期刊文献+
共找到509篇文章
< 1 2 26 >
每页显示 20 50 100
基于柴油机曲轴瞬时转速信号EEMD分解的失火故障诊断 被引量:1
1
作者 黄英 李准 +2 位作者 王健 刘辰 胡博睿 《北京理工大学学报》 北大核心 2025年第4期384-390,共7页
对于十缸V型柴油机单缸失火和双缸失火这两类故障,提出了基于曲轴瞬时转速信号的集合经验模态分解的故障诊断策略.该策略考虑到多个转速工况对失火故障诊断的影响,根据柴油机喷油提前角将实车实时采集到该转速下的数据划分为正常、单缸... 对于十缸V型柴油机单缸失火和双缸失火这两类故障,提出了基于曲轴瞬时转速信号的集合经验模态分解的故障诊断策略.该策略考虑到多个转速工况对失火故障诊断的影响,根据柴油机喷油提前角将实车实时采集到该转速下的数据划分为正常、单缸失火和双缸失火这三个工况区间.通过多循环平均方法对三个工况区间数据进行预处理,并通过集合经验模态分解方法分解,该方法能自适应地将曲轴转速信号分解为若干个本征模态函数.通过集合经验模态分解得到每个本征模态函数幅值的异常波动,确定包含故障信息的本征模态函数,为了进一步提取特征,需对该本征模态函数进行快速傅里叶变换,根据主频分量的幅值,得到故障特征.最后在多个转速工况下进行上述诊断流程,得出各个转过速工况的诊断准确率,实现了诊断算法的转速工况敏感性分析.实验结果表明该方法能有效提取故障特征,实现了十缸柴油机基于多个瞬时转速的失火故障诊断. 展开更多
关键词 柴油机 失火故障诊断 集合经验模态分解(EEMD) 曲轴瞬时转速 特征提取 本征模态函数(IMFs) 快速傅里叶变换(FFT)
在线阅读 下载PDF
基于分形维数和BiLSTM的离心泵空化状态识别方法
2
作者 邹淑云 刘忠 +2 位作者 王文豪 喻哲钦 孙旭辉 《振动与冲击》 北大核心 2025年第4期305-312,共8页
针对离心泵空化状态下压力脉动信号的非线性和复杂程度以及浅层机器学习方法在数据深度挖掘上的不足,提出一种基于分形维数和双向长短时记忆神经网络的离心泵空化状态识别方法。通过离心泵空化试验获得不同空化状态压力脉动信号。采用... 针对离心泵空化状态下压力脉动信号的非线性和复杂程度以及浅层机器学习方法在数据深度挖掘上的不足,提出一种基于分形维数和双向长短时记忆神经网络的离心泵空化状态识别方法。通过离心泵空化试验获得不同空化状态压力脉动信号。采用固有时间尺度分解对压力脉动信号进行处理,筛选出有效分量,计算其盒维数和关联维数,构建空化分形特征向量。将空化特征向量导入基于双向长短时记忆神经网络的空化状态识别模型。研究结果表明,有效分量的盒维数及关联维数随空化系数的变化具有明显的规律性,且模型识别的准确率高达92.8%,能够实现离心泵空化状态的识别。 展开更多
关键词 离心泵 空化 压力脉动 固有时间尺度分解 分形维数 双向长短时记忆神经网络
在线阅读 下载PDF
基于CEEMDAN和频谱时间图卷积网络的电力负荷预测方法
3
作者 朱莉 夏禹 +1 位作者 朱春强 邓凡 《计算机工程》 北大核心 2025年第4期339-349,共11页
针对电力负荷数据存在非平稳性且传统预测模型不能精确获取时序负荷数据的空间相关性和时间依赖性,导致预测精度低的问题,设计并实现一种基于完全集成经验模式分解的自适应噪声完备性(CEEMDAN)和频谱图卷积网络的电力负荷预测方法。首... 针对电力负荷数据存在非平稳性且传统预测模型不能精确获取时序负荷数据的空间相关性和时间依赖性,导致预测精度低的问题,设计并实现一种基于完全集成经验模式分解的自适应噪声完备性(CEEMDAN)和频谱图卷积网络的电力负荷预测方法。首先使用CEEMDAN将目标负荷序列分解为多个本征模态分量(IMF),通过计算模糊熵对IMF进行重构;然后使用频谱时间图卷积网络对重构后分量的空间相关性和时间依赖性进行挖掘,得到各分量的预测结果;最后将各分量的预测结果线性相加得到最终预测结果。实验结果表明,所提方法的平均绝对误差、均方根误差、平均绝对百分比误差3个评价指标分别达到了0.72 KW、0.89 KW、0.92%,相较于对比模型StemGnn、TCN、LSTM、Informer、FEDformer,预测精度分别提高了37.9%、17.2%、20.8%、22.5%、12.1%。证明本文所提出的预测方法可以有效降低非平稳性对预测结果的影响,精确获取时序负荷数据的空间相关性和时间依赖性,提高预测精度。 展开更多
