Micaceous iron oxide (MIO) with a hexagonal flaky shape was prepared by hydrothermal method. The ferric hydroxide used as precursor was obtained by an acidic leaching solution of pyrite cinders reacting with ammonia...Micaceous iron oxide (MIO) with a hexagonal flaky shape was prepared by hydrothermal method. The ferric hydroxide used as precursor was obtained by an acidic leaching solution of pyrite cinders reacting with ammonia solution. The optimal experimental conditions for preparing micaceous iron oxide were investigated by orthogonal experiments. Micaceous iron oxide can be successfully prepared when optimal parameters of total iron concentration of 2.0 mol/L, pH value of 8, n(Fe2+)/n(Fe3+) of 0.1, mass of seed crystal of 1 g, reaction temperature of 260 ℃ and reaction time of 30 min are applied. X-ray diffractometry (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and selected area electron diffractometry (SAEM) were adopted to characterize the hydrothermal products prepared under optimal conditions. The results indicate that highly crystallized α-Fe2O3 hexagonal flakes, about 1.0-1.5 μm in diameter and 0.1 μm in thickness, are prepared. Furthermore, the quality of micaceous iron oxide prepared can meet the required characteristics of micaceous iron oxide pigments for paints (ISO 10601--2007).展开更多
To evaluate the feasibility of using magnetic iron oxide nanoparticle as wild PTEN gene carrier for transfection in vitro to reverse cisplatin-resistance of A549/CDDP cells, A549/CDDP cells were transfected with the w...To evaluate the feasibility of using magnetic iron oxide nanoparticle as wild PTEN gene carrier for transfection in vitro to reverse cisplatin-resistance of A549/CDDP cells, A549/CDDP cells were transfected with the wild PTEN gene expression plasmid (pGFP-PTEN) by magnetic iron nanoparticle and lipo2000. The transfection efficiency was detected by fluorescence microscope and flow cytometer. The expression levels of PTEN mRNA and protein were detected by reverse transcription polymerase chain reaction (RT-PCR) and immunocytochemistry analysis. The effect of PTEN transfection on cell cycle enhances the sensitivity of A549/CDDP to cisplatin and nanoparticle-mediated transfection has a higher efficiency than that of the liposome-mediated group. The apoptosis level was up-regulated in PTEN transfection group. The magnetic iron oxide nanoparticle could be used as one of the ideal gene carriers for PTEN gene delivery in vitro. PTEN can be an effective target for reversing cisplatin-resistance in lung cancer.展开更多
In pursuit of more efficient and stable electrochemical energy storage materials,composite materials consisting of metal oxides and graphene oxide have garnered significant attention due to their unique structures and...In pursuit of more efficient and stable electrochemical energy storage materials,composite materials consisting of metal oxides and graphene oxide have garnered significant attention due to their unique structures and exceptional properties.Graphene oxide(GO),a two-dimensional material with an extremely high specific surface area and excellent conductivity,offers new possibilities for enhancing the electrochemical performance of metal oxides.In this work,we synthesized met-al-organic framework(MOF)and GO composites by regulating the amount of GO,and successfully prepared composites of metal oxides supported by nitrogen-doped carbon frameworks and GO through a simple one-step calcination process.Based on the electrochemical tests,the optimal amount of GO was determined.This research will provide new insights into and directions for designing and synthesizing metal oxide and graphene oxide composite materials with an ideal electro-chemical performance.展开更多
Rotary kiln process for iron ore oxide pellet production is hard to detect and control.Construction of one-dimensional model of temperature field in rotary kiln was described.And the results lay a solid foundation for...Rotary kiln process for iron ore oxide pellet production is hard to detect and control.Construction of one-dimensional model of temperature field in rotary kiln was described.And the results lay a solid foundation for online control.Establishment of kiln process control expert system was presented,with maximum temperature of pellet and gas temperature at the feed end as control cores,and interval estimate as control strategy.Software was developed and put into application in a pellet plant.The results show that control guidance of this system is accurate and effective.After production application for nearly one year,the compressive strength and first grade rate of pellet are increased by 86 N and 2.54%,respectively,while FeO content is 0.05% lowered.This system can reveal detailed information of real time kiln process,and provide a powerful tool for online control of pellet production.展开更多
