对传统极端学习机算法(ELM)和K近邻分类算法(KNN)在处理分类问题中存在的问题,提出一种基于PSOELM特征映射的KNN分类算法。该算法利用ELM的输入层权值和隐层神经元对输入样本进行非线性映射,并利用粒子群算法(PSO)寻找一组最优的ELM... 针对传统极端学习机算法(ELM)和K近邻分类算法(KNN)在处理分类问题中存在的问题,提出一种基于PSOELM特征映射的KNN分类算法。该算法利用ELM的输入层权值和隐层神经元对输入样本进行非线性映射,并利用粒子群算法(PSO)寻找一组最优的ELM映射参数,再将映射后的特征样本输入到KNN算法中,提高处理线性不可分问题的能力。在多个数据集上的实验结果表明,文中算法比KNN改进算法以及ELM改进算法有更高的分类正确率。 展开更多
关键词 k近邻分类算法 极端学习机 特征映射 粒子群算法 混合算法 线性不可分
在线阅读 下载PDF
一种面向不确定标签样本的K-近邻高效决策算法 被引量:3
8
作者 齐晴 沈正飞 +2 位作者 曹健 应俊 赵龙 《应用科学学报》 CAS CSCD 北大核心 2020年第5期659-671,共13页
基于案例的决策是一种直接依据过去的历史案例对当前案例进行分类或者指标预测的方法,K-近邻方法就是一种广泛应用的基于案例的决策模型。在K-近邻方法中,历史案例上需要有标签,而在现实应用中,标签本身有一定的不确定性.文章详细地讨... 基于案例的决策是一种直接依据过去的历史案例对当前案例进行分类或者指标预测的方法,K-近邻方法就是一种广泛应用的基于案例的决策模型。在K-近邻方法中,历史案例上需要有标签,而在现实应用中,标签本身有一定的不确定性.文章详细地讨论了现有的基于K-近邻的决策方法忽略了样本标签不确定性这一问题,并基于Dempster-Shafer证据理论对标签不确定性进行建模以改善预测的性能,在此基础上结合边界树模型提高模型的运行效率.文中介绍了边界树算法的作用与原理,对如何结合传统边界树算法与样本标签的不确定性对边界树算法的节点转移策略以及决策过程进行了优化.文章最后对边界树算法的计算规模与准确率做了详细的实验论证.结果表明,文中提出的方法一方面考虑了标签的不确定性,另一方面提高了传统的K-近邻模型的决策效率. 展开更多
关键词 k-近邻算法 标签不确定性 边界树算法 计算速度优化
在线阅读 下载PDF
基于赋权KNN-LSTM模型的PM_(2.5)质量浓度预测 被引量:5
9
作者 刘晴晴 陈华友 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2021年第12期1689-1697,共9页
在空气污染指数的监测中,传统单项预测方法不能反映PM_(2.5)质量浓度与复杂因素的非线性关系,文章提出一种基于赋权K近邻(K-nearest neighbor,KNN)算法的长短期记忆(long short-term memory,LSTM)神经网络模型来预测PM_(2.5)质量浓度。... 在空气污染指数的监测中,传统单项预测方法不能反映PM_(2.5)质量浓度与复杂因素的非线性关系,文章提出一种基于赋权K近邻(K-nearest neighbor,KNN)算法的长短期记忆(long short-term memory,LSTM)神经网络模型来预测PM_(2.5)质量浓度。首先利用相关性分析提取与PM_(2.5)相关性较大的空间因素,并对每个时间节点选取K个近邻,赋予相应权重来表现不同的影响力度;然后通过重构原始数据K倍维度的新数据集,进行LSTM神经网络模型的监督学习训练,提取时间序列的特征和固有的长期依赖关系,最后实现PM_(2.5)日值质量浓度不同未来时刻的预测。实验结果表明,文中提出的赋权KNN-LSTM预测模型具有可行性和有效性,和其他模型相比,表现出较高精度的预测性能。 展开更多
关键词 k近邻(kNN)算法 长短期记忆(LSTM)神经网络 监督学习 PM_(2.5)预测
在线阅读 下载PDF
基于KNN-SVM的垃圾邮件过滤模型 被引量:4
