The rapid identification of planting patterns for major crops in a large irrigated district has vital importance for irrigation management,water fee collection,and crop yield estimation.In this study,the OTSU algorith...The rapid identification of planting patterns for major crops in a large irrigated district has vital importance for irrigation management,water fee collection,and crop yield estimation.In this study,the OTSU algorithm and Mean-Shift algorithm were employed to automatically determine threshold values for mapping two main rotated crop patterns at the pixel scale.A time series analysis was conducted to extract the spatial distribution of rice-wheat and wheat-maize rotations in the Chuanhang irrigation district from 2016 to 2020.The results demonstrate that both threshold segmentation algorithms are reliable in extracting the spatial distribution of the crops,with an overall accuracy exceeding 80%.Additionally,both Kappa coefficients surpass 0.7,indicating better performance by OTSU method.Over the period from 2016 to 2020,the area occupied by rice-wheat rotation cropping ranged from 12500 to 14400 hm 2;whereas wheat-maize rotation cropping exhibited smaller and more variable areas ranging from 19730 to 34070 hm 2.These findings highlight how remote sensing-based approaches can provide reliable support for rapidly and accurately identifying the spatial distribution of main crop rotation patterns within a large irrigation district.展开更多
Six-year old apple trees were selected for field experiment.The objective of this study was to obtain the reasonable arrangement of surge-root irrigation emitters in apple orchards.There were three factors:the buried ...Six-year old apple trees were selected for field experiment.The objective of this study was to obtain the reasonable arrangement of surge-root irrigation emitters in apple orchards.There were three factors:the buried depth H(25,40,55 cm),the horizontal distance L(30,40,60 cm)between the emitters and the trunk of the experimental tree,and the number of the irrigation emitters N(1,2,4).The effect of the arrangement of surge-root irrigation emitters on the growth,yield and irrigation water use efficiency(IWUE)of apple trees were studied in Northern Shaanxi where the irrigation quota takes 60%-75%of the field water capacity.The results showed that the arrangement of emitters for surge-root irrigation had a significant effect on apple tree yield and IWUE,especially,the yield and IWUE reached 28388.17 kg/hm2 and 16.83 kg/m3 in treatment T3,respectively.At the same L and N levels(T1,T2,and T3),the yield and IWUE in treatment T3 were the highest,and the yields in treatments T1 and T2 were decreased by 26.22%and 31.48%,while IWUE is reduced by14.02%and 18.12%compared with T3,respectively.At the same H and N levels(T3,T4,and T5),the yield and IWUE of apple trees were decreased with increasing L level.Especially,when L was 30 cm(T3),the yield and IWUE were the highest.The same L and H levels(T3,T6,and T7)could promote the growth of apple trees when N was 2(T3).Compared with treatment T3,it was found that the increment of new shoots was decreased by 8.07%-18.71%,and the fruit diameter was decreased by 5.41%-9.11%.Therefore,two emitters should be arranged symmetrically on both sides of an apple tree,each was buried at a 40 cm depth and 30 cm away from the trunk of the tree to effectively improve the yield and IWUE of the apple tree in mountainous areas in Northern Shaanxi.展开更多
The objective of this study was to obtain the water-saving and efficient production mode of Arabica coffee. The effects of three drip irrigation modes,conventional drip irrigation( CDI),alternate drip irrigation( ADI)...The objective of this study was to obtain the water-saving and efficient production mode of Arabica coffee. The effects of three drip irrigation modes,conventional drip irrigation( CDI),alternate drip irrigation( ADI) and fixed drip irrigation( FDI) on growth,photosynthetic characteristics,biomass accumulation and irrigation water use efficiency of Arabica coffee were investigated under three nitrogen levels,high nitrogen( NH),middle nitrogen( NM) and low nitrogen( NL). The results show that there was a significant Logistic curve between the plant height,the stem diameter of Arabica coffee and growth days. Compared with CDI,ADI had no significant effects on leaf net photosynthetic rate,stomatal conductance,instantaneous water use efficiency and biomass accumulation above ground of Arabica coffee,while FDI decreased significantly,ADI and FDI increased irrigation water use efficiency by 50. 59% and 32. 85%,respectively. Compared with NH,with the reduction of N application rate,net photosynthetic rate,stomatal conductance,biomass accumulation above ground and irrigation water use efficiency decreased by 6. 81%-12. 30%,13. 70%-22. 69%,9. 61%-16. 67% and 9. 78%-15. 64%,respectively. Compared with CDINH,ADINHdecreased net photosynthesis rate and the stomatal conductance not significantly,other treatments decreased by 9. 16%-19. 22%,14. 49%-32. 91%,and decreased biomass accumulation above ground by 8. 26%-27. 34% except ADINH,and increased irrigation water use efficiency by 16. 46%-60. 95% except CDINMand CDINL. Therefore,alternate drip irrigation under high N level( ADINH) is the best water and nitrogen coupling mode of young Arabica coffee tree for water efficiency.展开更多
In order to explore the effects of different irrigation and nitrogen application on growth cha-racteristics and yield of apple trees under surge-root irrigation in mountainous areas of northern Shaanxi, field experime...In order to explore the effects of different irrigation and nitrogen application on growth cha-racteristics and yield of apple trees under surge-root irrigation in mountainous areas of northern Shaanxi, field experiments were carried out with different apple trees. Three irrigation levels were applied: 85%-100%(H1), 70%-85%(H2) and 55%-70%(H3) of the field water capacity, respectively, and three nitrogen levels were N1(360 g/plant), N2(240 g/plant) and N3(120 g/plant). The results show that irrigation and nitrogen application has significant effects on new shoot length, flowering and fruit setting, fruit diameter, fruit volume and yield of apple. The leaf area index(LAI) shows a single trend during the growth period, and the peak value appears in the middle of July. Under the same irrigation level, compared with N3, N1 increases in yield, new shoot length, LAI, transverse