关键词 电力负荷预测 经验模态分解 本征模态分量 图卷积网络 模糊熵
在线阅读 下载PDF
基于TLGMCC准则联合CEEMDAN与LWT的优化降噪方法
4
作者 刘彦明 曹敏 +1 位作者 孙安 项敢亮 《光通信技术》 北大核心 2025年第2期11-16,共6页
针对分布式光纤声传感系统信号信噪比过低的问题,提出一种基于时域局部广义最大互相关熵(TLGMCC)准则联合自适应噪声完备集合经验模态分解(CEEMDAN)与提升小波变换(LWT)的优化降噪方法。首先,使用自适应噪声完备CEEMDAN对原始信号进行分... 针对分布式光纤声传感系统信号信噪比过低的问题,提出一种基于时域局部广义最大互相关熵(TLGMCC)准则联合自适应噪声完备集合经验模态分解(CEEMDAN)与提升小波变换(LWT)的优化降噪方法。首先,使用自适应噪声完备CEEMDAN对原始信号进行分解,获取模态分量。接着,将原始信号与这些模态分量分割为多个时间局部片段,并计算它们对应时间局部片段的相关熵值。然后,通过LWT算法处理弱相关分量,最后重构剩余分量以完成去噪过程。实验结果表明:在5 km的传感距离和10 m的空间分辨率的条件下,系统的信噪比达到了54.36 d B,同时均方根误差降低至0.091。 展开更多
关键词 自适应噪声完备集合经验模态分解 提升小波变换 时域局部广义最大互相关熵 模态分量
在线阅读 下载PDF
混凝土缺陷信号变分模态分解与超声成像方法 被引量:2
5
作者 张奇 韩庆邦 +3 位作者 孙刘家 靳琪琳 王溢秋 刘志鹏 《应用声学》 CSCD 北大核心 2024年第4期829-835,共7页
混凝土的强散射特性限制了其中缺陷声波成像的分辨率。该文采用一种依据变分模态分解与全聚焦成像相结合的方法,将接收信号分解成多个本征模态函数,计算各本征模态函数与激励信号的相关系数,对信号加权重构以实现对特征信号的提取,从而... 混凝土的强散射特性限制了其中缺陷声波成像的分辨率。该文采用一种依据变分模态分解与全聚焦成像相结合的方法,将接收信号分解成多个本征模态函数,计算各本征模态函数与激励信号的相关系数,对信号加权重构以实现对特征信号的提取,从而提高成像算法对混凝土缺陷间散射波互干扰的鲁棒性。通过设置对比试验,研究了不同缺陷混凝土结构中该信号处理方式对于成像结果的影响。试验结果表明,该方法对于弱散射及散射干扰具有更好的鲁棒性,相比基于原始数据的成像方法能够更好地还原混凝土内部结构。 展开更多
关键词 混凝土 超声检测 变分模态分解 本征模态函数
在线阅读 下载PDF
基于EMD-PSO-BP模型的短期潮流流速预测
6
作者 邵萌 潘正中 +2 位作者 孙金伟 邵珠晓 伊传秀 《中国海洋大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第11期134-141,共8页
针对潮流流速的随机性和波动性,本研究基于经验模态分解(Empirical mode decomposition,EMD)和粒子群优化(Particle swarm optimization,PSO)算法,改进了反向传播(Back propagation,BP)神经网络的短期潮流流速预测模型。该模型首先对原... 针对潮流流速的随机性和波动性,本研究基于经验模态分解(Empirical mode decomposition,EMD)和粒子群优化(Particle swarm optimization,PSO)算法,改进了反向传播(Back propagation,BP)神经网络的短期潮流流速预测模型。该模型首先对原始流速序列进行EMD分解,得到多个本征模函数(Intrinsic mode function,IMF)和残差。然后,利用PSO改进BP神经网络,对分解所得的IMF和残差分别进行预测。最后,将各个预测结果相结合,得出流速的最终预测结果,从而提高潮流流速的预测精度。本文以江苏省潮流流速为例,分别建立BP、PSO-BP、EMD-BP以及EMD-PSO-BP四类预测模型,以对潮流流速进行预测和对比分析。结果表明,相较于其他模型,EMD-PSO-BP预测模型在潮流流速的预测方面具有更高的精度,为潮流能开发提供重要的数据支撑。 展开更多