10
作者 林荫 《现代电子技术》 北大核心 2016年第23期90-92,97,共4页
垃圾邮件具有特征维数高、样本不平衡等特点,针对近邻算法(KNN)或支持向量机(SVM)存在虚警率高等难题,基于组合优化理论,提出基于KNN-SVM的垃圾邮件过滤组合模型。首先提取垃圾邮件的特征项,并构建垃圾邮件过滤模型的输入向量,然后采用... 垃圾邮件具有特征维数高、样本不平衡等特点,针对近邻算法(KNN)或支持向量机(SVM)存在虚警率高等难题,基于组合优化理论,提出基于KNN-SVM的垃圾邮件过滤组合模型。首先提取垃圾邮件的特征项,并构建垃圾邮件过滤模型的输入向量,然后采用KNN对垃圾邮件训练样本进行选择,将训练样本缩减到k个,并采用支持向量机对k个样本训练和建模进行垃圾邮件过滤,最后采用中文邮件集对KNN-SVM的性能进行分析。结果表明,KNN-SVM提高了垃圾邮件过滤的准确率,大幅度降低了虚警率,而且垃圾邮件的过滤速度可以满足邮件处理的在线需求。 展开更多
关键词 垃圾邮件 模式识别提取 k近邻算法 特征提取
在线阅读 下载PDF
多颜色模型分割自学习k-NN设备状态识别方法 被引量:2
11
作者 郭雪梅 刘桂雄 《中国测试》 CAS 北大核心 2016年第4期107-110,共4页
在浪涌测试中,由于每次识别对象不同,直接采用特征匹配每次测试前需要根据受试设备重新训练样本。先根据图像中高亮度点、白光所占比例,决策用于图像分割的颜色模型(L*a*b*、HSL、HSV),实现自适应分割;其次,提出自学习k-NN算法,以像素数... 在浪涌测试中,由于每次识别对象不同,直接采用特征匹配每次测试前需要根据受试设备重新训练样本。先根据图像中高亮度点、白光所占比例,决策用于图像分割的颜色模型(L*a*b*、HSL、HSV),实现自适应分割;其次,提出自学习k-NN算法,以像素数n、偏心率e、密实度比r、欧拉数E为样本S特征向量X,构建数据集T0,以欧氏距离D实现样本分类;若样本置信度为k,加入预备数据集Tz′中,当Tz′满足条件,则扩充数据集Tz形成数据集Tz+1。结果证明:算法在9组各类样本(共21 600帧图像)识别中,准确度可达98.65%;并自学习扩充5组样本,距离矩阵变化较小,可见算法学习效率、学习准确度较高。 展开更多
关键词 多颜色模型 k近邻算法 自学习 浪涌测试
在线阅读 下载PDF
基于GAWK-means的地铁车站指纹定位方法 被引量:1
12
作者 金霄 吴飞 +2 位作者 鄢松 陆雯霞 张忠艺 《电子科技》 2022年第2期34-39,共6页
针对在城市轨道交通车站内,利用iBeacon技术进行指纹定位时存在匹配效率较低、定位精度不理想的问题,文中提出了一种基于GAWK-means的地铁车站指纹定位方法。离线阶段,根据指纹数据本身的离散程度进行K-means欧式距离权重优化以便更好... 针对在城市轨道交通车站内,利用iBeacon技术进行指纹定位时存在匹配效率较低、定位精度不理想的问题,文中提出了一种基于GAWK-means的地铁车站指纹定位方法。离线阶段,根据指纹数据本身的离散程度进行K-means欧式距离权重优化以便更好地体现类内相似度,再将改进的K-means结合遗传算法,优化聚类结果以减少陷入局部最优。在线阶段,利用K近邻法将信号向量与最为接近的子指纹库匹配获得定位结果,通过平均定位误差对该方法整体性能进行评估。实验结果表明,在地铁车站离线阶段使用GAWK-means算法平均定位误差为1.52 m,相较于未聚类和传统K-means聚类,定位误差减少了0.41 m以上。 展开更多
关键词 地铁车站 iBeacon技术 指纹定位 遗传算法 k-MEANS聚类 欧式距离 k近邻法 GAWk-means
在线阅读 下载PDF
Novel Apriori-Based Multi-Label Learning Algorithm by Exploiting Coupled Label Relationship 被引量:1
13