diameter, longitudinal diameter, volume, flowering and fruit setting by 17.91%, 28.31%, 18.75%, 11.38%, 10.13%, 36.60%, 20.92% and 5.19%, respectively, while N2 also increases by 12.40%, 15.63%, 4.86%, 5.40%, 5.11%, 17.01%, 26.17% and 13.74%, respectively. The rate of flowering and fruit setting decreases with the increase of nitrogen application. Under the same nitrogen level, compared with H3, H1 increases in yield, new shoot length, LAI, transverse diameter, longitudinal diameter, volume, flowering and fruit setting by 34.65%, 15.49%, 30.77%, 3.93%, 4.95%, 12.86%, 33.15% and 28.62%, respectively, while H2 also increases by 33.67%, 16.42%, 67.52%, 3.81%, 2.97%, 11.57%, 43.45% and 27.26%, respectively. The rate of flowering and fruit setting decreases first and then increases with the increase of irrigation amount. Compared with H3N3, the yield of other treatments increases by 2.69%-52.20%, while H2N1 treatment has the highest yield(26 852.55 kg/ha). Considering from the point of view of promoting growth and increasing yield, the best water and nitrogen combination mode of mountain apple in northern Shaanxi is medium water deficit irrigation and high nitrogen(H2N1) treatment. The results from this study can provide a theoretical basis for apple water and nitrogen management in mountainous areas of northern Shaanxi.展开更多
Previous Virtual Network (VN) embedding researches mostly focus on developing heuristic algorithms to enhance the efficiency of a physical resource. However, in the equal-scale condition, where the scale of a VN is si...Previous Virtual Network (VN) embedding researches mostly focus on developing heuristic algorithms to enhance the efficiency of a physical resource. However, in the equal-scale condition, where the scale of a VN is similar to that of a substrate network, the number of successfully mapped VNs decreases sharply since bottlenecks form easily in the substrate network and disturb the embedding process. In this paper, reversed and bidirectional irrigation methods are proposed for the equal-scale and all-scale conditions. The two proposed methods can be combined with most of the existing heuristic algorithms and map a relatively large number of VNs by reducing the potential substrate bottlenecks. The simulation results show that the reversed irrigation method almost doubles the successfully mapped Revenue than the traditional one in the equal-scale condition. Meanwhile, the bidirectional irrigation method achieves the synthetically best performance in almost all scale conditions.展开更多
A multipurpose clone plant species, Hippophae rhamniodes has the capacity for indefinite longevity, although under successive drought stress it may often decline or die across large areas. Field trials were con- ducte...A multipurpose clone plant species, Hippophae rhamniodes has the capacity for indefinite longevity, although under successive drought stress it may often decline or die across large areas. Field trials were con- ducted over 2 years to examine the effects of varied irrigation intensities on modular growth and clonal propagation in a semi-arid area. Irrigation levels included a control, as well as two, four and six times the volume of water that was typically received via local annual average precipitation. Irrigation intensity significantly influenced clonal propagation capacity (number of daughter ramets), aboveground modular growth (height, base diameter, and crown width), belowground modular growth included root nodule dry weight, stretching capacity of lateral roots (length of the longest lateral roots, and diameter of first-grade lateral roots), and branching intensity of lateral roots (number of lateral roots bifurcation grade, number of first- grade lateral roots). The modular growth and the density of daughter ramets were small under non-irrigation or low irrigation, and became larger with increased irrigation intensity. Beyond a certain threshold, however, further increases in irrigation intensity resulted in a reversion to the development. The optimal irrigation intensities for growth and propagation were 3.48-5.29 times the volume of nominal local annual average precipitation. There were effects of irrigation intensities on the positive significant correlations between aboveground and belowground modular growths, and on clonal propagation capacities. Under various water treatments, H. rhamnoides may adapt to the environment through the regulation of growth and propagation. We concluded that water shortages act to weaken the growth and propagation of H. rhamniodes plantations.展开更多
The development of microchannels with open flow for use in irrigation and rainy areas is challenged by electricity generation via hydrokinetic devices in shallow and low velocity flows.Conventional hydrokinetic turbin...The development of microchannels with open flow for use in irrigation and rainy areas is challenged by electricity generation via hydrokinetic devices in shallow and low velocity flows.Conventional hydrokinetic turbines are known to be highly dependent on current speed and water depth.Another drawback of conventional turbines is their low efficiency.These shortcomings lead to the need to accelerate the flow in the channel system to enhance the extracted power.The method of deploying a novel turbine configuration in irrigation channels can help overcome the low performance of conventional hydrokinetic turbines.Therefore,this study experimentally presents a bidirectional diffuser-augmented channel that includes dual cross flow/Banki turbines.Results show that the maximum efficiency of the overall system with two turbines is nearly 55.7%.The efficiency is low relative to that of hydraulic turbines.Nevertheless,the result can be considered satisfactory given the low head of the present system.The use of this system will contribute to a highly efficient utilization of flows in rivers and channels for electrical energy generation in rural areas.展开更多
