The complex systems are often in the structure of multi-operating modes, and the components implementing system functions are different under different operation modes, which results in the problems that components of...The complex systems are often in the structure of multi-operating modes, and the components implementing system functions are different under different operation modes, which results in the problems that components often fail in different operating modes, faults can be only detected in specified operating modes, tests can be available in specified operating modes,and the cost and efficiency of detecting and isolating faults are different under different operating modes and isolation levels. Aiming at these problems, an optimal test selection method for fault detection and isolation in the multi-operating mode system is proposed by using the fault pair coding and rollout algorithm. Firstly,the faults in fault-test correlation matrices under different operating modes are combined to fault-pairs, which is used to construct the fault pair-test correlation matrices under different operating modes.Secondly, the final fault pair-test correlation matrix of the multioperating mode system is obtained by operating the fault pair-test correlation matrices under different operating modes. Based on the final fault pair-test correlation matrix, the necessary tests are selected by the rollout algorithm orderly. Finally, the effectiveness of the proposed method is verified by examples of the optimal test selection in the multi-operating mode system with faults isolated to different levels. The result shows that the proposed method can effectively mine the fault detection and isolation ability of tests and it is suitable for the optimal test selection of the multi-operating mode system with faults isolated to the replacement unit and specific fault.展开更多
Static secure techniques, such as firewall, hierarchy filtering, distributed disposing,layer management, autonomy agent, secure communication, were introduced in distributed intrusion detection. The self-protection ag...Static secure techniques, such as firewall, hierarchy filtering, distributed disposing,layer management, autonomy agent, secure communication, were introduced in distributed intrusion detection. The self-protection agents were designed, which have the distributed architecture,cooperate with the agents in intrusion detection in a loose-coupled manner, protect the security of intrusion detection system, and respond to the intrusion actively. A prototype self-protection agent was implemented by using the packet filter in operation system kernel. The results show that all the hosts with the part of network-based intrusion detection system and the whole intrusion detection system are invisible from the outside and network scanning, and cannot apperceive the existence of network-based intrusion detection system. The communication between every part is secure. In the low layer, the packet streams are controlled to avoid the buffer leaks exist ing in some system service process and back-door programs, so as to prevent users from misusing and vicious attack like Trojan Horse effectively.展开更多
In detecting system fault algorithms,the false alarm rate and undectect rate generated by residual Chi-square test can affect the stability of filters.The paper proposes a fault detection algorithm based on sequential...In detecting system fault algorithms,the false alarm rate and undectect rate generated by residual Chi-square test can affect the stability of filters.The paper proposes a fault detection algorithm based on sequential residual Chi-square test and applies to fault detection of an integrated navigation system.The simulation result shows that the algorithm can accurately detect the fault information of global positioning system(GPS),eliminate the influence of false alarm and missed detection on filter,and enhance fault tolerance of integrated navigation systems.展开更多
Hypothesis testing analysis and unknown parameter estimation of both the intermediate frequency(IF) and baseband GPS signal detection are given by using the generalized likelihood ratio test(GLRT) approach,applying th...Hypothesis testing analysis and unknown parameter estimation of both the intermediate frequency(IF) and baseband GPS signal detection are given by using the generalized likelihood ratio test(GLRT) approach,applying the model of GPS signal in white Gaussian noise,It is proved that the test statistic follows central or noncentral F distribution,It is also pointed out that the test statistic is nearly identical to central or noncentral chi-squared distribution because the processing samples are large enough to be considered as infinite in GPS acquisition problem.It is also proved that the probability of false alarm,the probability of detection and the threshold are affected largely when the hypothesis testing refers to the full pseudorandom noise(PRN) code phase and Doppler frequency search space cells instead of each individual cell.The performance of the test statistic is also given with combining the noncoherent integration.展开更多
In recent decades,many software reliability growth models(SRGMs) have been proposed for the engineers and testers in measuring the software reliability precisely.Most of them is established based on the non-homogene...In recent decades,many software reliability growth models(SRGMs) have been proposed for the engineers and testers in measuring the software reliability precisely.Most of them is established based on the non-homogeneous Poisson process(NHPP),and it is proved that the prediction accuracy of such models could be improved by adding the describing of characterization of testing effort.However,some research work indicates that the fault detection rate(FDR) is another key factor affects final software quality.Most early NHPPbased models deal with the FDR as constant or piecewise function,which does not fit the different testing stages well.Thus,this paper first incorporates a multivariate function of FDR,which is bathtub-shaped,into the NHPP-based SRGMs considering testing effort in order to further improve performance.A new model framework is proposed,and a stepwise method is used to apply the framework with real data sets to find the optimal model.Experimental studies show that the obtained new model can provide better performance of fitting and prediction compared with other traditional SRGMs.展开更多