关键词 潮流流速预测 经验模态分解 反向传播神经网络 粒子群优化算法 本征模函数
在线阅读 下载PDF
一种灰色关联分析优化ICEEMDAN的VP倾斜仪信号降噪模型
7
作者 庞聪 孙海洋 +3 位作者 刘天龙 姚瑶 李忠亚 马武刚 《大地测量与地球动力学》 CSCD 北大核心 2024年第6期654-660,共7页
VP倾斜仪固体潮信号受仪器监测复杂环境限制,多含有大量环境噪声。为获得真实固体潮曲线,提出一种基于灰色关联分析优化改进的自适应噪声完备集合经验模态分解(ICEEMDAN)VP倾斜仪信号降噪模型(GRA-ICEEMDAN)。该方法首先将含噪信号进行I... VP倾斜仪固体潮信号受仪器监测复杂环境限制,多含有大量环境噪声。为获得真实固体潮曲线,提出一种基于灰色关联分析优化改进的自适应噪声完备集合经验模态分解(ICEEMDAN)VP倾斜仪信号降噪模型(GRA-ICEEMDAN)。该方法首先将含噪信号进行ICCEMDAN处理,得到若干个固有模态函数(IMF),并依次排列与标记;然后基于这些IMF分别计算相关系数、互信息、R^(2)、Adj-R^(2)、MSE、SSE、RMSE、MAE、MAPE、样本熵等10个评价指标值,构建IMF可信度评价指标矩阵;最后借助灰色关联分析(GRA)计算各评价指标与不同IMF之间的关联系数和关联度,依据关联度大小对各个IMF进行排序,将排名靠前的IMF进行线性重构,即可完成信号降噪。仿真去噪实验和实测去噪实验均表明,GRA-ICEEMDAN模型优于卡尔曼滤波、70阶低通FIR滤波、Savitzky-Golay等经典降噪模型,能显著区分噪声成分和有效成分,原始信号分解后的重构误差与信号损失极小,可推广至其他仪器的复杂信号降噪中。 展开更多
关键词 VP倾斜仪 信号降噪 改进的自适应噪声完备集合经验模态分解 灰色关联分析 固有模态函数 样本熵 互信息
在线阅读 下载PDF
基于EEMD分解的阶次跟踪方法研究
8
作者 魏仕华 蔺梦雄 《机电工程》 CAS 北大核心 2024年第9期1604-1612,共9页
摆线针轮减速器组成零部件繁多、构成复杂,工作时噪声干扰大且多在变转速、往复的复杂工况下工作,因此,难以准确提取其内部的故障特征。针对这一问题,提出了一种基于集合经验模态分解(EEMD)与阶次跟踪分析的方法,对摆线针轮减速器进行... 摆线针轮减速器组成零部件繁多、构成复杂,工作时噪声干扰大且多在变转速、往复的复杂工况下工作,因此,难以准确提取其内部的故障特征。针对这一问题,提出了一种基于集合经验模态分解(EEMD)与阶次跟踪分析的方法,对摆线针轮减速器进行了故障诊断。首先,对采集到的时域振动信号和转速信号进行了等角度域差值采样,得到了振动信号的等角域平稳信号;然后,对等角域信号进行了集合经验模态分解,得到了若干个固有模态分量(IMFs),计算了各个固有模态分量的峭度值,选取目标模态分量进行了信号重构;接着,采用快速傅里叶变换得到了故障信号的阶次图;最后,根据减速器的传动方式、各零部件的模数,计算出了各主要部件的故障阶次,对比减速器在故障前后阶次图的能量峰值进行了故障诊断。研究结果表明:该方法能够准确提取包含故障信息的固有模态分量,实现从等时域信号到等角域信号的转换,并提取摆线针轮减速器的滚针故障阶次(8.37阶),故障准确率达到99.6%,可实现摆线针轮减速器在非平稳工况下的故障特征识别,并验证该方法的可行性和有效性。 展开更多
关键词 摆线针轮减速器 集合经验模态分解 阶次跟踪分析 故障诊断 变转速工况 固有模态分量
在线阅读 下载PDF
基于TVFEMD-IMF能量熵增量的桥梁监测数据降噪方法 被引量:4
9
作者 李双江 辛景舟 +3 位作者 蒋黎明 刘水康 巴建明 周建庭 《振动.测试与诊断》 EI CSCD 北大核心 2024年第1期178-185,206,共9页