In this paper the results of skeletal traction and irrigation therapy (STIT) used for open fracture complicated with large-sized full-thickness skin-deficit and infection wounds (OFIW) were presented. Fourteen patient...In this paper the results of skeletal traction and irrigation therapy (STIT) used for open fracture complicated with large-sized full-thickness skin-deficit and infection wounds (OFIW) were presented. Fourteen patients of OFIW were treated by the plaster cast and wound dressing (PCWD), and 30 patients of OFIW were treated by STIT. The results indicated that after one week of treatment, the white blood cell count in the STIT group, compared to 17. 6±l. 0×109/L from before treatment, returned to 8. 8±0. 8×109/L,and in contrast, the cell count of the PCWD group was about 13. 0±1. 4×109/L. All of wound exudate culture in the STIT group was negative, and those of 7 cases (7/14) in PCWD group were positive (P<0. 0l). The symptoms and signs such as pain, fever and septic exudate on the wound in the STIT group were much milder than those in the PCWD group. There were 5 cases (35. 7%) of toxicemia and septicemia, 2 cases (14. 3%) of osteomyelitis, 2 cases (14. 3 %) of amputation, 1 case (7. 1%) of delayed union and 3 cases (21. 4 %) of malunion in the PCWD group, and no complications in the STIT group.展开更多
An experiment was initiated in 2008 to evaluate the impact of irrigation regimes on germination and growth patterns of seedlings of Prosopis cineraria in the arid areas of Thar, India. Seeds collected from dried pods ...An experiment was initiated in 2008 to evaluate the impact of irrigation regimes on germination and growth patterns of seedlings of Prosopis cineraria in the arid areas of Thar, India. Seeds collected from dried pods of P cineraria were sown in polybags placed in nursery beds. Different irrigation regimes were provided to different beds and data regarding germination and growth were recorded to study natural regeneration. The study revealed that irrigation regimes significantly affected the germination and growth of P cineraria under nursery conditions. The germination rate declined as the irrigation regime shifted from a daily to a fortnightly ba- sis. Height of the seedlings also declined with a decrease in the intensity of irrigation. Thus, it can be concluded that germination and growth of seedlings of P cineraria under nursery conditions can be enhanced by providing irrigation at regular intervals.展开更多
To examine the working principle of vertical tube irrigation, variations in vertical tube emitter discharge and their causes were analyzed in the laboratory experiment. The effects of the pressure head, initial soil w...To examine the working principle of vertical tube irrigation, variations in vertical tube emitter discharge and their causes were analyzed in the laboratory experiment. The effects of the pressure head, initial soil water content, and tube diameter on the emitter discharge of the vertical tube were studied. The results show that quantitative relationship between the time and cumulative infiltration and emitter discharge of the vertical tube is obtained, and R 2 is more than 0.98. Emitter discharge exhibits a positive and negative correlation with the pressure head and soil water content, respectively. Tube dia- meter has a nonsignificant effect on the emitter discharge. Changes of the soil water content around the emitter water outlet are the main causes of emitter discharge variations. In the experiments, the range of vertical tube emitter discharge is 0.056-1.102 L/h. The emitter of vertical tube irrigation automatically adjusts the soil water content and maintains the root zone soil water content within an appropriate range, which achieves continuous irrigation, and further achieves the effect of water-saving.展开更多
Based on the experimental data,this study investigated the effect of sand content of muddy water on water and nitrogen transport characteristics of the single-line interference infiltration under film hole irrigation ...Based on the experimental data,this study investigated the effect of sand content of muddy water on water and nitrogen transport characteristics of the single-line interference infiltration under film hole irrigation with muddy water and fertilizer.The relationship between the single-line interference infiltration parameters,the sand content,the wetting front movement distances,and the sand content were all established.The model of the cumulative infiltration volume of per unit film pore area,the vertical and horizontal wetting front movement distance of the free surface,and the wetting front movement distance of the interference center with sand content and infiltration time were proposed.Reveal the law of the change of soil water content and the distribution of NO_(3)^(-)-N content based on different muddy water sand content.The results indicate that at the same infiltration time,as the muddy water sand content increases,the cumulative infiltration volume per unit pore area decreases.The infiltration index of the free infiltration and the single-line interference vary little when the sand content increases,mainly are around 0.64 and 0.58.The relationship between infiltration parameters a,b and the sand content is linear function.At the same location,the more the sand content,the smaller the wetting front movement distance in free surface and the single-line interference surface,the less the NO_(3)^(-)-N content.展开更多
As the Internet of things(IoT)technology is evolving,distributed solar energy resources can be operated,monitored,and controlled remotely.The design of an IoT based solar energy system for smart irrigation is essentia...As the Internet of things(IoT)technology is evolving,distributed solar energy resources can be operated,monitored,and controlled remotely.The design of an IoT based solar energy system for smart irrigation is essential for regions around the world,which face water scarcity and power shortage.Thus,such a system is designed in this paper.The proposed system utilizes a single board system-on-a-chip controller(the controller hereafter),which has built-in WiFi connectivity,and connections to a solar cell to provide the required operating power.The controller reads the field soil moisture,humidity,and temperature sensors,and outputs appropriate actuation command signals to operate irrigation pumps.The controller also monitors the underground water level,which is essential to prevent the pump motors from burning due to the level in the water well.The proposed system has three modes of operations,i.e.the local control mode,mobile monitoring-control mode,and fuzzy logic-based control mode.For the purpose of the proposed system validation,a prototype was designed,built,and tested.展开更多