Test selection is to select the test set with the least total cost or the least total number from the alternative test set on the premise of meeting the required testability indicators.The existing models and methods ...Test selection is to select the test set with the least total cost or the least total number from the alternative test set on the premise of meeting the required testability indicators.The existing models and methods are not suitable for system level test selection.The first problem is the lack of detailed data of the units’fault set and the test set,which makes it impossible to establish a traditional dependency matrix for the system level.The second problem is that the system level fault detection rate and the fault isolation rate(referred to as"two rates")are not enough to describe the fault diagnostic ability of the system level tests.An innovative dependency matrix(called combinatorial dependency matrix)composed of three submatrices is presented.The first problem is solved by simplifying the submatrix between the units’fault and the test,and the second problem is solved by establishing the system level fault detection rate,the fault isolation rate and the integrated fault detection rate(referred to as"three rates")based on the new matrix.The mathematical model of the system level test selection problem is constructed,and the binary genetic algorithm is applied to solve the problem,which achieves the goal of system level test selection.展开更多
Two novel adaptive distributed target detectors, the range frequency domain-Rao (RFD-Rao) and range frequency domain-Wald (RFD-Wald) tests are proposed in this work. The application methods for these tests consider a ...Two novel adaptive distributed target detectors, the range frequency domain-Rao (RFD-Rao) and range frequency domain-Wald (RFD-Wald) tests are proposed in this work. The application methods for these tests consider a partially homogeneous disturbance environment and a target range walking effect in a coherent processing interval (CPI). The asymptotic performance of the detectors is analyzed, and the constant false alarm rate (CFAR) properties with respect to the clutter covariance matrix and power level are shown. The performances of the proposed adaptive detectors are assessed through Monte-Carlo simulations, and the results are presented to demonstrate the effectiveness of the proposed detection algorithms compared to those of similar existing detectors.展开更多
A fault injection model-oriented testing strategy was proposed for detecting component vulnerabilities.A fault injection model was defined,and the faults were injected into the tested component based on the fault inje...A fault injection model-oriented testing strategy was proposed for detecting component vulnerabilities.A fault injection model was defined,and the faults were injected into the tested component based on the fault injection model to trigger security exceptions.The testing process could be recorded by the monitoring mechanism of the strategy,and the monitoring information was written into the security log.The component vulnerabilities could be detected by the detecting algorithm through analyzing the security log.Lastly,some experiments were done in an integration testing platform to verify the applicability of the strategy.The experimental results show that the strategy is effective and operable.The detecting rate is more than 90%for vulnerability components.展开更多
Against the background of the sand-flow foundation treatment engineering of Guangzhou Zhoutouzui variable cross-section immersed tunnel, a kind of sand deposit-detecting method was devised on the basis of full-scale m...Against the background of the sand-flow foundation treatment engineering of Guangzhou Zhoutouzui variable cross-section immersed tunnel, a kind of sand deposit-detecting method was devised on the basis of full-scale model test of sand-flow method. The real-time data of sand-deposit height and radius were obtained by the self-developed sand-deposit detectors. The test results show that the detecting method is simple and has high precision. In the use of sand-flow method, the sand-carrying capability of fluid is limited, and sand particles are all transported to the sand-deposit periphery through crater, gap and chutes after the sand deposit formed. The diffusion range of the particles outside the sand-deposit does not exceed 2.0 m. Severe sorting of sand particles is not observed because of the unique oblique-layered depositing process. The temporal and spatial distributions of gap and chutes directly affect the sand-deposit expansion, and the expansion trend of the average sand-deposit radius accords with quadratic time-history curve.展开更多