作者 Zhenwu Wang Longbing Cao 《Journal of Beijing Institute of Technology》 EI CAS 2017年第2期206-214,共9页
It is a key challenge to exploit the label coupling relationship in multi-label classification(MLC)problems.Most previous work focused on label pairwise relations,in which generally only global statistical informati... It is a key challenge to exploit the label coupling relationship in multi-label classification(MLC)problems.Most previous work focused on label pairwise relations,in which generally only global statistical information is used to analyze the coupled label relationship.In this work,firstly Bayesian and hypothesis testing methods are applied to predict the label set size of testing samples within their k nearest neighbor samples,which combines global and local statistical information,and then apriori algorithm is used to mine the label coupling relationship among multiple labels rather than pairwise labels,which can exploit the label coupling relations more accurately and comprehensively.The experimental results on text,biology and audio datasets shown that,compared with the state-of-the-art algorithm,the proposed algorithm can obtain better performance on 5 common criteria. 展开更多
关键词 multi-label classification hypothesis testing k nearest neighbor apriori algorithm label coupling
在线阅读 下载PDF
基于KNN的MIMO-OFDM系统链路自适应研究 被引量:2
14
作者 王杰林 《信息技术》 2021年第8期139-144,共6页
针对传统模型难以建立信道状态与复杂MIMO-OFDM系统性能间的映射关系,结合监督学习在处理非线性问题中的优势,提出基于K-最近邻算法的自适应编码模型。以V-BLAST为基础模型,以处理信噪比SVDSNR作为信道特征,通过KNN对信道特征分类,从而... 针对传统模型难以建立信道状态与复杂MIMO-OFDM系统性能间的映射关系,结合监督学习在处理非线性问题中的优势,提出基于K-最近邻算法的自适应编码模型。以V-BLAST为基础模型,以处理信噪比SVDSNR作为信道特征,通过KNN对信道特征分类,从而建立信道特征与MCS切换间的映射关系。实验结果表明,在K=35,样本划分为7∶3时,MCS切换分类准确率最高;同时在相同实验条件下,本文提出的KNN自适应调制编码能快速适应信道环境,且BER和系统吞吐量都要明显优于传统查找表算法,说明此方法可行。 展开更多