Species of Paulownia are fast-growing trees that are planted in many countries in green spaces and agroforestry systems. We studied the influence of irrigation on the diameter growth of 2-year-old Paulownia tomentosa ...Species of Paulownia are fast-growing trees that are planted in many countries in green spaces and agroforestry systems. We studied the influence of irrigation on the diameter growth of 2-year-old Paulownia tomentosa saplings planted in 3 m 9 3 m grids at Nazlou Campus of Urmia University, Iran. Completely randomized experimental design was used with four irrigation amount, viz.10, 15, 20 and 25 L, and three irrigation intervals, viz. 3-and 6-days, in 8 replications. During the growth season, we measured collar diameters of all saplings at the end of each month. Diameter growth declined with reduced irrigation amount and increased irrigation interval. The lowest average diameter growth(9 mm) was recorded for 10 L water at 6-day intervals and maximum average diameter growth(28.7 mm) was recorded for 25 L volume at 3-day intervals. The latter treatment resulted in significantly greater diameter growth than any other treatment(except20 L at 3-day intervals). More than 80 % of diameter growth was achieved in the first 3 months. Therefore, it is essential to irrigate with 25 L of water at 3-day intervals during the first three growth months to achieve maximum diameter growth for 2-year-old P. tomentosa saplings.展开更多
One-year-old seedlings of Dalbergia sissoo from a single provenance were planted in non-weighing lysimeter tanks in July 1998 with a view to provide optimize irrigation parameters in desert areas. Varying water regime...One-year-old seedlings of Dalbergia sissoo from a single provenance were planted in non-weighing lysimeter tanks in July 1998 with a view to provide optimize irrigation parameters in desert areas. Varying water regimes were maintained by re-irrigating the seedlings at 36.2 mm (W1), 26.5 mm (W2), 20.2 mm (W3) and 18.1 mm (W4) treatments when the soil water content decreased to 7.56%, 5.79%, 4.44%, 3.23% in the respective treatments. Height, collar diameter, number of leaves and leaf area were highest (p 〈 0.01) for the seedlings irrigated at W1 levek Above-mentioned growth parameters did not differ between W1 and W2 treatments but the seedlings in W2 level had highest biomass per liter of water use (i.e., water use efficiency, WUE). Irrigation levels of W3 to W5 negatively affected seedling growth, biomass production and nutrient accumulation. Soil water availability below W2 level (i.e., 5.79%) caused an increase in percentage of root biomass to the total biomass of the seedling. However, there was a decrease in percentage of leaf dry biomass in W3 and W4 treatments and in percentage of stem dry biomass in the seedlings of W5 treatment. Seedlings in W5 treatment survived till at soil water potential of-1.96 MPa. Limitation of soil water availability in W3 and W4 treatments affected growth and biomass production of D. sissoo seedlings. W: level was best for growth and biomass production in which water use efficiency was highest. Therefore, better growth and biomass production of D. sissoo seedlings could be obtained by irrigating the seedlings at soil water content of≥5.79% in the loamy sand soil.展开更多
How to improve the water use efficiency of rice in black soil regions was studied. The black soil region in paddy fields was chosen as the research object. The research showed the fertilizer coupling mathematical mode...How to improve the water use efficiency of rice in black soil regions was studied. The black soil region in paddy fields was chosen as the research object. The research showed the fertilizer coupling mathematical model with N,P,K,irrigation water( W) and water use efficiency( WUE),which was set up under the condition of controlled irrigation with quadratic D- 416 optimized saturation design. The results show that the decending order of single factor' s influence on the WUE was N,K,P and W. All the interactions between N&P,N&K,N&W,K&P,P&W and K&W on the WUE were raised initially,and when reached a certain value,they began to decline. The decending order of each interaction on the WUE was K&P,K&W,N&K,N&P,P&W and N&W. When the WUE was targeted within 1. 8- 2. 5 kg / km^3,an optimized proportion plan was obtained in the 95% confidence interval,i. e. N 87. 76- 103. 32 kg / hm^2,K_2 O 52. 37- 66. 53 kg / hm^2 and P_2O_536. 80- 46. 71 kg / hm^2. Furthermore,the late tillering of the soil moisture content was 70. 07%- 72. 57% of the saturated moisture content.展开更多
This study was conducted to evaluate the tolerance of 1-year-old seedlings of ten subtropical ornamental tree species against a range of salinity levels of Na Cl from May 2015 to October 2015. The levels were further ...This study was conducted to evaluate the tolerance of 1-year-old seedlings of ten subtropical ornamental tree species against a range of salinity levels of Na Cl from May 2015 to October 2015. The levels were further enhanced from November to April 2017 as 100% survival was observed in the initial concentrations for all species.The seedlings were grown during the first week of April2015 in 1000 earthen pots containing soil: farmyard manure(2:1), irrigated with tap water for 1 month followed by saline irrigation in May by maintaining electrical conductivity at 0.75, 1.00, 1.25, 1.50, 2.25, and 3.00 d S/m for 30,40, 50, 60, 90, and 120 m M Na Cl. Every 3 months,heights, relative leaf water content, and percent survival were determined;total soluble sugars of the upper leaves of each tree were quantified. All species exhibited consistent early growth and survival when supplied with 30, 40, 50 and 60 m M of Na Cl. Koelreutaria paniculata, Ficus benjamina, Putranjiva roxburghii, Bauhinia purpurea and Millettia ovalifolia were sensitive to elevated salinity levels and did not survive at the highest salt concentrations of 90 and 120 m M.展开更多