A measurement system for the scattering characteristics of warhead fragments based on high-speed imaging systems offers advantages such as simple deployment,flexible maneuverability,and high spatiotemporal resolution,...A measurement system for the scattering characteristics of warhead fragments based on high-speed imaging systems offers advantages such as simple deployment,flexible maneuverability,and high spatiotemporal resolution,enabling the acquisition of full-process data of the fragment scattering process.However,mismatches between camera frame rates and target velocities can lead to long motion blur tails of high-speed fragment targets,resulting in low signal-to-noise ratios and rendering conventional detection algorithms ineffective in dynamic strong interference testing environments.In this study,we propose a detection framework centered on dynamic strong interference disturbance signal separation and suppression.We introduce a mixture Gaussian model constrained under a joint spatialtemporal-transform domain Dirichlet process,combined with total variation regularization to achieve disturbance signal suppression.Experimental results demonstrate that the proposed disturbance suppression method can be integrated with certain conventional motion target detection tasks,enabling adaptation to real-world data to a certain extent.Moreover,we provide a specific implementation of this process,which achieves a detection rate close to 100%with an approximate 0%false alarm rate in multiple sets of real target field test data.This research effectively advances the development of the field of damage parameter testing.展开更多
Network security problems bring many imperceptible threats to the integrity of data and the reliability of device services,so proposing a network intrusion detection model with high reliability is of great research si...Network security problems bring many imperceptible threats to the integrity of data and the reliability of device services,so proposing a network intrusion detection model with high reliability is of great research significance for network security.Due to the strong generalization of invalid features during training process,it is more difficult for single autoencoder intrusion detection model to obtain effective results.A network intrusion detection model based on the Ensemble of Denoising Adversarial Autoencoder(EDAAE)was proposed,which had higher accuracy and reliability compared to the traditional anomaly detection model.Using the adversarial learning idea of Adversarial Autoencoder(AAE),the discriminator module was added to the original model,and the encoder part was used as the generator.The distribution of the hidden space of the data generated by the encoder matched with the distribution of the original data.The generalization of the model to the invalid features was also reduced to improve the detection accuracy.At the same time,the denoising autoencoder and integrated operation was introduced to prevent overfitting in the adversarial learning process.Experiments on the CICIDS2018 traffic dataset showed that the proposed intrusion detection model achieves an Accuracy of 95.23%,which out performs traditional self-encoders and other existing intrusion detection models methods in terms of overall performance.展开更多
A novel method for detecting anomalous program behavior is presented, which is applicable to hostbased intrusion detection systems that monitor system call activities. The method constructs a homogeneous Markov chain ...A novel method for detecting anomalous program behavior is presented, which is applicable to hostbased intrusion detection systems that monitor system call activities. The method constructs a homogeneous Markov chain model to characterize the normal behavior of a privileged program, and associates the states of the Markov chain with the unique system calls in the training data. At the detection stage, the probabilities that the Markov chain model supports the system call sequences generated by the program are computed. A low probability indicates an anomalous sequence that may result from intrusive activities. Then a decision rule based on the number of anomalous sequences in a locality frame is adopted to classify the program's behavior. The method gives attention to both computational efficiency and detection accuracy, and is especially suitable for on-line detection. It has been applied to practical host-based intrusion detection systems.展开更多
An important problem in wireless communication networks (WCNs) is that they have a minimum number of resources, which leads to high-security threats. An approach to find and detect the attacks is the intrusion detecti...An important problem in wireless communication networks (WCNs) is that they have a minimum number of resources, which leads to high-security threats. An approach to find and detect the attacks is the intrusion detection system (IDS). In this paper, the fuzzy lion Bayes system (FLBS) is proposed for intrusion detection mechanism. Initially, the data set is grouped into a number of clusters by the fuzzy clustering algorithm. Here, the Naive Bayes classifier is integrated with the lion optimization algorithm and the new lion naive Bayes (LNB) is created for optimally generating the probability measures. Then, the LNB model is applied to each data group, and the aggregated data is generated. After generating the aggregated data, the LNB model is applied to the aggregated data, and the abnormal nodes are identified based on the posterior probability function. The performance of the proposed FLBS system is evaluated using the KDD Cup 99 data and the comparative analysis is performed by the existing methods for the evaluation metrics accuracy and false acceptance rate (FAR). From the experimental results, it can be shown that the proposed system has the maximum performance, which shows the effectiveness of the proposed system in the intrusion detection.展开更多
