In nanocomposites,the interphase thickness may be comparable to the size of nano-particles,and hence,the effect of interphase layers on the mechanical properties of nanocomposites may be substantial.The interphase thi...In nanocomposites,the interphase thickness may be comparable to the size of nano-particles,and hence,the effect of interphase layers on the mechanical properties of nanocomposites may be substantial.The interphase thickness to the nano-particle size ratio and properties variability across the interphase thickness are the most important affecting parameters on the overall behavior of nanocomposites.In this study,the effect of properties variability across the interphase thickness on the overall elastic and elastoplastic properties of a polymeric clay nanocomposite(PCN)using a functionally graded(FG)interphase is investigated in detail.The results of the computational homogenization on the mesoscopic level show that Young’s modulus variation of the interphase has a significant effect on the overall elastic response of nanocomposites in a higher clay weight ratio(Wt).Moreover,strength variation through the interphase has a notable effect on the elasto-plastic properties of PCNs.Also,the increase or decrease in stiffness of interphase from clay to matrix and vice versa have a similar effect in the overall behavior of nanocomposites.展开更多
Cycling and rate performance of natural graphite is still limited by the sluggish kinetics of lithium ions,which can be improved by surface modifications in previous research.Among these methods,amorphous carbon coati...Cycling and rate performance of natural graphite is still limited by the sluggish kinetics of lithium ions,which can be improved by surface modifications in previous research.Among these methods,amorphous carbon coating has been proved to be mature and efficient.However,the significance of coating uniformity in relation to solid electrolyte interphase(SEI)has been largely overlooked.In this study,the uniformity of amorphous carbon coating is adjusted by the particle size of pitch.When discharged-charged at 1 C,graphite half-cells with such uniform coating show 90.3%of the capacity at 0.1 C,while that is 82.1%for non-uniform coating.Additionally,improved initial coulombic efficiency and cycling stability are demonstrated.These can be attributed to graphite anodes featuring a uniform carbon coating that promotes effective and homogeneous LiF formation within the inorganic matrix.This leads to the establishment of a stabilized SEI,confirmed by time-of-flight secondary ion mass spectrometry(TOF-SIMS).This work provides valuable reference into the rational control of graphite interfaces for high electrochemical performance.展开更多
文摘In nanocomposites,the interphase thickness may be comparable to the size of nano-particles,and hence,the effect of interphase layers on the mechanical properties of nanocomposites may be substantial.The interphase thickness to the nano-particle size ratio and properties variability across the interphase thickness are the most important affecting parameters on the overall behavior of nanocomposites.In this study,the effect of properties variability across the interphase thickness on the overall elastic and elastoplastic properties of a polymeric clay nanocomposite(PCN)using a functionally graded(FG)interphase is investigated in detail.The results of the computational homogenization on the mesoscopic level show that Young’s modulus variation of the interphase has a significant effect on the overall elastic response of nanocomposites in a higher clay weight ratio(Wt).Moreover,strength variation through the interphase has a notable effect on the elasto-plastic properties of PCNs.Also,the increase or decrease in stiffness of interphase from clay to matrix and vice versa have a similar effect in the overall behavior of nanocomposites.
基金Project(52377220)supported by the National Natural Science Foundation of ChinaProject(kq2208265)supported by the Natural Science Foundation of Changsha,Hunan Province,ChinaProject supported by State Key Laboratory of Powder Metallurgy(Central South University,Changsha,China)。
文摘Cycling and rate performance of natural graphite is still limited by the sluggish kinetics of lithium ions,which can be improved by surface modifications in previous research.Among these methods,amorphous carbon coating has been proved to be mature and efficient.However,the significance of coating uniformity in relation to solid electrolyte interphase(SEI)has been largely overlooked.In this study,the uniformity of amorphous carbon coating is adjusted by the particle size of pitch.When discharged-charged at 1 C,graphite half-cells with such uniform coating show 90.3%of the capacity at 0.1 C,while that is 82.1%for non-uniform coating.Additionally,improved initial coulombic efficiency and cycling stability are demonstrated.These can be attributed to graphite anodes featuring a uniform carbon coating that promotes effective and homogeneous LiF formation within the inorganic matrix.This leads to the establishment of a stabilized SEI,confirmed by time-of-flight secondary ion mass spectrometry(TOF-SIMS).This work provides valuable reference into the rational control of graphite interfaces for high electrochemical performance.