Water availability is a limiting factor for the establishment and development of forest species.To understand the appropriate conditions for the initial post-transplanting phase,it is necessary to understand the speci...Water availability is a limiting factor for the establishment and development of forest species.To understand the appropriate conditions for the initial post-transplanting phase,it is necessary to understand the specific morphophysiological characteristics of the species,such as the leaf water potential and the efficiency of photosystemⅡ.We aimed to identify the influence of different water regimes on the morphophysiological aspects of young plants of two forest species(Cedrela.fissilis Vellozo and Eucalyptus saligna Sm.).Two greenhouse experiments were conducted for 28 days;one for each species.The design was completely randomized,and the treatments consisted of six different water regimes.Leaf water potential(Ψw)and chlorophyll a fluorescence were evaluated every 7 days.At the end of the experiment,morphological attributes(height,collection diameter,root volume,and dry matter)were measured and histological blades were made.The water demand of E.saligna was higher than that of C.fissilis and required greater replacement within a shorter period.The rehydration fromΨw=-2 Mpa allowed for a fast recovery of the young C.fissilis plants(Ψw=-1.5,Fv/Fm=0.796),which indicated good physiological plasticity of this species when submitted to water stress at a level that is not severe.The total dry matter allocation was different among species.Seedlings of E.saligna presented the best responses when submitted to a continuous water supply regime,while C.fissilis seedlings presented the best response under intermittent irrigation conditions.展开更多
942076 灌溉水域养鱼网箱设计=Cage de-signs for fish culture in irrigation water[刊,英]/Budhabhatti J,Maughan O E//Prog.Fish-Cult..—1994,56(2).—147~148作者为灌溉用水渠设计的网箱长1.25米,宽43.5厘米,网箱上部圆角。0.3...942076 灌溉水域养鱼网箱设计=Cage de-signs for fish culture in irrigation water[刊,英]/Budhabhatti J,Maughan O E//Prog.Fish-Cult..—1994,56(2).—147~148作者为灌溉用水渠设计的网箱长1.25米,宽43.5厘米,网箱上部圆角。0.3立方米的网箱可成功地养殖斑点叉尾鲴29.7千克,平均尾重479克,饲料系数2.0。展开更多
基金Jiangsu Water Science and Technology Project(2021081)。
文摘The rapid identification of planting patterns for major crops in a large irrigated district has vital importance for irrigation management,water fee collection,and crop yield estimation.In this study,the OTSU algorithm and Mean-Shift algorithm were employed to automatically determine threshold values for mapping two main rotated crop patterns at the pixel scale.A time series analysis was conducted to extract the spatial distribution of rice-wheat and wheat-maize rotations in the Chuanhang irrigation district from 2016 to 2020.The results demonstrate that both threshold segmentation algorithms are reliable in extracting the spatial distribution of the crops,with an overall accuracy exceeding 80%.Additionally,both Kappa coefficients surpass 0.7,indicating better performance by OTSU method.Over the period from 2016 to 2020,the area occupied by rice-wheat rotation cropping ranged from 12500 to 14400 hm 2;whereas wheat-maize rotation cropping exhibited smaller and more variable areas ranging from 19730 to 34070 hm 2.These findings highlight how remote sensing-based approaches can provide reliable support for rapidly and accurately identifying the spatial distribution of main crop rotation patterns within a large irrigation district.
基金Supporting founds:National Key R&D Program(2016YFC0400204)Natural Science Foundation of China(51479161,51279157,51779205)。
文摘Six-year old apple trees were selected for field experiment.The objective of this study was to obtain the reasonable arrangement of surge-root irrigation emitters in apple orchards.There were three factors:the buried depth H(25,40,55 cm),the horizontal distance L(30,40,60 cm)between the emitters and the trunk of the experimental tree,and the number of the irrigation emitters N(1,2,4).The effect of the arrangement of surge-root irrigation emitters on the growth,yield and irrigation water use efficiency(IWUE)of apple trees were studied in Northern Shaanxi where the irrigation quota takes 60%-75%of the field water capacity.The results showed that the arrangement of emitters for surge-root irrigation had a significant effect on apple tree yield and IWUE,especially,the yield and IWUE reached 28388.17 kg/hm2 and 16.83 kg/m3 in treatment T3,respectively.At the same L and N levels(T1,T2,and T3),the yield and IWUE in treatment T3 were the highest,and the yields in treatments T1 and T2 were decreased by 26.22%and 31.48%,while IWUE is reduced by14.02%and 18.12%compared with T3,respectively.At the same H and N levels(T3,T4,and T5),the yield and IWUE of apple trees were decreased with increasing L level.Especially,when L was 30 cm(T3),the yield and IWUE were the highest.The same L and H levels(T3,T6,and T7)could promote the growth of apple trees when N was 2(T3).Compared with treatment T3,it was found that the increment of new shoots was decreased by 8.07%-18.71%,and the fruit diameter was decreased by 5.41%-9.11%.Therefore,two emitters should be arranged symmetrically on both sides of an apple tree,each was buried at a 40 cm depth and 30 cm away from the trunk of the tree to effectively improve the yield and IWUE of the apple tree in mountainous areas in Northern Shaanxi.
基金National Natural Science Foundation of China(51109102,51469010,51769010)the basic research project of Yunnan Province(2014FB130)key project of education department in Yunnan Province(2011Z035)
文摘The objective of this study was to obtain the water-saving and efficient production mode of Arabica coffee. The effects of three drip irrigation modes,conventional drip irrigation( CDI),alternate drip irrigation( ADI) and fixed drip irrigation( FDI) on growth,photosynthetic characteristics,biomass accumulation and irrigation water use efficiency of Arabica coffee were investigated under three nitrogen levels,high nitrogen( NH),middle nitrogen( NM) and low nitrogen( NL). The results show that there was a significant Logistic curve between the plant height,the stem diameter of Arabica coffee and growth days. Compared with CDI,ADI had no significant effects on leaf net photosynthetic rate,stomatal conductance,instantaneous water use efficiency and biomass accumulation above ground of Arabica coffee,while FDI decreased significantly,ADI and FDI increased irrigation water use efficiency by 50. 59% and 32. 85%,respectively. Compared with NH,with the reduction of N application rate,net photosynthetic rate,stomatal conductance,biomass accumulation above ground and irrigation water use efficiency decreased by 6. 81%-12. 30%,13. 70%-22. 69%,9. 61%-16. 67% and 9. 78%-15. 64%,respectively. Compared with CDINH,ADINHdecreased net photosynthesis rate and the stomatal conductance not significantly,other treatments decreased by 9. 16%-19. 22%,14. 49%-32. 91%,and decreased biomass accumulation above ground by 8. 26%-27. 34% except ADINH,and increased irrigation water use efficiency by 16. 46%-60. 95% except CDINMand CDINL. Therefore,alternate drip irrigation under high N level( ADINH) is the best water and nitrogen coupling mode of young Arabica coffee tree for water efficiency.