Adaptive detection of range-spread targets is considered in the presence of subspace interference plus Gaussian clutter with unknown covariance matrix.The target signal and interference are supposed to lie in two line...Adaptive detection of range-spread targets is considered in the presence of subspace interference plus Gaussian clutter with unknown covariance matrix.The target signal and interference are supposed to lie in two linearly independent subspaces with deterministic but unknown coordinates.Relying on the two-step criteria,two adaptive detectors based on Gradient tests are proposed,in homogeneous and partially homogeneous clutter plus subspace interference,respectively.Both of the proposed detectors exhibit theoretically constant false alarm rate property against unknown clutter covariance matrix as well as the power level.Numerical results show that,the proposed detectors have better performance than their existing counterparts,especially for mismatches in the signal steering vectors.展开更多
Mobile ad hoc networking (MANET) has become an exciting and important technology in recent years, because of the rapid proliferation of wireless devices. Mobile ad hoc networks is highly vulnerable to attacks due to...Mobile ad hoc networking (MANET) has become an exciting and important technology in recent years, because of the rapid proliferation of wireless devices. Mobile ad hoc networks is highly vulnerable to attacks due to the open medium, dynamically changing network topology, cooperative algorithms, and lack of centralized monitoring and management point. The traditional way of protecting networks with firewalls and encryption software is no longer sufficient and effective for those features. A distributed intrusion detection approach based on timed automata is given. A cluster-based detection scheme is presented, where periodically a node is elected as the monitor node for a cluster. These monitor nodes can not only make local intrusion detection decisions, but also cooperatively take part in global intrusion detection. And then the timed automata is constructed by the way of manually abstracting the correct behaviours of the node according to the routing protocol of dynamic source routing (DSR). The monitor nodes can verify the behaviour of every nodes by timed automata, and validly detect real-time attacks without signatures of intrusion or trained data. Compared with the architecture where each node is its own IDS agent, the approach is much more efficient while maintaining the same level of effectiveness. Finally, the intrusion detection method is evaluated through simulation experiments.展开更多
Infrared target intrusion detection has significant applications in the fields of military defence and intelligent warning.In view of the characteristics of intrusion targets as well as inspection difficulties,an infr...Infrared target intrusion detection has significant applications in the fields of military defence and intelligent warning.In view of the characteristics of intrusion targets as well as inspection difficulties,an infrared target intrusion detection algorithm based on feature fusion and enhancement was proposed.This algorithm combines static target mode analysis and dynamic multi-frame correlation detection to extract infrared target features at different levels.Among them,LBP texture analysis can be used to effectively identify the posterior feature patterns which have been contained in the target library,while motion frame difference method can detect the moving regions of the image,improve the integrity of target regions such as camouflage,sheltering and deformation.In order to integrate the advantages of the two methods,the enhanced convolutional neural network was designed and the feature images obtained by the two methods were fused and enhanced.The enhancement module of the network strengthened and screened the targets,and realized the background suppression of infrared images.Based on the experiments,the effect of the proposed method and the comparison method on the background suppression and detection performance was evaluated,and the results showed that the SCRG and BSF values of the method in this paper had a better performance in multiple data sets,and it’s detection performance was far better than the comparison algorithm.The experiment results indicated that,compared with traditional infrared target detection methods,the proposed method could detect the infrared invasion target more accurately,and suppress the background noise more effectively.展开更多
To solve the problem that current intrusion detection model needs large-scale data in formulating the model in real-time use, an intrusion detection system model based on grey theory (GTIDS) is presented. Grey theor...To solve the problem that current intrusion detection model needs large-scale data in formulating the model in real-time use, an intrusion detection system model based on grey theory (GTIDS) is presented. Grey theory has merits of fewer requirements on original data scale, less limitation of the distribution pattern and simpler algorithm in modeling. With these merits GTIDS constructs model according to partial time sequence for rapid detect on intrusive act in secure system. In this detection model rate of false drop and false retrieval are effectively reduced through twice modeling and repeated detect on target data. Furthermore, GTIDS framework and specific process of modeling algorithm are presented. The affectivity of GTIDS is proved through emulated experiments comparing snort and next-generation intrusion detection expert system (NIDES) in SRI international.展开更多
