期刊文献+
共找到1,718篇文章
< 1 2 86 >
每页显示 20 50 100
Network Intrusion Detection Model Based on Ensemble of Denoising Adversarial Autoencoder 被引量:1
1
作者 KE Rui XING Bin +1 位作者 SI Zhan-jun ZHANG Ying-xue 《印刷与数字媒体技术研究》 CAS 北大核心 2024年第5期185-194,218,共11页
Network security problems bring many imperceptible threats to the integrity of data and the reliability of device services,so proposing a network intrusion detection model with high reliability is of great research si... Network security problems bring many imperceptible threats to the integrity of data and the reliability of device services,so proposing a network intrusion detection model with high reliability is of great research significance for network security.Due to the strong generalization of invalid features during training process,it is more difficult for single autoencoder intrusion detection model to obtain effective results.A network intrusion detection model based on the Ensemble of Denoising Adversarial Autoencoder(EDAAE)was proposed,which had higher accuracy and reliability compared to the traditional anomaly detection model.Using the adversarial learning idea of Adversarial Autoencoder(AAE),the discriminator module was added to the original model,and the encoder part was used as the generator.The distribution of the hidden space of the data generated by the encoder matched with the distribution of the original data.The generalization of the model to the invalid features was also reduced to improve the detection accuracy.At the same time,the denoising autoencoder and integrated operation was introduced to prevent overfitting in the adversarial learning process.Experiments on the CICIDS2018 traffic dataset showed that the proposed intrusion detection model achieves an Accuracy of 95.23%,which out performs traditional self-encoders and other existing intrusion detection models methods in terms of overall performance. 展开更多
关键词 intrusion detection Noise-Reducing autoencoder Generative adversarial networks Integrated learning
在线阅读 下载PDF
Multi-agent cooperative intrusion response in mobile adhoc networks 被引量:6
2
作者 Yi Ping Zou Futai +1 位作者 Jiang Xinghao Li Jianhua 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第4期785-794,共10页
The nature of adhoc networks makes them vulnerable to security attacks. Many security technologies such as intrusion prevention and intrusion detection are passive in response to intrusions in that their countermea- s... The nature of adhoc networks makes them vulnerable to security attacks. Many security technologies such as intrusion prevention and intrusion detection are passive in response to intrusions in that their countermea- sures are only to protect the networks, and there is no automated network-wide counteraction against detected intrusions, the architecture of cooperation intrusion response based multi-agent is propose. The architecture is composed of mobile agents. Monitor agent resides on every node and monitors its neighbor nodes. Decision agent collects information from monitor nodes and detects an intrusion by security policies. When an intruder is found in the architecture, the block agents will get to the neighbor nodes of the intruder and form the mobile firewall to isolate the intruder. In the end, we evaluate it by simulation. 展开更多
关键词 computer networks security mobile agent mobile adhoc networks intrusion detection intrusion response
在线阅读 下载PDF
Distributed intrusion detection for mobile ad hoc networks 被引量:7
3
作者 Yi Ping Jiang Xinghao +1 位作者 Wu Yue Liu Ning 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第4期851-859,共9页
Mobile ad hoc networking (MANET) has become an exciting and important technology in recent years, because of the rapid proliferation of wireless devices. Mobile ad hoc networks is highly vulnerable to attacks due to... Mobile ad hoc networking (MANET) has become an exciting and important technology in recent years, because of the rapid proliferation of wireless devices. Mobile ad hoc networks is highly vulnerable to attacks due to the open medium, dynamically changing network topology, cooperative algorithms, and lack of centralized monitoring and management point. The traditional way of protecting networks with firewalls and encryption software is no longer sufficient and effective for those features. A distributed intrusion detection approach based on timed automata is given. A cluster-based detection scheme is presented, where periodically a node is elected as the monitor node for a cluster. These monitor nodes can not only make local intrusion detection decisions, but also cooperatively take part in global intrusion detection. And then the timed automata is constructed by the way of manually abstracting the correct behaviours of the node according to the routing protocol of dynamic source routing (DSR). The monitor nodes can verify the behaviour of every nodes by timed automata, and validly detect real-time attacks without signatures of intrusion or trained data. Compared with the architecture where each node is its own IDS agent, the approach is much more efficient while maintaining the same level of effectiveness. Finally, the intrusion detection method is evaluated through simulation experiments. 展开更多
关键词 mobile ad hoc networks routing protocol security intrusion detection timed automata.