针对桥梁监测数据受多重噪声干扰、影响结构真实响应获取的问题,提出了一种基于时变滤波经验模态分解(time-varying filtering empirical mode decomposition,简称TVFEMD)和本征模函数(intrinsic mode function,简称IMF)能量熵增量的桥... 针对桥梁监测数据受多重噪声干扰、影响结构真实响应获取的问题,提出了一种基于时变滤波经验模态分解(time-varying filtering empirical mode decomposition,简称TVFEMD)和本征模函数(intrinsic mode function,简称IMF)能量熵增量的桥梁监测数据降噪方法。首先,利用TVFEMD分解桥梁原始监测数据,得到多个子序列;其次,采用IMF能量熵增量确定多个子序列中的有效子序列;然后,划分子序列中的结构响应分量和噪声分量,对结构响应分量重组实现监测数据降噪;最后,利用平均绝对误差(mean absolute error,简称MAE)、均方根误差(root mean squared error,简称RMSE)和信噪比(signal-noise ratio,简称SNR)对不同方法的降噪效果进行评价。仿真算例和工程实例结果表明:TVFEMD相比经验模态分解(empirical mode decomposition,简称EMD),有效解决了模态混叠问题;TVFEMD结合IMF能量熵增量方法,有效抑制了多重噪声影响,对结果精度有较大提升;与EMD-IMF能量熵增量和Kalman滤波降噪法相比,TVFEMD-IMF能量熵增量法所得到降噪信号的MAE和RMSE值分别提升了23%和21%以上,降噪效果更好,信噪比提升38%以上,抗噪性能更佳。 展开更多
关键词 桥梁 健康监测 降噪 时变滤波经验模态分解 本征模函数能量熵增量
在线阅读 下载PDF
基于参数优化VMD-小波阈值的轴承振动信号降噪方法 被引量:5
10
作者 闫海鹏 郝新宇 秦志英 《机电工程》 CAS 北大核心 2024年第2期245-252,共8页
为了解决复杂工况下滚动轴承振动信号存在随机噪声的问题,提出了一种基于参数优化变分模态分解(VMD)-小波阈值的滚动轴承降噪方法。首先,利用以包络熵为适应度函数的天鹰算法对变分模态分解算法的模态分解数K和惩罚因子α进行了自适应选... 为了解决复杂工况下滚动轴承振动信号存在随机噪声的问题,提出了一种基于参数优化变分模态分解(VMD)-小波阈值的滚动轴承降噪方法。首先,利用以包络熵为适应度函数的天鹰算法对变分模态分解算法的模态分解数K和惩罚因子α进行了自适应选择,代入VMD分解中,得到若干本征模态函数(IMFs);然后,根据峭度-相关系数将IMF分量划分为纯净分量和含噪分量,对含噪分量进行了小波阈值降噪处理;最后,对处理后的分量进行了重构,并用重构信号进行了包络谱分析,实现了滚动轴承的信号降噪目的,并利用仿真信号和美国凯斯西储大学公开的轴承数据集对上述降噪方法的有效性进行了验证。研究结果表明:基于参数优化VMD-小波阈值的降噪方法减少了滚动轴承运行状态下的随机噪声,相对小波阈值降噪方法,所得仿真信号信噪比提升53%,均方误差降低13%;在故障特征频率为162 Hz时,所得实验降噪信号包络谱的前6倍频谱峰值更为明显,且受随机噪声影响较小。该研究方法在滚动轴承等旋转机械信号降噪方面具有一定的参考价值。 展开更多
关键词 滚动轴承 故障诊断 变分模态分解 本征模态函数 小波阈值降噪 天鹰算法 峭度-相关系数
在线阅读 下载PDF
EEMD-小波在高边坡变形信息提取中的应用研究 被引量:2
11
作者 梁永平 李盛 赖国泉 《安全与环境学报》 CAS CSCD 北大核心 2024年第3期993-1000,共8页