基金National Natural Science Foundation of China(52079105,51779205)。
文摘In order to explore the effects of different irrigation and nitrogen application on growth cha-racteristics and yield of apple trees under surge-root irrigation in mountainous areas of northern Shaanxi, field experiments were carried out with different apple trees. Three irrigation levels were applied: 85%-100%(H1), 70%-85%(H2) and 55%-70%(H3) of the field water capacity, respectively, and three nitrogen levels were N1(360 g/plant), N2(240 g/plant) and N3(120 g/plant). The results show that irrigation and nitrogen application has significant effects on new shoot length, flowering and fruit setting, fruit diameter, fruit volume and yield of apple. The leaf area index(LAI) shows a single trend during the growth period, and the peak value appears in the middle of July. Under the same irrigation level, compared with N3, N1 increases in yield, new shoot length, LAI, transverse diameter, longitudinal diameter, volume, flowering and fruit setting by 17.91%, 28.31%, 18.75%, 11.38%, 10.13%, 36.60%, 20.92% and 5.19%, respectively, while N2 also increases by 12.40%, 15.63%, 4.86%, 5.40%, 5.11%, 17.01%, 26.17% and 13.74%, respectively. The rate of flowering and fruit setting decreases with the increase of nitrogen application. Under the same nitrogen level, compared with H3, H1 increases in yield, new shoot length, LAI, transverse diameter, longitudinal diameter, volume, flowering and fruit setting by 34.65%, 15.49%, 30.77%, 3.93%, 4.95%, 12.86%, 33.15% and 28.62%, respectively, while H2 also increases by 33.67%, 16.42%, 67.52%, 3.81%, 2.97%, 11.57%, 43.45% and 27.26%, respectively. The rate of flowering and fruit setting decreases first and then increases with the increase of irrigation amount. Compared with H3N3, the yield of other treatments increases by 2.69%-52.20%, while H2N1 treatment has the highest yield(26 852.55 kg/ha). Considering from the point of view of promoting growth and increasing yield, the best water and nitrogen combination mode of mountain apple in northern Shaanxi is medium water deficit irrigation and high nitrogen(H2N1) treatment. The results from this study can provide a theoretical basis for apple water and nitrogen management in mountainous areas of northern Shaanxi.
基金supported by the National Basic Research Program of China under Grants No.2012CB315801,No.2011CB302901the National Science and Technology Major Projects under Grant No.2010ZX03004-002-02
文摘Previous Virtual Network (VN) embedding researches mostly focus on developing heuristic algorithms to enhance the efficiency of a physical resource. However, in the equal-scale condition, where the scale of a VN is similar to that of a substrate network, the number of successfully mapped VNs decreases sharply since bottlenecks form easily in the substrate network and disturb the embedding process. In this paper, reversed and bidirectional irrigation methods are proposed for the equal-scale and all-scale conditions. The two proposed methods can be combined with most of the existing heuristic algorithms and map a relatively large number of VNs by reducing the potential substrate bottlenecks. The simulation results show that the reversed irrigation method almost doubles the successfully mapped Revenue than the traditional one in the equal-scale condition. Meanwhile, the bidirectional irrigation method achieves the synthetically best performance in almost all scale conditions.
基金supported by the National Science Foundation of China(31070551/31570609)
文摘A multipurpose clone plant species, Hippophae rhamniodes has the capacity for indefinite longevity, although under successive drought stress it may often decline or die across large areas. Field trials were con- ducted over 2 years to examine the effects of varied irrigation intensities on modular growth and clonal propagation in a semi-arid area. Irrigation levels included a control, as well as two, four and six times the volume of water that was typically received via local annual average precipitation. Irrigation intensity significantly influenced clonal propagation capacity (number of daughter ramets), aboveground modular growth (height, base diameter, and crown width), belowground modular growth included root nodule dry weight, stretching capacity of lateral roots (length of the longest lateral roots, and diameter of first-grade lateral roots), and branching intensity of lateral roots (number of lateral roots bifurcation grade, number of first- grade lateral roots). The modular growth and the density of daughter ramets were small under non-irrigation or low irrigation, and became larger with increased irrigation intensity. Beyond a certain threshold, however, further increases in irrigation intensity resulted in a reversion to the development. The optimal irrigation intensities for growth and propagation were 3.48-5.29 times the volume of nominal local annual average precipitation. There were effects of irrigation intensities on the positive significant correlations between aboveground and belowground modular growths, and on clonal propagation capacities. Under various water treatments, H. rhamnoides may adapt to the environment through the regulation of growth and propagation. We concluded that water shortages act to weaken the growth and propagation of H. rhamniodes plantations.
基金This project is sponsored by the Ministry of Education Malaysia under ERGS Fund No.4 L.125.
文摘The development of microchannels with open flow for use in irrigation and rainy areas is challenged by electricity generation via hydrokinetic devices in shallow and low velocity flows.Conventional hydrokinetic turbines are known to be highly dependent on current speed and water depth.Another drawback of conventional turbines is their low efficiency.These shortcomings lead to the need to accelerate the flow in the channel system to enhance the extracted power.The method of deploying a novel turbine configuration in irrigation channels can help overcome the low performance of conventional hydrokinetic turbines.Therefore,this study experimentally presents a bidirectional diffuser-augmented channel that includes dual cross flow/Banki turbines.Results show that the maximum efficiency of the overall system with two turbines is nearly 55.7%.The efficiency is low relative to that of hydraulic turbines.Nevertheless,the result can be considered satisfactory given the low head of the present system.The use of this system will contribute to a highly efficient utilization of flows in rivers and channels for electrical energy generation in rural areas.