在线阅读 下载PDF
FLBS: Fuzzy lion Bayes system for intrusion detection in wireless communication network 被引量:2
4
作者 NARENDRASINH B Gohil VDEVYAS Dwivedi 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第11期3017-3033,共17页
An important problem in wireless communication networks (WCNs) is that they have a minimum number of resources, which leads to high-security threats. An approach to find and detect the attacks is the intrusion detecti... An important problem in wireless communication networks (WCNs) is that they have a minimum number of resources, which leads to high-security threats. An approach to find and detect the attacks is the intrusion detection system (IDS). In this paper, the fuzzy lion Bayes system (FLBS) is proposed for intrusion detection mechanism. Initially, the data set is grouped into a number of clusters by the fuzzy clustering algorithm. Here, the Naive Bayes classifier is integrated with the lion optimization algorithm and the new lion naive Bayes (LNB) is created for optimally generating the probability measures. Then, the LNB model is applied to each data group, and the aggregated data is generated. After generating the aggregated data, the LNB model is applied to the aggregated data, and the abnormal nodes are identified based on the posterior probability function. The performance of the proposed FLBS system is evaluated using the KDD Cup 99 data and the comparative analysis is performed by the existing methods for the evaluation metrics accuracy and false acceptance rate (FAR). From the experimental results, it can be shown that the proposed system has the maximum performance, which shows the effectiveness of the proposed system in the intrusion detection. 展开更多
关键词 intrusion detection wireless communication network fuzzy clustering naive Bayes classifier lion naive Bayes system
在线阅读 下载PDF
Design and implementation of self-protection agent for network-based intrusion detection system 被引量:3
5
作者 ZHU Shu-ren(朱树人) LI Wei-qin(李伟琴) 《Journal of Central South University of Technology》 2003年第1期69-73,共5页
Static secure techniques, such as firewall, hierarchy filtering, distributed disposing,layer management, autonomy agent, secure communication, were introduced in distributed intrusion detection. The self-protection ag... Static secure techniques, such as firewall, hierarchy filtering, distributed disposing,layer management, autonomy agent, secure communication, were introduced in distributed intrusion detection. The self-protection agents were designed, which have the distributed architecture,cooperate with the agents in intrusion detection in a loose-coupled manner, protect the security of intrusion detection system, and respond to the intrusion actively. A prototype self-protection agent was implemented by using the packet filter in operation system kernel. The results show that all the hosts with the part of network-based intrusion detection system and the whole intrusion detection system are invisible from the outside and network scanning, and cannot apperceive the existence of network-based intrusion detection system. The communication between every part is secure. In the low layer, the packet streams are controlled to avoid the buffer leaks exist ing in some system service process and back-door programs, so as to prevent users from misusing and vicious attack like Trojan Horse effectively. 展开更多