关键词 k-最近邻算法 链路自适应 传统查找表 调制编码
在线阅读 下载PDF
基于PSO-KNN的WiFi-RSSI指纹算法的四旋翼室内定位 被引量:1
15
作者 孙瑶 王磊 +2 位作者 王延召 周云天 陶少俊 《无线互联科技》 2018年第3期117-118,140,共3页
针对室内无GPS下的四旋翼定位问题,文章提出一种基于PSO-KNN的Wi Fi-RSSI指纹算法。运用粒子群算法对K最近邻算法的权重进行优化,去除信号不稳定产生的干扰项,快速选择全局最优权值,实现室内四旋翼的较高精度定位。与传统的NN和KNN比较... 针对室内无GPS下的四旋翼定位问题,文章提出一种基于PSO-KNN的Wi Fi-RSSI指纹算法。运用粒子群算法对K最近邻算法的权重进行优化,去除信号不稳定产生的干扰项,快速选择全局最优权值,实现室内四旋翼的较高精度定位。与传统的NN和KNN比较分析表明,文章所设计基于PSO-KNN的Wi Fi-RSSI指纹算法可搜索到全局最优的权值,有效提高分类的精度,降低定位误差。 展开更多
关键词 室内定位 k最近邻算法 粒子群算法 四旋翼飞行器
在线阅读 下载PDF
基于K近邻算法的空中目标威胁度判断方法
16
作者 张健 李强 +2 位作者 张烨炜 米洋锐 贺泽仁 《兵器装备工程学报》 CAS CSCD 北大核心 2024年第9期214-219,共6页
针对传统的空中目标威胁度评估方法具有计算量大,实时性差,难以适用于数据缺失的情况,提出采用K近邻算法(KNN)对任意来袭目标实现威胁度评估的方法。该方法提取了空中目标的状态信息特征作为输入数据,使用离差最大化方法构建数据集,目... 针对传统的空中目标威胁度评估方法具有计算量大,实时性差,难以适用于数据缺失的情况,提出采用K近邻算法(KNN)对任意来袭目标实现威胁度评估的方法。该方法提取了空中目标的状态信息特征作为输入数据,使用离差最大化方法构建数据集,目标威胁度等级作为输出数据,利用K近邻算法构建了目标威胁度评估模型。仿真实验结果表明,该方法能够实现高准确度、实时化的目标威胁度评估,和TOPSIS方法与离差最大化方法进行对比,证明该方法对空中目标异常特征值具有更高的决策效率,更加适用于现代战场的高复杂性,进一步体现了该方法的优越性和可行性。 展开更多
关键词 k近邻算法 威胁度判断 对空目标 无人系统
在线阅读 下载PDF
基于泡沫图像特征加权K近邻算法的锌矿浮选工况识别方法
17
作者 罗靓 彭成 罗浩 《矿产保护与利用》 2024年第5期93-99,共7页
浮选工况识别在泡沫浮选工程中起着至关重要的作用,仅依靠人工经验进行主观性识别,准确性和效率都低。为此提出了一种考虑泡沫图像特征间相互作用的加权K近邻(KNN)算法用于实现浮选工况类别的识别。在本研究中,首先,通过信息熵对泡沫图... 浮选工况识别在泡沫浮选工程中起着至关重要的作用,仅依靠人工经验进行主观性识别,准确性和效率都低。为此提出了一种考虑泡沫图像特征间相互作用的加权K近邻(KNN)算法用于实现浮选工况类别的识别。在本研究中,首先,通过信息熵对泡沫图像特征与浮选工况类别之间的相关性进行量化,同时评估该特征与其他特征之间的冗余性。然后,计算该特征与浮选工况类别相关性和该特征与其他特征冗余性之间的差值,将这一差值作为特征的权重。其次,在KNN算法中针对欧式距离进行特征加权,以实现KNN算法的特征加权。然后,将特征选择过程嵌入到特征加权KNN分类算法的训练过程中,并选取分类准确率最高的特征子集作为最优特征子集。最后,基于最优特征子集完成浮选工况的识别。研究结果表明,本方法与其他基准分类算法相比,在分类准确度和时间上都达到了最佳效果,验证了本研究所提出的浮选工况识别方法的有效性。 展开更多
关键词 浮选工况识别 泡沫图像特征 k近邻算法 特征加权
在线阅读 下载PDF
基于Bi-LSTM神经网络的室内可见光定位方法
18