针对高边坡变形呈现非平稳性及数据“噪声”多源的问题,提出了一种定向滤波的变形信息提取方法。首先,利用集合经验模态分解方法分解变形时序数据,结合定量分析法判别模态分量信号频段;然后,对高频模态分量中的“噪声”利用小波函数进... 针对高边坡变形呈现非平稳性及数据“噪声”多源的问题,提出了一种定向滤波的变形信息提取方法。首先,利用集合经验模态分解方法分解变形时序数据,结合定量分析法判别模态分量信号频段;然后,对高频模态分量中的“噪声”利用小波函数进行“靶向”消噪处理,并对趋势项进行傅里叶级数拟合;最后,重构高边坡变形分析模型,实现真实变形量的提取。结果表明,对比分析各项检验指标,通过“靶向”消噪,各高频模态分量消噪效果明显,重构后的集合经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)-小波高边坡变形分析模型较原始形变和其他模型在精度指标方面提升显著,该方法可用于高边坡的变形预测分析和真实变形量提取。 展开更多
关键词 公共安全 变形 集合经验模态分解(EEMD)-小波 模态分量 模型重构 精度 信息提取
在线阅读 下载PDF
基于多尺度散布熵的磁声发射信号特征识别方法 被引量:1
12
作者 李梦俊 沈功田 +1 位作者 沈永娜 王强 《机电工程》 北大核心 2024年第1期158-165,共8页
在工程中对设备进行应力检测和微损伤检测时,采集磁声发射信号易受噪声干扰,同时其特征的提取也存在困难,为此,将变分模态分解与散布熵相结合,提出了一种基于自适应多尺度散布熵的磁声发射(MAE)信号特征识别方法。首先,设计搭建了检测... 在工程中对设备进行应力检测和微损伤检测时,采集磁声发射信号易受噪声干扰,同时其特征的提取也存在困难,为此,将变分模态分解与散布熵相结合,提出了一种基于自适应多尺度散布熵的磁声发射(MAE)信号特征识别方法。首先,设计搭建了检测实验平台,采集了Q345钢静载拉伸实验中0 MPa~400 MPa应力状态下的MAE信号;然后,采用变分模态分解方法,对磁声发射信号进行了自适应分解,生成了一系列从低频到高频分布的本征模态函数(IMF)分量;其次,计算了每个本征模态函数分量的散布熵值,构建了MAE信号的特征向量矩阵;最后,将特征向量矩阵输入到基于支持向量机建立的识别分类模型中,进行了信号的训练和识别。研究结果表明:使用基于自适应多尺度散布熵的磁声发射(MAE)信号特征识别方法,能够自适应地实现MAE信号的多尺度化目的,并且准确地识别出不同应力状态下的信号特征,分类识别准确率高达95.3704%,验证了该方法的有效性;说明基于自适应多尺度散布熵和多分类支持向量机的信号特征识别方法能够快速且有效地识别不同应力状态,在信号特征识别方面具有较好的应用潜力。 展开更多
关键词 磁声发射 变分模态分解 散布熵 Q345钢 信号特征识别 本征模态函数
在线阅读 下载PDF
基于CEEMDAN-INHT的地下洞室爆破振动时频分析应用研究 被引量:1
13
作者 孙苗 吴立 杨钧凯 《爆破》 CSCD 北大核心 2024年第1期14-20,共7页
爆破地震波信号采集会因监测环境、测试系统等因素导致实测信号中混有噪声,噪声的存在将导致信号希尔伯特-黄变换(Hilbert-Huang Transform,HHT)时频分析结果失真。原因有二:其一是经验模态分解(Ensemble Empirical Mode,EMD)处理含噪... 爆破地震波信号采集会因监测环境、测试系统等因素导致实测信号中混有噪声,噪声的存在将导致信号希尔伯特-黄变换(Hilbert-Huang Transform,HHT)时频分析结果失真。原因有二:其一是经验模态分解(Ensemble Empirical Mode,EMD)处理含噪爆破地震波信号会得到具有模态混淆现象的固有模态函数(Intrinsic mode function,IMF)分量;其二是Hilbert变换受Bedrosian定理的约束在处理模态混淆分量时会产生负值瞬时频率,从而造成巨大的分析误差。为获得真实的爆破振动属性需对HHT进行改进,在EMD中添加自适应噪声信号得到自适应补充集合经验模态分解(Complete Ensemble Empirical Mode Decomposition with Adaptive Noise,CEEMDAN)算法;再对CEEMDAN得到的IMF进行归一化Hilbert变换,得到改进归一化Hilbert变换(Improved Normalized Hilbert Transform,INHT)。