关键词 intrusion detection SYSTEM (IDS) network-based intrusion detection system(NIDS) SELF-PROTECTION AGENT IP filter
在线阅读 下载PDF
Cluster-based Intrusion Detection in Wireless Ad-Hoc Networks
6
作者 DiWu ZhishengLiu +1 位作者 YongxinFeng GuangxingWang 《计算机工程与应用》 CSCD 北大核心 2004年第29期122-125,共4页
There are inherent vulnerabilities that are not easily preventable in the mobile Ad-Hoc networks.To build a highly secure wireless Ad-Hoc network,intrusion detection and response techniques need to be deployed;The int... There are inherent vulnerabilities that are not easily preventable in the mobile Ad-Hoc networks.To build a highly secure wireless Ad-Hoc network,intrusion detection and response techniques need to be deployed;The intrusion detection and cluster-based Ad-Hoc networks has been introduced,then,an architecture for better intrusion detection based on cluster using Data Mining in wireless Ad -Hoc networks has been shown.A statistical anomaly detection approach has been used.The anomaly detection and trace analysis have been done locally in each node and possibly through cooperation with clusterhead detection in the network. 展开更多
关键词 入侵检测 移动AD-HOC网络 数据挖掘 网络安全 聚类检测
在线阅读 下载PDF
An infrared target intrusion detection method based on feature fusion and enhancement 被引量:13
7
作者 Xiaodong Hu Xinqing Wang +3 位作者 Xin Yang Dong Wang Peng Zhang Yi Xiao 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2020年第3期737-746,共10页
Infrared target intrusion detection has significant applications in the fields of military defence and intelligent warning.In view of the characteristics of intrusion targets as well as inspection difficulties,an infr... Infrared target intrusion detection has significant applications in the fields of military defence and intelligent warning.In view of the characteristics of intrusion targets as well as inspection difficulties,an infrared target intrusion detection algorithm based on feature fusion and enhancement was proposed.This algorithm combines static target mode analysis and dynamic multi-frame correlation detection to extract infrared target features at different levels.Among them,LBP texture analysis can be used to effectively identify the posterior feature patterns which have been contained in the target library,while motion frame difference method can detect the moving regions of the image,improve the integrity of target regions such as camouflage,sheltering and deformation.In order to integrate the advantages of the two methods,the enhanced convolutional neural network was designed and the feature images obtained by the two methods were fused and enhanced.The enhancement module of the network strengthened and screened the