An abstraction and an investigation to the worth of dendritic cells (DCs) ability to collect, process and present antigens are presented. Computationally, this ability is shown to provide a feature reduction mechanism...An abstraction and an investigation to the worth of dendritic cells (DCs) ability to collect, process and present antigens are presented. Computationally, this ability is shown to provide a feature reduction mechanism that could be used to reduce the complexity of a search space, a mechanism for development of highly specialized detector sets as well as a selective mechanism used in directing subsets of detectors to be activated when certain danger signals are present. It is shown that DCs, primed by different danger signals, provide a basis for different anomaly detection pathways. Different antigen-peptides are developed based on different danger signals present, and these peptides are presented to different adaptive layer detectors that correspond to the given danger signal. Experiments are then undertaken that compare current approaches, where a full antigen structure and the whole repertoire of detectors are used, with the proposed approach. Experiment results indicate that such an approach is feasible and can help reduce the complexity of the problem by significant levels. It also improves the efficiency of the system, given that only a subset of detectors are involved during the detection process. Having several different sets of detectors increases the robustness of the resulting system. Detectors developed based on peptides are also highly discriminative, which reduces the false positives rates, making the approach feasible for a real time environment.展开更多
基金supported by the Natural Science Foundation of Shannxi Province(2017JQ5016)the Joint Laboratory for Sea Measurement and Control of Aircraft(DOM2016OF011)
文摘The complex systems are often in the structure of multi-operating modes, and the components implementing system functions are different under different operation modes, which results in the problems that components often fail in different operating modes, faults can be only detected in specified operating modes, tests can be available in specified operating modes,and the cost and efficiency of detecting and isolating faults are different under different operating modes and isolation levels. Aiming at these problems, an optimal test selection method for fault detection and isolation in the multi-operating mode system is proposed by using the fault pair coding and rollout algorithm. Firstly,the faults in fault-test correlation matrices under different operating modes are combined to fault-pairs, which is used to construct the fault pair-test correlation matrices under different operating modes.Secondly, the final fault pair-test correlation matrix of the multioperating mode system is obtained by operating the fault pair-test correlation matrices under different operating modes. Based on the final fault pair-test correlation matrix, the necessary tests are selected by the rollout algorithm orderly. Finally, the effectiveness of the proposed method is verified by examples of the optimal test selection in the multi-operating mode system with faults isolated to different levels. The result shows that the proposed method can effectively mine the fault detection and isolation ability of tests and it is suitable for the optimal test selection of the multi-operating mode system with faults isolated to the replacement unit and specific fault.
文摘Static secure techniques, such as firewall, hierarchy filtering, distributed disposing,layer management, autonomy agent, secure communication, were introduced in distributed intrusion detection. The self-protection agents were designed, which have the distributed architecture,cooperate with the agents in intrusion detection in a loose-coupled manner, protect the security of intrusion detection system, and respond to the intrusion actively. A prototype self-protection agent was implemented by using the packet filter in operation system kernel. The results show that all the hosts with the part of network-based intrusion detection system and the whole intrusion detection system are invisible from the outside and network scanning, and cannot apperceive the existence of network-based intrusion detection system. The communication between every part is secure. In the low layer, the packet streams are controlled to avoid the buffer leaks exist ing in some system service process and back-door programs, so as to prevent users from misusing and vicious attack like Trojan Horse effectively.
基金supported by the National Natural Science Foundation of China(6063403060702066)+1 种基金the Aerospace Science Foundation(20090853013)Fundmental Research Foundation of NWPU(JC201015),Soaring Star of NWPU
文摘In detecting system fault algorithms,the false alarm rate and undectect rate generated by residual Chi-square test can affect the stability of filters.The paper proposes a fault detection algorithm based on sequential residual Chi-square test and applies to fault detection of an integrated navigation system.The simulation result shows that the algorithm can accurately detect the fault information of global positioning system(GPS),eliminate the influence of false alarm and missed detection on filter,and enhance fault tolerance of integrated navigation systems.
文摘Hypothesis testing analysis and unknown parameter estimation of both the intermediate frequency(IF) and baseband GPS signal detection are given by using the generalized likelihood ratio test(GLRT) approach,applying the model of GPS signal in white Gaussian noise,It is proved that the test statistic follows central or noncentral F distribution,It is also pointed out that the test statistic is nearly identical to central or noncentral chi-squared distribution because the processing samples are large enough to be considered as infinite in GPS acquisition problem.It is also proved that the probability of false alarm,the probability of detection and the threshold are affected largely when the hypothesis testing refers to the full pseudorandom noise(PRN) code phase and Doppler frequency search space cells instead of each individual cell.The performance of the test statistic is also given with combining the noncoherent integration.