通过上述两步可建立CEEMDAN-INHT时频分析算法,为验证该算法可有效提高含噪爆破地震波振动信号时频分析精度,进行HHT和CEEMDAN-INHT含噪仿真振动信号时频分析对比研究。最后将CEEMDAN-INHT用于某地下洞室爆破地震波信号时频分析中,发现该算法能有效克服EMD固有的模态混淆现象,同时得到反映真实爆破振动属性的时-频-能特征参数,对从频率-能量的角度进行洞室爆破开挖共振分析,实现爆破地震波危害控制具有一定的现实意义。 展开更多
关键词 爆破地震波信号 经验模态分解 HILBERT变换 固有模态函数
在线阅读 下载PDF
基于多域信息融合与深度分离卷积的轴承故障诊断网络模型 被引量:4
14
作者 王同 许昕 潘宏侠 《机电工程》 北大核心 2024年第1期22-32,共11页
针对传统卷积神经网络(CNN)对滚动轴承振动信号的故障识别准确率不高这一问题,提出了一种基于多域信息融合结合深度分离卷积(MDIDSC)的轴承故障诊断方法。首先,利用自适应噪声的完全集合经验模态分解(CEEMDAN)算法对轴承振动信号进行了... 针对传统卷积神经网络(CNN)对滚动轴承振动信号的故障识别准确率不高这一问题,提出了一种基于多域信息融合结合深度分离卷积(MDIDSC)的轴承故障诊断方法。首先,利用自适应噪声的完全集合经验模态分解(CEEMDAN)算法对轴承振动信号进行了分解;然后,利用分解出的本征模态函数(IMF)的各个分量构建了多空间状态矩阵,并将该多空间状态矩阵输入该深度分离卷积模型中,进行了卷积训练;同时,在该深度分离卷积模型中添加了残差结构,对数据特征进行了复利用,并对卷积核进行了深度分离,解决了深度模型的网络退化问题;最后,提出了一种空间特征提取方法,对模型参数进行了修剪,采用一种自适应学习率退火方法进行了梯度优化,以避免模型陷入局部最优。研究结果表明:通过对多个轴承故障数据集进行对比分析可知,MDIDSC在轴承故障诊断方面的准确率和稳定性明显优于其他方法,MDIDSC的最高测试准确率为100%,平均测试准确率为99.07%;同时,在测试集中的最大损失和平均损失分别为0.1345和0.0841;该结果表明MDIDSC在轴承故障诊断方面具有一定的优越性。 展开更多
关键词 深度分离卷积 信息融合 参数修剪 残差网络 卷积神经网络 自适应噪声的完全集合经验模态分解 本征模态函数 多域信息融合结合深度分离卷积
在线阅读 下载PDF
一种添加部分自适应噪声的集成经验模态分解方法 被引量:1
15
作者 李昊 陈强 徐一雄 《南京理工大学学报》 CAS CSCD 北大核心 2024年第2期227-234,共8页
为了解决集成经验模态分解(EEMD)及其改进形式中普遍存在的噪声量和计算量需求大的问题,统计分析了白噪声内涵模态函数(IMF)的极值点和能量变化规律,总结出白噪声IMF极值点数随长度和阶数变化的经验公式。发现白噪声的高阶IMF不能有效... 为了解决集成经验模态分解(EEMD)及其改进形式中普遍存在的噪声量和计算量需求大的问题,统计分析了白噪声内涵模态函数(IMF)的极值点和能量变化规律,总结出白噪声IMF极值点数随长度和阶数变化的经验公式。发现白噪声的高阶IMF不能有效调整信号的极值点分布,提出添加部分自适应噪声的集成经验模态分解(EEMDPAN)。相比于自适应噪声完全集成经验模态分解(CEEMDAN),EEMDPAN有2点改进:不使用全部独立的自适应噪声,而使用成对相加为0的互补自适应噪声;不添加全部阶的自适应噪声,而是在中间的某一阶停止,而后使用经典EMD方法。对2个人工信号进行分解,实验证明,EEMDPAN很好地继承了EEMD抑制模态混叠的能力,相比于CEEMDAN,计算量降低至1/3,并且分解结果的低阶成分信号附加噪声更小,高阶成分信号可信度更高。 展开更多
关键词 自适应噪声 集成经验模态分解 白噪声 内涵模态函数 互补噪声 附加噪声 信号可信度
在线阅读 下载PDF
基于多滤波降噪法的桥梁应变监测信号处理 被引量:1