targets,and realized the background suppression of infrared images.Based on the experiments,the effect of the proposed method and the comparison method on the background suppression and detection performance was evaluated,and the results showed that the SCRG and BSF values of the method in this paper had a better performance in multiple data sets,and it’s detection performance was far better than the comparison algorithm.The experiment results indicated that,compared with traditional infrared target detection methods,the proposed method could detect the infrared invasion target more accurately,and suppress the background noise more effectively. 展开更多
关键词 Target intrusion detection Convolutional neural network Feature fusion Infrared target
在线阅读 下载PDF
Grey-theory based intrusion detection model 被引量:3
8
作者 Qin Boping Zhou Xianwei Yang Jun Song Cunyi 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2006年第1期230-235,共6页
To solve the problem that current intrusion detection model needs large-scale data in formulating the model in real-time use, an intrusion detection system model based on grey theory (GTIDS) is presented. Grey theor... To solve the problem that current intrusion detection model needs large-scale data in formulating the model in real-time use, an intrusion detection system model based on grey theory (GTIDS) is presented. Grey theory has merits of fewer requirements on original data scale, less limitation of the distribution pattern and simpler algorithm in modeling. With these merits GTIDS constructs model according to partial time sequence for rapid detect on intrusive act in secure system. In this detection model rate of false drop and false retrieval are effectively reduced through twice modeling and repeated detect on target data. Furthermore, GTIDS framework and specific process of modeling algorithm are presented. The affectivity of GTIDS is proved through emulated experiments comparing snort and next-generation intrusion detection expert system (NIDES) in SRI international. 展开更多
关键词 network security intrusion detection grey theory model.
在线阅读 下载PDF
Novel design concepts for network intrusion systems based on dendritic cells processes 被引量:2
9
作者 RICHARD M R 谭冠政 +1 位作者 ONGALO P N F CHERUIYOT W 《Journal of Central South University》 SCIE EI CAS 2013年第8期2175-2185,共11页
An abstraction and an investigation to the worth of dendritic cells (DCs) ability to collect, process and present antigens are presented. Computationally, this ability is shown to provide a feature reduction mechanism... An abstraction and an investigation to the worth of dendritic cells (DCs) ability to collect, process and present antigens are presented. Computationally, this ability is shown to provide a feature reduction mechanism that could be used to reduce the complexity of a search space, a mechanism for development of highly specialized detector sets as well as a selective mechanism used in directing subsets of detectors to be activated when certain danger signals are present. It is