基金supported by the National Natural Science Foundation of China(61070220)the Anhui Provincial Natural Science Foundation(1408085MKL79)
文摘In recent decades,many software reliability growth models(SRGMs) have been proposed for the engineers and testers in measuring the software reliability precisely.Most of them is established based on the non-homogeneous Poisson process(NHPP),and it is proved that the prediction accuracy of such models could be improved by adding the describing of characterization of testing effort.However,some research work indicates that the fault detection rate(FDR) is another key factor affects final software quality.Most early NHPPbased models deal with the FDR as constant or piecewise function,which does not fit the different testing stages well.Thus,this paper first incorporates a multivariate function of FDR,which is bathtub-shaped,into the NHPP-based SRGMs considering testing effort in order to further improve performance.A new model framework is proposed,and a stepwise method is used to apply the framework with real data sets to find the optimal model.Experimental studies show that the obtained new model can provide better performance of fitting and prediction compared with other traditional SRGMs.
基金supported by the National Natural Science Foundation of China(51605482)the Equipment Pre-research Project(41403020101).
文摘Test selection is to select the test set with the least total cost or the least total number from the alternative test set on the premise of meeting the required testability indicators.The existing models and methods are not suitable for system level test selection.The first problem is the lack of detailed data of the units’fault set and the test set,which makes it impossible to establish a traditional dependency matrix for the system level.The second problem is that the system level fault detection rate and the fault isolation rate(referred to as"two rates")are not enough to describe the fault diagnostic ability of the system level tests.An innovative dependency matrix(called combinatorial dependency matrix)composed of three submatrices is presented.The first problem is solved by simplifying the submatrix between the units’fault and the test,and the second problem is solved by establishing the system level fault detection rate,the fault isolation rate and the integrated fault detection rate(referred to as"three rates")based on the new matrix.The mathematical model of the system level test selection problem is constructed,and the binary genetic algorithm is applied to solve the problem,which achieves the goal of system level test selection.
基金Project(61771367)supported by the National Natural Science Foundation of China
文摘Two novel adaptive distributed target detectors, the range frequency domain-Rao (RFD-Rao) and range frequency domain-Wald (RFD-Wald) tests are proposed in this work. The application methods for these tests consider a partially homogeneous disturbance environment and a target range walking effect in a coherent processing interval (CPI). The asymptotic performance of the detectors is analyzed, and the constant false alarm rate (CFAR) properties with respect to the clutter covariance matrix and power level are shown. The performances of the proposed adaptive detectors are assessed through Monte-Carlo simulations, and the results are presented to demonstrate the effectiveness of the proposed detection algorithms compared to those of similar existing detectors.
基金Project(513150601)supported by the National Pre-Research Project Foundation of China
文摘A fault injection model-oriented testing strategy was proposed for detecting component vulnerabilities.A fault injection model was defined,and the faults were injected into the tested component based on the fault injection model to trigger security exceptions.The testing process could be recorded by the monitoring mechanism of the strategy,and the monitoring information was written into the security log.The component vulnerabilities could be detected by the detecting algorithm through analyzing the security log.Lastly,some experiments were done in an integration testing platform to verify the applicability of the strategy.The experimental results show that the strategy is effective and operable.The detecting rate is more than 90%for vulnerability components.
基金Project(51108190) supported by the National Natural Science Foundation of ChinaProject(2012ZC27) supported by the Independence Research Subject from State Key Laboratory of Subtropical Building Science,ChinaProject(GTCC 2008-253) supported by the Research Subject from Guangzhou City,China
文摘Against the background of the sand-flow foundation treatment engineering of Guangzhou Zhoutouzui variable cross-section immersed tunnel, a kind of sand deposit-detecting method was devised on the basis of full-scale model test of sand-flow method. The real-time data of sand-deposit height and radius were obtained by the self-developed sand-deposit detectors. The test results show that the detecting method is simple and has high precision. In the use of sand-flow method, the sand-carrying capability of fluid is limited, and sand particles are all transported to the sand-deposit periphery through crater, gap and chutes after the sand deposit formed. The diffusion range of the particles outside the sand-deposit does not exceed 2.0 m. Severe sorting of sand particles is not observed because of the unique oblique-layered depositing process. The temporal and spatial distributions of gap and chutes directly affect the sand-deposit expansion, and the expansion trend of the average sand-deposit radius accords with quadratic time-history curve.