16
作者 卢海林 郭馨阳 郝静 《噪声与振动控制》 CSCD 北大核心 2024年第4期180-187,共8页
针对桥梁应变监测信号存在多源噪声,以及现有降噪法难以准确选取有效固有模态函数(Intrinsic Mode Function,IMF)分量的问题,提出一种有效的多滤波降噪法。首先,采用自适应噪声抵消器对含噪信号进行预处理,以滤除低频噪声,再对其进行自... 针对桥梁应变监测信号存在多源噪声,以及现有降噪法难以准确选取有效固有模态函数(Intrinsic Mode Function,IMF)分量的问题,提出一种有效的多滤波降噪法。首先,采用自适应噪声抵消器对含噪信号进行预处理,以滤除低频噪声,再对其进行自适应噪声完备集合经验模态分解(Complete Ensemble Empirical Mode Decomposition with Adaptive Noise,CEEMDAN)得到IMF分量,并利用频谱分析-自相关函数双重判断准则选取IMF分量;随后,对其进行奇异值分解,利用奇异值差分谱确定各分量有效阶数;最后,将各有效IMF分量的有效阶重构得到去噪信号。通过模拟试验验证上述方法的合理性,并将其应用于桥梁应变监测信号处理。结果表明:采用上述双重判断准则选取有效IMF分量具有较好效果,且提出的多滤波降噪法在桥梁应变监测信号处理中具有显著的优越性。 展开更多
关键词 振动与波 桥梁应变 多滤波降噪法 双重判断准则 固有模态函数 CEEMDAN 奇异值分解
在线阅读 下载PDF
ITD结合参数优化MOMEDA的滚动轴承故障特征提取 被引量:1
17
作者 刘沛 彭珍瑞 何泽人 《机械科学与技术》 CSCD 北大核心 2024年第6期967-974,共8页
针对固有时间尺度分解(Intrinsic time scale decomposition,ITD)方法在强背景噪声影响下难以提取轴承故障特征的问题,提出了一种ITD与参数优化的多点最优最小熵解卷积(Multipoint optimal minimum entropy deconvolution adjusted,MOME... 针对固有时间尺度分解(Intrinsic time scale decomposition,ITD)方法在强背景噪声影响下难以提取轴承故障特征的问题,提出了一种ITD与参数优化的多点最优最小熵解卷积(Multipoint optimal minimum entropy deconvolution adjusted,MOMEDA)相结合的滚动轴承故障特征提取方法。首先根据包络谱峰值因子最大原则提取包含丰富故障信息的ITD分量,其次对该分量进行MOMEDA降噪处理。对影响MOMEDA滤波效果的两个参数——故障周期T与滤波器长度L分别以多点峭度和平方包络谱的基尼指数进行优化,最后进行包络谱分析提取故障特征频率。通过仿真信号与实测信号分析表明该方法能在强噪声干扰下有效提取故障特征。 展开更多
关键词 固有时间尺度分解 多点最优最小熵解卷积 滚动轴承 包络谱峰值因子 基尼指数
在线阅读 下载PDF
基于改进EMD方法与11/2谱的DEMON谱提取方法
18
作者 高博超 张群飞 +1 位作者 李岳珩 崔晓东 《声学技术》 CSCD 北大核心 2024年第2期260-267,共8页
噪声的包络调制检测(Detection of Envelope Modulation on Noise,DEMON)谱分析技术已被广泛应用于特征提取领域,但经典DEMON谱提取中高频信号频段的选取会影响DEMON谱的提取效果。针对这一问题,文中首先运用经验模态分解(Empirical Mod... 噪声的包络调制检测(Detection of Envelope Modulation on Noise,DEMON)谱分析技术已被广泛应用于特征提取领域,但经典DEMON谱提取中高频信号频段的选取会影响DEMON谱的提取效果。针对这一问题,文中首先运用经验模态分解(Empirical Mode Decomposition,EMD)方法获得一系列固有模态函数(Intrinsic Mode Function,IMF),依据各阶模态函数与原信号的相关程度,筛选出更具代表性的几阶固有模态函数进行解调,再对解调的结果运用11/2维谱分析方法进行谱分析以抑制高斯噪声,通过这种方法获得的DEMON谱信噪比优于传统方法。实测湖试数据分析结果表明,该改进方法可以有效地进行特征提取,结果优于经典DEMON谱分析方法;该改进方法具有一定的实用性,有利于进行后续目标分类识别。 展开更多