Grate process is an important step in grate-kiln pellet production.However,as a relatively closed system,the process on grate is inaccessible to direct detection,therefore,it is hard to control.As a result,mathematica...Grate process is an important step in grate-kiln pellet production.However,as a relatively closed system,the process on grate is inaccessible to direct detection,therefore,it is hard to control.As a result,mathematical models of temperature distribution,moisture distribution and oxidation degree distribution in pellet bed,with good universality,computation speed and calculation accuracy,are presented based on analysis of heat transfer and physical-chemical reactions during grate process.And real-time visualization of temperature,moisture and oxidation degree distribution in pellet bed during grate process is realized.Model validation is displayed,and the similarity of 91% is proved.The results can reveal real time status on grate,and provide a solid foundation for the subsequent study of artificial intelligence control system of pellet production.展开更多
In recent years,composite pellet production with added reductant has been developed instead of traditional iron production.Composite pellets produced by the addition of appropriate proportions of reductant produce spo...In recent years,composite pellet production with added reductant has been developed instead of traditional iron production.Composite pellets produced by the addition of appropriate proportions of reductant produce sponge iron in the reductant melting process at high temperatures.The elements created in the structure by pellet production directly affect the quality of the product obtained by determining the chemical composition and the appropriate reaction temperature.In this study,sponge iron ore concentrate(scale)and reductant(coke coal dust and sodium bentonite)were mixed at certain proportions to produce composite pellet samples;the effects of addition rate of the reductant material of sodium bentonite(1 wt%−4 wt%)and variation in reaction temperature(900−1200℃)on the metallization and compressive strength properties of the produced composite pellet samples were investigated.The analysis results show that the highest compressive strength is obtained from pellet samples produced with 3%sodium bentonite at 1100℃.Additionally,SEM-EDS analysis results of the samples show that the morphologic structure has much lower porosity rates compared to samples produced under the other conditions which makes the samples denser and increases the metallization properties.展开更多
Grinding is one of the most costly operations in the mechanical breaking and mining.Determination of the breakage characteristics and preconditioning is important to increase the grinding efficiency.Investigations of ...Grinding is one of the most costly operations in the mechanical breaking and mining.Determination of the breakage characteristics and preconditioning is important to increase the grinding efficiency.Investigations of the seismic,mechanical and breakage properties of iron oxides are very important parameters for investigating the rock fragmentation by blasting and comminution processes in iron ore mines.In this paper,at first,geomechanical and seismic properties of the oxide ores(magnetite and hematite)in the Chadormalu iron ore mine were studied.The results showed that the percentage of magnetite has a direct relationship with uniaxial compressive strength,tensile strength and P and S wave’s velocities and has an inverse relationship with Poisson ratio and porosity.Moreover,to study breakage and preconditioning characteristics in the iron ores,two samples with different magnetite percents were blasted by detonation cord.The results showed that with higher percentage of magnetite,the number of fractures induced by blasting increased.Bond work index and magnetite percent were investigated in the 430 blasts in the mine.This investigation not only confirmed the small scale blasting results,but also showed that increasing the magnetite percent up to 50%noticeably reduces Bond work index and energy consumption in the grinding process.Also,the relationship between muck pile fragmentation and magnetite percentage were studied for several blasts that had the same blast pattern parameters and similar geology conditions.These results also confirmed precedents conclusions regarding magnetite percent and preconditioning relationship.展开更多