文摘In this paper the results of skeletal traction and irrigation therapy (STIT) used for open fracture complicated with large-sized full-thickness skin-deficit and infection wounds (OFIW) were presented. Fourteen patients of OFIW were treated by the plaster cast and wound dressing (PCWD), and 30 patients of OFIW were treated by STIT. The results indicated that after one week of treatment, the white blood cell count in the STIT group, compared to 17. 6±l. 0×109/L from before treatment, returned to 8. 8±0. 8×109/L,and in contrast, the cell count of the PCWD group was about 13. 0±1. 4×109/L. All of wound exudate culture in the STIT group was negative, and those of 7 cases (7/14) in PCWD group were positive (P<0. 0l). The symptoms and signs such as pain, fever and septic exudate on the wound in the STIT group were much milder than those in the PCWD group. There were 5 cases (35. 7%) of toxicemia and septicemia, 2 cases (14. 3%) of osteomyelitis, 2 cases (14. 3 %) of amputation, 1 case (7. 1%) of delayed union and 3 cases (21. 4 %) of malunion in the PCWD group, and no complications in the STIT group.
文摘An experiment was initiated in 2008 to evaluate the impact of irrigation regimes on germination and growth patterns of seedlings of Prosopis cineraria in the arid areas of Thar, India. Seeds collected from dried pods of P cineraria were sown in polybags placed in nursery beds. Different irrigation regimes were provided to different beds and data regarding germination and growth were recorded to study natural regeneration. The study revealed that irrigation regimes significantly affected the germination and growth of P cineraria under nursery conditions. The germination rate declined as the irrigation regime shifted from a daily to a fortnightly ba- sis. Height of the seedlings also declined with a decrease in the intensity of irrigation. Thus, it can be concluded that germination and growth of seedlings of P cineraria under nursery conditions can be enhanced by providing irrigation at regular intervals.
基金National Natural Science Foundation of China (41571222)。
文摘To examine the working principle of vertical tube irrigation, variations in vertical tube emitter discharge and their causes were analyzed in the laboratory experiment. The effects of the pressure head, initial soil water content, and tube diameter on the emitter discharge of the vertical tube were studied. The results show that quantitative relationship between the time and cumulative infiltration and emitter discharge of the vertical tube is obtained, and R 2 is more than 0.98. Emitter discharge exhibits a positive and negative correlation with the pressure head and soil water content, respectively. Tube dia- meter has a nonsignificant effect on the emitter discharge. Changes of the soil water content around the emitter water outlet are the main causes of emitter discharge variations. In the experiments, the range of vertical tube emitter discharge is 0.056-1.102 L/h. The emitter of vertical tube irrigation automatically adjusts the soil water content and maintains the root zone soil water content within an appropriate range, which achieves continuous irrigation, and further achieves the effect of water-saving.
基金National Key R&D Program of China(2016YFC0400204)National Natural Science Foundation of China(51479161,51279157,51779205)。
文摘Based on the experimental data,this study investigated the effect of sand content of muddy water on water and nitrogen transport characteristics of the single-line interference infiltration under film hole irrigation with muddy water and fertilizer.The relationship between the single-line interference infiltration parameters,the sand content,the wetting front movement distances,and the sand content were all established.The model of the cumulative infiltration volume of per unit film pore area,the vertical and horizontal wetting front movement distance of the free surface,and the wetting front movement distance of the interference center with sand content and infiltration time were proposed.Reveal the law of the change of soil water content and the distribution of NO_(3)^(-)-N content based on different muddy water sand content.The results indicate that at the same infiltration time,as the muddy water sand content increases,the cumulative infiltration volume per unit pore area decreases.The infiltration index of the free infiltration and the single-line interference vary little when the sand content increases,mainly are around 0.64 and 0.58.The relationship between infiltration parameters a,b and the sand content is linear function.At the same location,the more the sand content,the smaller the wetting front movement distance in free surface and the single-line interference surface,the less the NO_(3)^(-)-N content.
基金supported by the American University of Sharjah under Grant ELE/COE 490-491
文摘As the Internet of things(IoT)technology is evolving,distributed solar energy resources can be operated,monitored,and controlled remotely.The design of an IoT based solar energy system for smart irrigation is essential for regions around the world,which face water scarcity and power shortage.Thus,such a system is designed in this paper.The proposed system utilizes a single board system-on-a-chip controller(the controller hereafter),which has built-in WiFi connectivity,and connections to a solar cell to provide the required operating power.The controller reads the field soil moisture,humidity,and temperature sensors,and outputs appropriate actuation command signals to operate irrigation pumps.The controller also monitors the underground water level,which is essential to prevent the pump motors from burning due to the level in the water well.The proposed system has three modes of operations,i.e.the local control mode,mobile monitoring-control mode,and fuzzy logic-based control mode.For the purpose of the proposed system validation,a prototype was designed,built,and tested.
文摘Species of Paulownia are fast-growing trees that are planted in many countries in green spaces and agroforestry systems. We studied the influence of irrigation on the diameter growth of 2-year-old Paulownia tomentosa saplings planted in 3 m 9 3 m grids at Nazlou Campus of Urmia University, Iran. Completely randomized experimental design was used with four irrigation amount, viz.10, 15, 20 and 25 L, and three irrigation intervals, viz. 3-and 6-days, in 8 replications. During the growth season, we measured collar diameters of all saplings at the end of each month. Diameter growth declined with reduced irrigation amount and increased irrigation interval. The lowest average diameter growth(9 mm) was recorded for 10 L water at 6-day intervals and maximum average diameter growth(28.7 mm) was recorded for 25 L volume at 3-day intervals. The latter treatment resulted in significantly greater diameter growth than any other treatment(except20 L at 3-day intervals). More than 80 % of diameter growth was achieved in the first 3 months. Therefore, it is essential to irrigate with 25 L of water at 3-day intervals during the first three growth months to achieve maximum diameter growth for 2-year-old P. tomentosa saplings.