文摘A measurement system for the scattering characteristics of warhead fragments based on high-speed imaging systems offers advantages such as simple deployment,flexible maneuverability,and high spatiotemporal resolution,enabling the acquisition of full-process data of the fragment scattering process.However,mismatches between camera frame rates and target velocities can lead to long motion blur tails of high-speed fragment targets,resulting in low signal-to-noise ratios and rendering conventional detection algorithms ineffective in dynamic strong interference testing environments.In this study,we propose a detection framework centered on dynamic strong interference disturbance signal separation and suppression.We introduce a mixture Gaussian model constrained under a joint spatialtemporal-transform domain Dirichlet process,combined with total variation regularization to achieve disturbance signal suppression.Experimental results demonstrate that the proposed disturbance suppression method can be integrated with certain conventional motion target detection tasks,enabling adaptation to real-world data to a certain extent.Moreover,we provide a specific implementation of this process,which achieves a detection rate close to 100%with an approximate 0%false alarm rate in multiple sets of real target field test data.This research effectively advances the development of the field of damage parameter testing.
文摘Network security problems bring many imperceptible threats to the integrity of data and the reliability of device services,so proposing a network intrusion detection model with high reliability is of great research significance for network security.Due to the strong generalization of invalid features during training process,it is more difficult for single autoencoder intrusion detection model to obtain effective results.A network intrusion detection model based on the Ensemble of Denoising Adversarial Autoencoder(EDAAE)was proposed,which had higher accuracy and reliability compared to the traditional anomaly detection model.Using the adversarial learning idea of Adversarial Autoencoder(AAE),the discriminator module was added to the original model,and the encoder part was used as the generator.The distribution of the hidden space of the data generated by the encoder matched with the distribution of the original data.The generalization of the model to the invalid features was also reduced to improve the detection accuracy.At the same time,the denoising autoencoder and integrated operation was introduced to prevent overfitting in the adversarial learning process.Experiments on the CICIDS2018 traffic dataset showed that the proposed intrusion detection model achieves an Accuracy of 95.23%,which out performs traditional self-encoders and other existing intrusion detection models methods in terms of overall performance.
基金the National Grand Fundamental Research "973" Program of China (2004CB318109)the High-Technology Research and Development Plan of China (863-307-7-5)the National Information Security 242 Program ofChina (2005C39).
文摘A novel method for detecting anomalous program behavior is presented, which is applicable to hostbased intrusion detection systems that monitor system call activities. The method constructs a homogeneous Markov chain model to characterize the normal behavior of a privileged program, and associates the states of the Markov chain with the unique system calls in the training data. At the detection stage, the probabilities that the Markov chain model supports the system call sequences generated by the program are computed. A low probability indicates an anomalous sequence that may result from intrusive activities. Then a decision rule based on the number of anomalous sequences in a locality frame is adopted to classify the program's behavior. The method gives attention to both computational efficiency and detection accuracy, and is especially suitable for on-line detection. It has been applied to practical host-based intrusion detection systems.
文摘An important problem in wireless communication networks (WCNs) is that they have a minimum number of resources, which leads to high-security threats. An approach to find and detect the attacks is the intrusion detection system (IDS). In this paper, the fuzzy lion Bayes system (FLBS) is proposed for intrusion detection mechanism. Initially, the data set is grouped into a number of clusters by the fuzzy clustering algorithm. Here, the Naive Bayes classifier is integrated with the lion optimization algorithm and the new lion naive Bayes (LNB) is created for optimally generating the probability measures. Then, the LNB model is applied to each data group, and the aggregated data is generated. After generating the aggregated data, the LNB model is applied to the aggregated data, and the abnormal nodes are identified based on the posterior probability function. The performance of the proposed FLBS system is evaluated using the KDD Cup 99 data and the comparative analysis is performed by the existing methods for the evaluation metrics accuracy and false acceptance rate (FAR). From the experimental results, it can be shown that the proposed system has the maximum performance, which shows the effectiveness of the proposed system in the intrusion detection.
基金supported by the National Natural Science Foundation of China(61971432)Taishan Scholar Project of Shandong Province(tsqn201909156)the Outstanding Youth Innovation Team Program of University in Shandong Province(2019KJN031)。
文摘Adaptive detection of range-spread targets is considered in the presence of subspace interference plus Gaussian clutter with unknown covariance matrix.The target signal and interference are supposed to lie in two linearly independent subspaces with deterministic but unknown coordinates.Relying on the two-step criteria,two adaptive detectors based on Gradient tests are proposed,in homogeneous and partially homogeneous clutter plus subspace interference,respectively.Both of the proposed detectors exhibit theoretically constant false alarm rate property against unknown clutter covariance matrix as well as the power level.Numerical results show that,the proposed detectors have better performance than their existing counterparts,especially for mismatches in the signal steering vectors.