关键词 特征提取 经验模态分解(EMD) 固有模态函数 11/2维谱分析
在线阅读 下载PDF
基于EMD分量与小波包能量熵的轧辊磨削颤振在线预测
19
作者 朱欢欢 迟玉伦 +2 位作者 张梦梦 熊力 应晓昂 《金刚石与磨料磨具工程》 CAS 北大核心 2024年第1期73-84,共12页
针对轧辊磨削颤振时的时频域单一处理方法存在部分特征丢失的问题,提出了时频域相结合的方法对信号进行特征处理,并利用智能算法实现轧辊磨削颤振的在线预测。首先,利用经验模态分解(empirical mode decomposition,EMD)方法对振动传感... 针对轧辊磨削颤振时的时频域单一处理方法存在部分特征丢失的问题,提出了时频域相结合的方法对信号进行特征处理,并利用智能算法实现轧辊磨削颤振的在线预测。首先,利用经验模态分解(empirical mode decomposition,EMD)方法对振动传感器信号进行分解获得各固有模态函数(intrinsic mode function,IMF),剔除“虚假分量”后计算表征轧辊磨削颤振的时域特征。然后,利用小波包能量熵对声发射传感器信号求解频率段节点能量熵值,获得表征轧辊磨削颤振的频域特征。最后,将上述时频域特征降维后代入智能算法模型实现对轧辊磨削加工的在线预测。结果表明:LV-SVM模型的磨削颤振分类平均准确率达92.75%,模型平均响应时间为0.7765 s;验证了时频域特性的EMD和小波包能量熵方法的LV-SVM在线预测轧辊磨削颤振的有效性。 展开更多
关键词 轧辊磨削颤振 EMD分解 固有模态函数 小波包能量熵 最小二乘支持向量机
在线阅读 下载PDF
AOA-CEEMDAN和融合特征在齿轮箱故障诊断中的应用 被引量:5
20
作者 马卫东 刘子全 +1 位作者 姚楠 朱雪琼 《机电工程》 CAS 北大核心 2024年第5期817-826,共10页
自适应噪声完备集成经验模态分解(CEEMDAN)的参数由于是人为设置的,从而会导致其信号的分解不彻底。针对这一问题,提出了一种基于算术优化算法(AOA)优化CEEMDAN、融合特征和随机森林(RF)的齿轮箱故障诊断方法。首先,采用AOA算法对CEEMDA... 自适应噪声完备集成经验模态分解(CEEMDAN)的参数由于是人为设置的,从而会导致其信号的分解不彻底。针对这一问题,提出了一种基于算术优化算法(AOA)优化CEEMDAN、融合特征和随机森林(RF)的齿轮箱故障诊断方法。首先,采用AOA算法对CEEMDAN方法的关键参数进行自适应选取,并采用优化后的CEEMDAN方法对齿轮箱振动信号进行了分解,生成若干个本征模态函数(IMF);随后,利用相关系数准则选择了前4阶IMF分量作为故障敏感分量;接着,利用由注意熵和散度熵组成的融合特征提取方法挖掘了故障敏感分量的故障特征,得到了故障敏感特征样本;最后,将表征齿轮箱故障特性的故障特征输入至RF多故障分类器中,建立了故障分类模型,完成了齿轮箱的故障识别;利用QPZZ-Ⅱ型齿轮箱数据集进行了实验,并将其结果与采用其他方法所得结果进行了对比。研究结果表明:相较于原始CEEMDAN,优化后的CEEMDAN能够更加准确地分解非线性齿轮箱振动信号,故障识别准确率提高了4%;相较于单一的故障特征,融合特征能够更加准确地表征齿轮箱的故障状态,故障识别准确率分别提高了3.2%和8%。基于AOA-CEEMDAN和融合特征提取以及RF分类器的故障诊断方法为齿轮箱的故障特征提取和故障诊断提供一种可行的思路和方案。 展开更多
关键词 齿轮箱 本征模态函数 算术优化算法 自适应噪声完备集成经验模态分解 随机森林
在线阅读 下载PDF
上一页 1 2 26 下一页 到第
使用帮助 返回顶部