机动飞行条件下高速转子系统会同时受到环境载荷以及转子自身的共同激励而产生强烈的强迫响应。为研究其复杂的振动特性,本文采用Vold-Kalman滤波(Vold-Kalman Filter,VKF)对不同基础运动激励下转子系统的实测振动信号进行阶次跟踪滤波...机动飞行条件下高速转子系统会同时受到环境载荷以及转子自身的共同激励而产生强烈的强迫响应。为研究其复杂的振动特性,本文采用Vold-Kalman滤波(Vold-Kalman Filter,VKF)对不同基础运动激励下转子系统的实测振动信号进行阶次跟踪滤波。为验证VKF的有效性及参数设置的可靠性,通过转子动力特性计算生成系统响应的仿真信号,并通过加噪处理模拟测量信号,然后通过VKF提取目标阶次的时域波形。通过陀螺运动转子动力学试验,测得不同基础转动激起的系统振动响应,组合使用VKF和计算阶次跟踪(Computed Order Tracking,COT)提取并分离了转子转频信号和基础低频信号的时域和阶次信息。结果表明,单轴滚转或俯仰运动均会激起与其频率一致的低频振动响应,且滚转、俯仰角速度的大小会影响该低频信号的幅值大小;随着基础运动角速度的变化,转子前四阶振动分量没有发生明显的变化,而基础运动频率与转频之间的频带区域有显著变化。此方法有效地提升了机动飞行下转子支承系统振动信号处理与分析的准确度和效率,降低了信号噪声。展开更多
弹性环挤压油膜阻尼器(Elastic ring squeeze film damper, ERSFD)具有良好的支撑作用和减振效果,但由于其结构和流场耦合行为极为复杂,使得已有的物理模型难以完整表现出ERSFD的力学特性.为了进一步探究ERSFD的力学机理,本文借助有限...弹性环挤压油膜阻尼器(Elastic ring squeeze film damper, ERSFD)具有良好的支撑作用和减振效果,但由于其结构和流场耦合行为极为复杂,使得已有的物理模型难以完整表现出ERSFD的力学特性.为了进一步探究ERSFD的力学机理,本文借助有限元仿真平台,采用双向流固耦合的计算方法,剖析弹性环与油膜之间的相互作用,获取ERSFD中油膜压力的分布规律.在此基础上,利用最小二乘法进一步拟合出ERSFD等效刚度、等效阻尼与转子轴颈扰动位移的映射关系,并将其分别引入柔性转子系统动力学模型中.通过数值计算研究了ERSFD支撑下柔性转子系统的振动响应,分别给出了不同转速下转子系统的响应分岔图、轴心轨迹等.同时,通过对比分析,进一步揭示了ERSFD所诱发出的转子系统丰富的非线性动力学行为,有助于对ERSFD轴承支撑特性的理解.展开更多
文摘机动飞行条件下高速转子系统会同时受到环境载荷以及转子自身的共同激励而产生强烈的强迫响应。为研究其复杂的振动特性,本文采用Vold-Kalman滤波(Vold-Kalman Filter,VKF)对不同基础运动激励下转子系统的实测振动信号进行阶次跟踪滤波。为验证VKF的有效性及参数设置的可靠性,通过转子动力特性计算生成系统响应的仿真信号,并通过加噪处理模拟测量信号,然后通过VKF提取目标阶次的时域波形。通过陀螺运动转子动力学试验,测得不同基础转动激起的系统振动响应,组合使用VKF和计算阶次跟踪(Computed Order Tracking,COT)提取并分离了转子转频信号和基础低频信号的时域和阶次信息。结果表明,单轴滚转或俯仰运动均会激起与其频率一致的低频振动响应,且滚转、俯仰角速度的大小会影响该低频信号的幅值大小;随着基础运动角速度的变化,转子前四阶振动分量没有发生明显的变化,而基础运动频率与转频之间的频带区域有显著变化。此方法有效地提升了机动飞行下转子支承系统振动信号处理与分析的准确度和效率,降低了信号噪声。
文摘弹性环挤压油膜阻尼器(Elastic ring squeeze film damper, ERSFD)具有良好的支撑作用和减振效果,但由于其结构和流场耦合行为极为复杂,使得已有的物理模型难以完整表现出ERSFD的力学特性.为了进一步探究ERSFD的力学机理,本文借助有限元仿真平台,采用双向流固耦合的计算方法,剖析弹性环与油膜之间的相互作用,获取ERSFD中油膜压力的分布规律.在此基础上,利用最小二乘法进一步拟合出ERSFD等效刚度、等效阻尼与转子轴颈扰动位移的映射关系,并将其分别引入柔性转子系统动力学模型中.通过数值计算研究了ERSFD支撑下柔性转子系统的振动响应,分别给出了不同转速下转子系统的响应分岔图、轴心轨迹等.同时,通过对比分析,进一步揭示了ERSFD所诱发出的转子系统丰富的非线性动力学行为,有助于对ERSFD轴承支撑特性的理解.