基金the National High Technology Development "863" Program of China (2006AA01Z436, 2007AA01Z452)the National Natural Science Foundation of China(60702042).
文摘Mobile ad hoc networking (MANET) has become an exciting and important technology in recent years, because of the rapid proliferation of wireless devices. Mobile ad hoc networks is highly vulnerable to attacks due to the open medium, dynamically changing network topology, cooperative algorithms, and lack of centralized monitoring and management point. The traditional way of protecting networks with firewalls and encryption software is no longer sufficient and effective for those features. A distributed intrusion detection approach based on timed automata is given. A cluster-based detection scheme is presented, where periodically a node is elected as the monitor node for a cluster. These monitor nodes can not only make local intrusion detection decisions, but also cooperatively take part in global intrusion detection. And then the timed automata is constructed by the way of manually abstracting the correct behaviours of the node according to the routing protocol of dynamic source routing (DSR). The monitor nodes can verify the behaviour of every nodes by timed automata, and validly detect real-time attacks without signatures of intrusion or trained data. Compared with the architecture where each node is its own IDS agent, the approach is much more efficient while maintaining the same level of effectiveness. Finally, the intrusion detection method is evaluated through simulation experiments.
基金This work was supported by the National Natural Science Foundation of China(grant number:61671470)the National Key Research and Development Program of China(grant number:2016YFC0802904)the Postdoctoral Science Foundation Funded Project of China(grant number:2017M623423).
文摘Infrared target intrusion detection has significant applications in the fields of military defence and intelligent warning.In view of the characteristics of intrusion targets as well as inspection difficulties,an infrared target intrusion detection algorithm based on feature fusion and enhancement was proposed.This algorithm combines static target mode analysis and dynamic multi-frame correlation detection to extract infrared target features at different levels.Among them,LBP texture analysis can be used to effectively identify the posterior feature patterns which have been contained in the target library,while motion frame difference method can detect the moving regions of the image,improve the integrity of target regions such as camouflage,sheltering and deformation.In order to integrate the advantages of the two methods,the enhanced convolutional neural network was designed and the feature images obtained by the two methods were fused and enhanced.The enhancement module of the network strengthened and screened the targets,and realized the background suppression of infrared images.Based on the experiments,the effect of the proposed method and the comparison method on the background suppression and detection performance was evaluated,and the results showed that the SCRG and BSF values of the method in this paper had a better performance in multiple data sets,and it’s detection performance was far better than the comparison algorithm.The experiment results indicated that,compared with traditional infrared target detection methods,the proposed method could detect the infrared invasion target more accurately,and suppress the background noise more effectively.
文摘To solve the problem that current intrusion detection model needs large-scale data in formulating the model in real-time use, an intrusion detection system model based on grey theory (GTIDS) is presented. Grey theory has merits of fewer requirements on original data scale, less limitation of the distribution pattern and simpler algorithm in modeling. With these merits GTIDS constructs model according to partial time sequence for rapid detect on intrusive act in secure system. In this detection model rate of false drop and false retrieval are effectively reduced through twice modeling and repeated detect on target data. Furthermore, GTIDS framework and specific process of modeling algorithm are presented. The affectivity of GTIDS is proved through emulated experiments comparing snort and next-generation intrusion detection expert system (NIDES) in SRI international.
基金Project(50275150) supported by the National Natural Science Foundation of ChinaProjects(20040533035, 20070533131) supported by the National Research Foundation for the Doctoral Program of Higher Education of China
文摘An abstraction and an investigation to the worth of dendritic cells (DCs) ability to collect, process and present antigens are presented. Computationally, this ability is shown to provide a feature reduction mechanism that could be used to reduce the complexity of a search space, a mechanism for development of highly specialized detector sets as well as a selective mechanism used in directing subsets of detectors to be activated when certain danger signals are present. It is shown that DCs, primed by different danger signals, provide a basis for different anomaly detection pathways. Different antigen-peptides are developed based on different danger signals present, and these peptides are presented to different adaptive layer detectors that correspond to the given danger signal. Experiments are then undertaken that compare current approaches, where a full antigen structure and the whole repertoire of detectors are used, with the proposed approach. Experiment results indicate that such an approach is feasible and can help reduce the complexity of the problem by significant levels. It also improves the efficiency of the system, given that only a subset of detectors are involved during the detection process. Having several different sets of detectors increases the robustness of the resulting system. Detectors developed based on peptides are also highly discriminative, which reduces the false positives rates, making the approach feasible for a real time environment.