文摘One-year-old seedlings of Dalbergia sissoo from a single provenance were planted in non-weighing lysimeter tanks in July 1998 with a view to provide optimize irrigation parameters in desert areas. Varying water regimes were maintained by re-irrigating the seedlings at 36.2 mm (W1), 26.5 mm (W2), 20.2 mm (W3) and 18.1 mm (W4) treatments when the soil water content decreased to 7.56%, 5.79%, 4.44%, 3.23% in the respective treatments. Height, collar diameter, number of leaves and leaf area were highest (p 〈 0.01) for the seedlings irrigated at W1 levek Above-mentioned growth parameters did not differ between W1 and W2 treatments but the seedlings in W2 level had highest biomass per liter of water use (i.e., water use efficiency, WUE). Irrigation levels of W3 to W5 negatively affected seedling growth, biomass production and nutrient accumulation. Soil water availability below W2 level (i.e., 5.79%) caused an increase in percentage of root biomass to the total biomass of the seedling. However, there was a decrease in percentage of leaf dry biomass in W3 and W4 treatments and in percentage of stem dry biomass in the seedlings of W5 treatment. Seedlings in W5 treatment survived till at soil water potential of-1.96 MPa. Limitation of soil water availability in W3 and W4 treatments affected growth and biomass production of D. sissoo seedlings. W: level was best for growth and biomass production in which water use efficiency was highest. Therefore, better growth and biomass production of D. sissoo seedlings could be obtained by irrigating the seedlings at soil water content of≥5.79% in the loamy sand soil.
文摘How to improve the water use efficiency of rice in black soil regions was studied. The black soil region in paddy fields was chosen as the research object. The research showed the fertilizer coupling mathematical model with N,P,K,irrigation water( W) and water use efficiency( WUE),which was set up under the condition of controlled irrigation with quadratic D- 416 optimized saturation design. The results show that the decending order of single factor' s influence on the WUE was N,K,P and W. All the interactions between N&P,N&K,N&W,K&P,P&W and K&W on the WUE were raised initially,and when reached a certain value,they began to decline. The decending order of each interaction on the WUE was K&P,K&W,N&K,N&P,P&W and N&W. When the WUE was targeted within 1. 8- 2. 5 kg / km^3,an optimized proportion plan was obtained in the 95% confidence interval,i. e. N 87. 76- 103. 32 kg / hm^2,K_2 O 52. 37- 66. 53 kg / hm^2 and P_2O_536. 80- 46. 71 kg / hm^2. Furthermore,the late tillering of the soil moisture content was 70. 07%- 72. 57% of the saturated moisture content.
基金Jagreeti Gupta is recipient of Prime Minister’s Fellowship Scheme for Doctoral Research,a public-private partnership between Science&Engineering Research Board(SERB)Department of Science&Technology,Government of India and Confederation of Indian Industry(CII)。
文摘This study was conducted to evaluate the tolerance of 1-year-old seedlings of ten subtropical ornamental tree species against a range of salinity levels of Na Cl from May 2015 to October 2015. The levels were further enhanced from November to April 2017 as 100% survival was observed in the initial concentrations for all species.The seedlings were grown during the first week of April2015 in 1000 earthen pots containing soil: farmyard manure(2:1), irrigated with tap water for 1 month followed by saline irrigation in May by maintaining electrical conductivity at 0.75, 1.00, 1.25, 1.50, 2.25, and 3.00 d S/m for 30,40, 50, 60, 90, and 120 m M Na Cl. Every 3 months,heights, relative leaf water content, and percent survival were determined;total soluble sugars of the upper leaves of each tree were quantified. All species exhibited consistent early growth and survival when supplied with 30, 40, 50 and 60 m M of Na Cl. Koelreutaria paniculata, Ficus benjamina, Putranjiva roxburghii, Bauhinia purpurea and Millettia ovalifolia were sensitive to elevated salinity levels and did not survive at the highest salt concentrations of 90 and 120 m M.
基金supported by the Council for Scientific and Technological Development(CNPq)the Coordination for the Improvement of Education Personnel(CAPES)。
文摘Water availability is a limiting factor for the establishment and development of forest species.To understand the appropriate conditions for the initial post-transplanting phase,it is necessary to understand the specific morphophysiological characteristics of the species,such as the leaf water potential and the efficiency of photosystemⅡ.We aimed to identify the influence of different water regimes on the morphophysiological aspects of young plants of two forest species(Cedrela.fissilis Vellozo and Eucalyptus saligna Sm.).Two greenhouse experiments were conducted for 28 days;one for each species.The design was completely randomized,and the treatments consisted of six different water regimes.Leaf water potential(Ψw)and chlorophyll a fluorescence were evaluated every 7 days.At the end of the experiment,morphological attributes(height,collection diameter,root volume,and dry matter)were measured and histological blades were made.The water demand of E.saligna was higher than that of C.fissilis and required greater replacement within a shorter period.The rehydration fromΨw=-2 Mpa allowed for a fast recovery of the young C.fissilis plants(Ψw=-1.5,Fv/Fm=0.796),which indicated good physiological plasticity of this species when submitted to water stress at a level that is not severe.The total dry matter allocation was different among species.Seedlings of E.saligna presented the best responses when submitted to a continuous water supply regime,while C.fissilis seedlings presented the best response under intermittent irrigation conditions.
文摘942076 灌溉水域养鱼网箱设计=Cage de-signs for fish culture in irrigation water[刊,英]/Budhabhatti J,Maughan O E//Prog.Fish-Cult..—1994,56(2).—147~148作者为灌溉用水渠设计的网箱长1.25米,宽43.5厘米,网箱上部圆角。0.3立方米的网箱可成功地养殖斑点叉尾鲴29.7千克,平均尾重479克,饲料系数2.0。