In order to investigate the effect of different pillarmaterials on low-temperature de-NO activity of pillaredclay(PILCs),the study is carried out by pillaring clay withtitanium oxides,zirconium oxides,iron oxidesrespe...In order to investigate the effect of different pillarmaterials on low-temperature de-NO activity of pillaredclay(PILCs),the study is carried out by pillaring clay withtitanium oxides,zirconium oxides,iron oxidesrespectively to obtain three different kinds of PILCs,which are then loaded them with the same amount ofmanganese and cerium oxides by the method ofimpregnation.BET,XRD,H2-TPR and NHg-TPD areused to characterize the properties of the catalysts.展开更多
基金Project(2008A090300016) supported by Major Science & Technology Special Program of Guangdong Province,China
文摘Micaceous iron oxide (MIO) with a hexagonal flaky shape was prepared by hydrothermal method. The ferric hydroxide used as precursor was obtained by an acidic leaching solution of pyrite cinders reacting with ammonia solution. The optimal experimental conditions for preparing micaceous iron oxide were investigated by orthogonal experiments. Micaceous iron oxide can be successfully prepared when optimal parameters of total iron concentration of 2.0 mol/L, pH value of 8, n(Fe2+)/n(Fe3+) of 0.1, mass of seed crystal of 1 g, reaction temperature of 260 ℃ and reaction time of 30 min are applied. X-ray diffractometry (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and selected area electron diffractometry (SAEM) were adopted to characterize the hydrothermal products prepared under optimal conditions. The results indicate that highly crystallized α-Fe2O3 hexagonal flakes, about 1.0-1.5 μm in diameter and 0.1 μm in thickness, are prepared. Furthermore, the quality of micaceous iron oxide prepared can meet the required characteristics of micaceous iron oxide pigments for paints (ISO 10601--2007).
基金Project(07JJ3055)supported by the Natural Science Foundation of Hunan Province,China
文摘To evaluate the feasibility of using magnetic iron oxide nanoparticle as wild PTEN gene carrier for transfection in vitro to reverse cisplatin-resistance of A549/CDDP cells, A549/CDDP cells were transfected with the wild PTEN gene expression plasmid (pGFP-PTEN) by magnetic iron nanoparticle and lipo2000. The transfection efficiency was detected by fluorescence microscope and flow cytometer. The expression levels of PTEN mRNA and protein were detected by reverse transcription polymerase chain reaction (RT-PCR) and immunocytochemistry analysis. The effect of PTEN transfection on cell cycle enhances the sensitivity of A549/CDDP to cisplatin and nanoparticle-mediated transfection has a higher efficiency than that of the liposome-mediated group. The apoptosis level was up-regulated in PTEN transfection group. The magnetic iron oxide nanoparticle could be used as one of the ideal gene carriers for PTEN gene delivery in vitro. PTEN can be an effective target for reversing cisplatin-resistance in lung cancer.
基金supported by the National Natural Science Foundation of China(51971157)Shenzhen Science and Technology Program(JCYJ20210324115412035,JCYJ202103-24123202008,JCYJ20210324122803009 and ZDS-YS20210813095534001)Guangdong Foundation for Basic and Applied Basic Research Program(2021A1515110880).
文摘In pursuit of more efficient and stable electrochemical energy storage materials,composite materials consisting of metal oxides and graphene oxide have garnered significant attention due to their unique structures and exceptional properties.Graphene oxide(GO),a two-dimensional material with an extremely high specific surface area and excellent conductivity,offers new possibilities for enhancing the electrochemical performance of metal oxides.In this work,we synthesized met-al-organic framework(MOF)and GO composites by regulating the amount of GO,and successfully prepared composites of metal oxides supported by nitrogen-doped carbon frameworks and GO through a simple one-step calcination process.Based on the electrochemical tests,the optimal amount of GO was determined.This research will provide new insights into and directions for designing and synthesizing metal oxide and graphene oxide composite materials with an ideal electro-chemical performance.