shown that DCs, primed by different danger signals, provide a basis for different anomaly detection pathways. Different antigen-peptides are developed based on different danger signals present, and these peptides are presented to different adaptive layer detectors that correspond to the given danger signal. Experiments are then undertaken that compare current approaches, where a full antigen structure and the whole repertoire of detectors are used, with the proposed approach. Experiment results indicate that such an approach is feasible and can help reduce the complexity of the problem by significant levels. It also improves the efficiency of the system, given that only a subset of detectors are involved during the detection process. Having several different sets of detectors increases the robustness of the resulting system. Detectors developed based on peptides are also highly discriminative, which reduces the false positives rates, making the approach feasible for a real time environment. 展开更多
关键词 artificial immune systems network intrusion detection anomaly detection feature reduction negative selectionalgorithm danger model
在线阅读 下载PDF
基于logs2intrusions与Web Log Explorer的综合取证分析研究 被引量:1
10
作者 杨晶 赵鑫 芦天亮 《信息网络安全》 CSCD 2017年第3期33-38,共6页
随着互联网应用的迅猛增长,其受到的安全威胁也越来越严重,尤其是网络入侵攻击事件造成了极大的危害。目前,对入侵行为检测的一种必要手段是对日志数据进行分析,网站日志文件是记录Web服务器接收处理请求以及运行时错误等各种原始信息... 随着互联网应用的迅猛增长,其受到的安全威胁也越来越严重,尤其是网络入侵攻击事件造成了极大的危害。目前,对入侵行为检测的一种必要手段是对日志数据进行分析,网站日志文件是记录Web服务器接收处理请求以及运行时错误等各种原始信息的文件,但目前来看网络日志文件的作用还有待进一步提升。文章分析了logs2intrusions、Web Log Explorer、光年SEO日志分析系统、逆火网站分析器这四种日志分析工具的特性,提出了基于logs2intrusions和Web Log Explorer两个工具优势的综合取证分析技术,实现了对大批量入侵攻击日志数据的快速分析处理,提高了对网络入侵攻击行为识别的准确率。 展开更多
关键词 网络入侵检测 logs2intrusions WebLogExplorer 系统日志
在线阅读 下载PDF
Quorum systems for intrusion-tolerance based on trusted timely computing base
11
作者 Hua Zhou Xiangru Meng Li Zhang Xiangdong Qiao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第1期168-174,共7页
Quorum systems have been used to solve the problem of data consistency in distributed fault-tolerance systems. But when intrusions occur, traditional quorum systems have some disadvantages. For example, synchronous qu... Quorum systems have been used to solve the problem of data consistency in distributed fault-tolerance systems. But when intrusions occur, traditional quorum systems have some disadvantages. For example, synchronous quorum systems are subject to DOS attacks, while asynchronous quorum systems need a larger system size (at least 3f+1 for generic data, and f fewer for self-verifying data). In order to solve the problems above, an intrusion-tolerance quorum system (ITQS) of hybrid time model based on trust timely computing base is presented (TTCB). The TTCB is a trust secure real-time component inside the server with a well defined interface and separated from the operation system. It is in the synchronous communication environment while the application layer in the server deals with read-write requests and executes update-copy protocols asynchronously. The architectural hybridization of synchrony and asynchrony can achieve the data consistency and availability correctly. We also build two kinds of ITQSes based on TTCB, i.e., the symmetrical and the asymmetrical TTCB quorum systems. In the performance evaluations, we show that TTCB quorum systems are of smaller size, lower load and higher availability. 展开更多