作者 王乐乐 秦岭 +1 位作者 胡晓莉 赵德胜 《光通信技术》 北大核心 2024年第2期36-41,共6页
双向长短时记忆(Bi-LSTM)神经网络由于超参数众多,难以获得最优系统模型。同时,考虑到灰狼优化(GWO)算法可能过早收敛的情况,提出了一种采用GWO结合粒子群(GWO-PSO)算法优化Bi-LSTM神经网络的单灯定位方法。通过优化网络中的学习率、隐... 双向长短时记忆(Bi-LSTM)神经网络由于超参数众多,难以获得最优系统模型。同时,考虑到灰狼优化(GWO)算法可能过早收敛的情况,提出了一种采用GWO结合粒子群(GWO-PSO)算法优化Bi-LSTM神经网络的单灯定位方法。通过优化网络中的学习率、隐藏神经元个数等超参数,提高系统的稳定性和定位精度。最后,采用加权K邻近(WKNN)算法对误差较大的点进行优化,以获得更精确的定位位置。仿真结果表明,在3 m×3.6 m×3 m的室内环境中,所提定位方法的平均定位误差为3.57 cm,其中90%的定位误差在6 cm内。 展开更多
关键词 可见光定位 双向长短时记忆 灰狼结合粒子群 加权k近邻
在线阅读 下载PDF
基于蜣螂优化算法和K近邻算法的轴承特征选择和故障诊断
19
作者 徐福斌 杨洪武 +3 位作者 陆晔 张伟 朱静 邓艾东 《信息化研究》 2024年第4期8-19,共12页
针对风电机组传动系统滚动轴承在故障诊断中容易受到冗余特征的影响,从而导致故障诊断的准确率和效率不高的问题,本文提出了一种基于蜣螂优化(DBO)算法和K最近邻(KNN)算法的轴承特征选择和故障诊断方法。该方法首先通过时域、频域分析... 针对风电机组传动系统滚动轴承在故障诊断中容易受到冗余特征的影响,从而导致故障诊断的准确率和效率不高的问题,本文提出了一种基于蜣螂优化(DBO)算法和K最近邻(KNN)算法的轴承特征选择和故障诊断方法。该方法首先通过时域、频域分析提取了与滚动轴承故障相关的20个特征数据,然后对特征进行包括归一化处理和特征集划分在内的特征处理;接着以DBO算法的适应度为评价参数,利用DBO算法的路径选择能力寻求最优特征子集;最后通过测试验证所选的特征子集对于KNN分类准确率的优化效果。实验结果表明,标准差(SD)和平均绝对差值(MAD)这两个特征参数作为KNN分类器的输入数据时可以达到95.10%的分类准确率。此方法在大幅度减少特征数量的同时,提高了轴承的故障诊断准确率。 展开更多
关键词 风电机组 传动系统滚动轴承 特征选择 故障诊断 蜣螂优化算法 k最近邻算法
在线阅读 下载PDF
基于KNN和多特征融合的苹果叶部病害识别检测
20
作者 李亚文 陈月星 呼高翔 《食品与发酵科技》 CAS 2024年第4期25-32,共8页
准确识别与防治苹果叶部病害,能够有效提高苹果的产量与品质。以常见的苹果叶部病害(锈病、黑腐病、黑星病)为研究对象,构建基于KNN和多特征融合的无损检测模型。使用K-means聚类算法分割苹果叶部图像,通过颜色矩、灰度共生矩阵、Hu距... 准确识别与防治苹果叶部病害,能够有效提高苹果的产量与品质。以常见的苹果叶部病害(锈病、黑腐病、黑星病)为研究对象,构建基于KNN和多特征融合的无损检测模型。使用K-means聚类算法分割苹果叶部图像,通过颜色矩、灰度共生矩阵、Hu距分别提取图像的颜色、纹理和形状特征,利用KNN对特征参数进行分类模型训练,能够实现绿色准确识别苹果叶部病害的目的。实验结果表明,以颜色、纹理、形状为单特征检测的苹果叶部病害识别精确率分别为75%、57%、45%,其中颜色特征更加直观,有9个特征量识别率较高,形状特征在进行图像分割时很难确定K点导致识别率低。该研究基于颜色、纹理、形状等多特征融合提取13个特征量,能够准确识别苹果叶部病害,其识别率达84%,为实现绿色农业果园病虫害防治提供技术支持。 展开更多
关键词 k-近邻方法 k-MEANS聚类算法 多特征融合提取 苹果叶部 病害识别
在线阅读 下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部