基金Project(NCET-05-0630) supported by Program for New Century Excellent Talents in University of China
文摘Rotary kiln process for iron ore oxide pellet production is hard to detect and control.Construction of one-dimensional model of temperature field in rotary kiln was described.And the results lay a solid foundation for online control.Establishment of kiln process control expert system was presented,with maximum temperature of pellet and gas temperature at the feed end as control cores,and interval estimate as control strategy.Software was developed and put into application in a pellet plant.The results show that control guidance of this system is accurate and effective.After production application for nearly one year,the compressive strength and first grade rate of pellet are increased by 86 N and 2.54%,respectively,while FeO content is 0.05% lowered.This system can reveal detailed information of real time kiln process,and provide a powerful tool for online control of pellet production.
基金Project(NCET050630) supported by Program for New Century Excellent Talents in University,China
文摘Grate process is an important step in grate-kiln pellet production.However,as a relatively closed system,the process on grate is inaccessible to direct detection,therefore,it is hard to control.As a result,mathematical models of temperature distribution,moisture distribution and oxidation degree distribution in pellet bed,with good universality,computation speed and calculation accuracy,are presented based on analysis of heat transfer and physical-chemical reactions during grate process.And real-time visualization of temperature,moisture and oxidation degree distribution in pellet bed during grate process is realized.Model validation is displayed,and the similarity of 91% is proved.The results can reveal real time status on grate,and provide a solid foundation for the subsequent study of artificial intelligence control system of pellet production.
文摘In recent years,composite pellet production with added reductant has been developed instead of traditional iron production.Composite pellets produced by the addition of appropriate proportions of reductant produce sponge iron in the reductant melting process at high temperatures.The elements created in the structure by pellet production directly affect the quality of the product obtained by determining the chemical composition and the appropriate reaction temperature.In this study,sponge iron ore concentrate(scale)and reductant(coke coal dust and sodium bentonite)were mixed at certain proportions to produce composite pellet samples;the effects of addition rate of the reductant material of sodium bentonite(1 wt%−4 wt%)and variation in reaction temperature(900−1200℃)on the metallization and compressive strength properties of the produced composite pellet samples were investigated.The analysis results show that the highest compressive strength is obtained from pellet samples produced with 3%sodium bentonite at 1100℃.Additionally,SEM-EDS analysis results of the samples show that the morphologic structure has much lower porosity rates compared to samples produced under the other conditions which makes the samples denser and increases the metallization properties.
文摘Grinding is one of the most costly operations in the mechanical breaking and mining.Determination of the breakage characteristics and preconditioning is important to increase the grinding efficiency.Investigations of the seismic,mechanical and breakage properties of iron oxides are very important parameters for investigating the rock fragmentation by blasting and comminution processes in iron ore mines.In this paper,at first,geomechanical and seismic properties of the oxide ores(magnetite and hematite)in the Chadormalu iron ore mine were studied.The results showed that the percentage of magnetite has a direct relationship with uniaxial compressive strength,tensile strength and P and S wave’s velocities and has an inverse relationship with Poisson ratio and porosity.Moreover,to study breakage and preconditioning characteristics in the iron ores,two samples with different magnetite percents were blasted by detonation cord.The results showed that with higher percentage of magnetite,the number of fractures induced by blasting increased.Bond work index and magnetite percent were investigated in the 430 blasts in the mine.This investigation not only confirmed the small scale blasting results,but also showed that increasing the magnetite percent up to 50%noticeably reduces Bond work index and energy consumption in the grinding process.Also,the relationship between muck pile fragmentation and magnetite percentage were studied for several blasts that had the same blast pattern parameters and similar geology conditions.These results also confirmed precedents conclusions regarding magnetite percent and preconditioning relationship.
文摘In order to investigate the effect of different pillarmaterials on low-temperature de-NO activity of pillaredclay(PILCs),the study is carried out by pillaring clay withtitanium oxides,zirconium oxides,iron oxidesrespectively to obtain three different kinds of PILCs,which are then loaded them with the same amount ofmanganese and cerium oxides by the method ofimpregnation.BET,XRD,H2-TPR and NHg-TPD areused to characterize the properties of the catalysts.