关键词 network security intrusion-tolerance quorum system trusted timely computing base (TTCB) CONSISTENCY availability.
在线阅读 下载PDF
基于深度学习的网络入侵检测系统综述 被引量:5
12
作者 邓淼磊 阚雨培 +3 位作者 孙川川 徐海航 樊少珺 周鑫 《计算机应用》 北大核心 2025年第2期453-466,共14页
入侵检测系统(IDS)等安全机制已被用于保护网络基础设施和网络通信免受网络攻击。随着深度学习技术的不断进步,基于深度学习的IDS逐渐成为网络安全领域的研究热点。通过对文献广泛调研,详细介绍利用深度学习技术进行网络入侵检测的最新... 入侵检测系统(IDS)等安全机制已被用于保护网络基础设施和网络通信免受网络攻击。随着深度学习技术的不断进步,基于深度学习的IDS逐渐成为网络安全领域的研究热点。通过对文献广泛调研,详细介绍利用深度学习技术进行网络入侵检测的最新研究进展。首先,简要概述当前几种IDS;其次,介绍基于深度学习的IDS中常用的数据集和评价指标;然后,总结网络IDS中常用的深度学习模型及其应用场景;最后,探讨当前相关研究面临的问题,并提出未来的发展方向。 展开更多
关键词 网络安全 入侵检测 深度学习 异常检测 网络入侵检测系统
在线阅读 下载PDF
基于马尔可夫判定过程的光纤网络入侵检测方法 被引量:2
13
作者 郭海智 贾志诚 李金库 《激光杂志》 北大核心 2025年第3期193-198,共6页
为了可以精准实现光纤网络入侵检测,提出基于马尔可夫判定过程的光纤网络入侵检测方法。通过频域分块技术对光纤网络信号展开信号提纯,利用经验模态分解方法对入侵信号进行初始检测,采用模糊层次分析法确定网络接入行为信用度,对于信用... 为了可以精准实现光纤网络入侵检测,提出基于马尔可夫判定过程的光纤网络入侵检测方法。通过频域分块技术对光纤网络信号展开信号提纯,利用经验模态分解方法对入侵信号进行初始检测,采用模糊层次分析法确定网络接入行为信用度,对于信用度较高的接入行为直接通过,剩余接入行为则利用马尔可夫判定过程展开判定,由此实现入侵检测。实验结果表明,该方法能够快速、准确检测入侵信号,特别是针对Pording数据集所遭受侵入式窃听行为,检出率高达0.985。在整个实验中,该方法检出率的最小值也可以达到0.920,平均检测误判率、平均检测漏判率的最大值分别为0.01、0.02。这说明该方法显著提升光纤网络的安全性和稳定性,为保障网络安全提供有力的支持。 展开更多
关键词 马尔可夫判定过程 光纤网络 经验模态分解 模糊层次分析法 入侵检测
在线阅读 下载PDF
融合改进采样技术和SRFCNN-BiLSTM的入侵检测方法 被引量:1
14
作者 陈虹 由雨竹 +2 位作者 金海波 武聪 邹佳澎 《计算机工程与应用》 北大核心 2025年第9期315-324,共10页
针对目前很多入侵检测方法中因数据不平衡和特征冗余导致检测率低等问题,提出融合改进采样技术和SRFCNN-BiLSTM的入侵检测方法。设计一种FBS-RE混合采样算法,即Borderline-SMOTE过采样和RENN欠采样同时对多数类和少数类样本进行处理,解... 针对目前很多入侵检测方法中因数据不平衡和特征冗余导致检测率低等问题,提出融合改进采样技术和SRFCNN-BiLSTM的入侵检测方法。设计一种FBS-RE混合采样算法,即Borderline-SMOTE过采样和RENN欠采样同时对多数类和少数类样本进行处理,解决数据不平衡问题。利用堆叠降噪自动编码器(stacked denoising auto encoder,SDAE)进行数据降维,减少噪声对数据的影响,去除冗余特征。采用改进的卷积神经网络(split residual fuse convolutional neural network,SRFCNN)和双向长短期记忆网络(bi-directional long short-term memory,BiLSTM)更好地提取数据中的空间和时间特征,结合注意力机制对特征分配不同的权重,获得更好的分类能力,提高对少数攻击流量的检测率。最后,在UNSW-NB15数据集上对模型进行验证,准确率和F1分数为89.24%和90.36%,优于传统机器学习和深度学习模型。 展开更多
关键词 入侵检测 不平衡处理 堆叠降噪自动编码器 卷积神经网络 注意力机制
在线阅读 下载PDF
基于改进YOLOv8模型的井下人员入侵带式输送机危险区域智能识别 被引量:1
15
作者 毛清华 苏毅楠 +3 位作者 贺高峰 翟姣 王荣泉 尚新芒 《工矿自动化》 北大核心 2025年第1期11-20,103,共11页
针对煤矿带式输送机场景存在尘雾干扰严重、背景环境复杂、人员尺度多变且易遮挡等因素导致人员入侵危险区域识别准确率不高等问题,提出一种基于改进YOLOv8模型的井下人员入侵带式输送机危险区域智能识别系统。改进YOLOv8模型通过替换... 针对煤矿带式输送机场景存在尘雾干扰严重、背景环境复杂、人员尺度多变且易遮挡等因素导致人员入侵危险区域识别准确率不高等问题,提出一种基于改进YOLOv8模型的井下人员入侵带式输送机危险区域智能识别系统。改进YOLOv8模型通过替换主干网络C2f模块为C2fER模块,加强模型的细节特征提取能力,提升模型对小目标人员的识别性能;通过在颈部网络引入特征强化加权双向特征金字塔网络(FE-BiFPN)结构,提高模型的特征融合能力,从而提升模型对多尺度人员目标的识别效果;通过引入分离增强注意力模块(SEAM)增强模型在复杂背景下对局部特征的关注度,提升模型对遮挡目标人员的识别能力;通过引入WIoU损失函数增强训练效果,提升模型识别准确率。消融实验结果表明:改进YOLOv8模型的准确率较基线模型YOLOv8s提升2.3%,mAP@0.5提升3.4%,识别速度为104帧/s。人员识别实验结果表明:与YOLOv10m,YOLOv8s-CA、YOLOv8s-SPDConv和YOLO8n模型相比,改进YOLOv8模型对小目标、多尺度目标、遮挡目标的识别效果均更佳,识别准确率为90.2%,mAP@0.5为87.2%。人员入侵危险区域实验结果表明:井下人员入侵带式输送机危险区域智能识别系统判别人员入侵危险区域的平均准确率为93.25%,满足识别需求。 展开更多
关键词 煤矿带式输送机 人员入侵危险区域 YOLOv8模型 遮挡目标检测 小目标检测 多尺度融合 C2fER模块 特征强化加权双向特征金字塔网络结构
在线阅读 下载PDF
网络流量对抗样本行为意图建模防御方法研究
16
作者 罗森林 邵思源 +3 位作者 赵智洋 李新帅 潘丽敏 刘峥 《北京理工大学学报》 北大核心 2025年第11期1194-1203,共10页
对抗样本是目前针对深度学习模型的主要攻击方法之一,具有对抗样本防御能力的模型会影响正常样本的预测性能甚至有较大性能衰减,其实际应用困难.输入预处理方法在去除对抗扰动时缺乏语义约束,易改变数据包速率等关键分类特征,严重影响... 对抗样本是目前针对深度学习模型的主要攻击方法之一,具有对抗样本防御能力的模型会影响正常样本的预测性能甚至有较大性能衰减,其实际应用困难.输入预处理方法在去除对抗扰动时缺乏语义约束,易改变数据包速率等关键分类特征,严重影响网络入侵检测中正常样本分类性能;基于阈值比较的方法提供的一维分割边界无法区分特征值近似的样本,防御效果大幅降低.此方法利用Kolmogorov-Arnold网络(KAN)推理行为意图语义,结合扩散过程与条件自编码器,在语义指导下去除对抗扰动保留关键分类特征,以提升防御性能并保持正常样本分类效果.多个真实数据集实验表明,该方法在不影响模型原有预测性能的条件下准确率提升13%以上,能有效抵御主要对抗样本攻击,实用价值大. 展开更多
关键词 网络入侵检测 对抗样本防御 语义推理 KAN模型
在线阅读 下载PDF
双线性自注意力机制CAN总线入侵检测方法研究
17
作者 陈彦彬 刘桂雄 《电子测量技术》 北大核心 2025年第2期122-130,共9页
控制器局域网络(CAN)总线广泛应用于工业数据采集、车联网等领域,对其安全入侵检测非常重要。为全面提升检测方法性能,提出一种双线性自注意力机制CAN总线入侵检测方法,首先基于堆叠集成思想利用DNN、CNN和LSTM模型提取深度学习层特征;... 控制器局域网络(CAN)总线广泛应用于工业数据采集、车联网等领域,对其安全入侵检测非常重要。为全面提升检测方法性能,提出一种双线性自注意力机制CAN总线入侵检测方法,首先基于堆叠集成思想利用DNN、CNN和LSTM模型提取深度学习层特征;随后通过双线性层分别提取自注意力机制Transformer与FNet特征,再将其与深度学习层特征残差连接融合;最后通过全连接层入侵检测预测,体现高准确率、检测率和良好泛化性特点。在Car_Hacking公开数据集上实验表明,准确率、精确率、召回率、F1值和AUC值分别达0.951、0.996、0.997、0.960和0.984,且随着训练轮数增加其准确率、损失值误差分别保持在5%、10%以内,本文方法优于其他比较方法。应用于物联网实验装置评估结果显示,本文方法在异常攻击识别检测率达99.23%,对于提高测控系统安全性能具有重要推广价值。 展开更多
关键词 入侵检测系统 控制区域网络CAN 自注意力机制 FNet
在线阅读 下载PDF
基于小生境遗传算法的网络入侵节点智能检测方法
18
作者 王建刚 《吉林大学学报(理学版)》 北大核心 2025年第4期1099-1104,共6页
为降低网络入侵的风险,提出一种基于小生境遗传算法的网络入侵节点智能检测方法.首先,针对网络入侵的攻击行为进行聚合处理,利用双人攻防博弈模型分析网络的攻防状态,通过比对攻击与防御的效用强度,对网络的安全性进行全面分析,再根据... 为降低网络入侵的风险,提出一种基于小生境遗传算法的网络入侵节点智能检测方法.首先,针对网络入侵的攻击行为进行聚合处理,利用双人攻防博弈模型分析网络的攻防状态,通过比对攻击与防御的效用强度,对网络的安全性进行全面分析,再根据分析结果,通过卷积神经网络实现对攻击源的定位.其次,基于粗糙集理论,利用小生境遗传算法确定网络入侵节点检测的适应度函数,根据网络入侵节点智能检测规则,建立网络入侵节点智能检测模型,获得最终的检测结果.实验结果表明,该方法可有效提升对入侵攻击源的定位准确性和入侵节点检测准确性,该方法检测结果的宏F1分数大于0.96,表明该方法可有效实现设计预期. 展开更多
关键词 小生境遗传算法 网络入侵 入侵节点 粗糙集理论 适应度函数 入侵检测
在线阅读 下载PDF
基于联邦学习和注意力机制的物联网入侵检测模型
19
作者 尹春勇 王珊 《信息安全研究》 北大核心 2025年第9期788-796,共9页
物联网在众多领域中展现出广泛的应用前景和巨大的发展潜力.然而,随着物联网规模的持续扩展,独立的物联网设备缺乏高质量攻击实例,难以有效应对日益复杂且多样化的攻击行为,物联网安全问题已经成为亟待解决的关键挑战.为应对这一问题,... 物联网在众多领域中展现出广泛的应用前景和巨大的发展潜力.然而,随着物联网规模的持续扩展,独立的物联网设备缺乏高质量攻击实例,难以有效应对日益复杂且多样化的攻击行为,物联网安全问题已经成为亟待解决的关键挑战.为应对这一问题,提出了一种基于联邦学习和注意力机制的物联网入侵检测模型,允许多个设备在保护其数据隐私的基础上协同训练全局模型.首先,构建了一个结合卷积神经网络与混合注意力机制的入侵检测模型,提取网络流量数据的关键特征,从而提高检测的准确率.其次,引入模型对比损失,通过矫正本地模型的训练方向,缓解设备间数据非独立同分布所导致的全局模型收敛困难等问题.实验结果显示,该模型在准确率、精确率和召回率等指标上显著优于现有方法,展现了更强的入侵检测能力,能够有效应对物联网环境中复杂的数据分布问题. 展开更多
关键词 联邦学习 物联网安全 入侵检测 深度学习 注意力机制
在线阅读 下载PDF
光纤传感网络混合式入侵行为实时检测研究
20
作者 陆思辰 王福军 《激光杂志》 北大核心 2025年第1期202-207,共6页
混合式入侵行为往往在一个或多个局部位置出现,且在时间上存在一定的聚集性,无法很好地捕捉其复杂特征,为此提出光纤传感网络混合式入侵行为实时检测方法。以平均过零率和短时能量作为指标对某段信号进行分割处理,减少不断累加的处理延... 混合式入侵行为往往在一个或多个局部位置出现,且在时间上存在一定的聚集性,无法很好地捕捉其复杂特征,为此提出光纤传感网络混合式入侵行为实时检测方法。以平均过零率和短时能量作为指标对某段信号进行分割处理,减少不断累加的处理延时,提取可能存在入侵行为的光纤传感信号。通过高阶谱分析、样本熵分析和奇异值分析进一步提取信号特征,构建并利用多层梯度下降法训练多个深度神经网络,将所提取的特征输入至对应深度神经网络中,经由Softmax函数输出混合式入侵行为检测结果,最后采用改进的DS证据理论关联融合各深度神经网络输出的检测结果,实现光纤传感网络混合式入侵行为实时检测。实验结果表明,所提方法入侵行为检测结果更准确、内存占用率和CPU使用率较低。 展开更多
关键词 光纤传感网络 混合式入侵行为 实时检测 深度神经网络 奇异值分解
在线阅读 下载PDF
上一页 1 2 86 下一页 到第
使用帮助 返回顶部