Low Earth orbit(LEO)satellite networks exhibit distinct characteristics,e.g.,limited resources of individual satellite nodes and dynamic network topology,which have brought many challenges for routing algorithms.To sa...Low Earth orbit(LEO)satellite networks exhibit distinct characteristics,e.g.,limited resources of individual satellite nodes and dynamic network topology,which have brought many challenges for routing algorithms.To satisfy quality of service(QoS)requirements of various users,it is critical to research efficient routing strategies to fully utilize satellite resources.This paper proposes a multi-QoS information optimized routing algorithm based on reinforcement learning for LEO satellite networks,which guarantees high level assurance demand services to be prioritized under limited satellite resources while considering the load balancing performance of the satellite networks for low level assurance demand services to ensure the full and effective utilization of satellite resources.An auxiliary path search algorithm is proposed to accelerate the convergence of satellite routing algorithm.Simulation results show that the generated routing strategy can timely process and fully meet the QoS demands of high assurance services while effectively improving the load balancing performance of the link.展开更多
Though the WiMedia supports higher data rates than other WPAN technologies,a WiMedia device cannot reach other devices that are separated from it by more than 10 m,which is the typical limited transmission range of th...Though the WiMedia supports higher data rates than other WPAN technologies,a WiMedia device cannot reach other devices that are separated from it by more than 10 m,which is the typical limited transmission range of the WiMedia protocol.In this work,we propose a multi-hop QoS routing protocol to enable WiMedia devices to transmit real-time data to devices that are located out of the transmission range.The proposed routing protocol is a hybrid algorithm,which mixes the table-driven and on-demand routing algorithms,searching one or more routes according to the number of hops to a destination device.WiMedia MAC is potentially capable of learning the existence of neighbor devices by using a beacon frame.By utilizing the neighbors' information,all devices can create routing entries for devices within 2-hops periodically.For devices beyond the 2-hop range,the newly designed on-demand routing algorithm is applied to multi-hop routing.If a routing entry for a destination device is not listed in the routing table,the source device sends a request packet to 2-hop range devices which could be found in the routing table.Since every device maintains routing entries for 2-hop range devices in the routing table,the request packet is replied in advance before its arrival at the destination device.Also,to decide the optimal route for a destination device,the number of medium access slots(MASs),received signal strength indicator(RSSI)and hop count are utilized to establish a QoS-enabled routing table.We perform ns-2 simulation to investigate the performance of the proposed routing protocol with AODV and DSDV.The simulation results show that the proposed protocol has better throughput and lower overhead than other protocols.展开更多
Quality of service (QoS) routing and multicasting protocols in ad hoc networks are face with the challenge of delivering data to destinations through multihop routes in the presence of node movements and topology ch...Quality of service (QoS) routing and multicasting protocols in ad hoc networks are face with the challenge of delivering data to destinations through multihop routes in the presence of node movements and topology changes. The multicast routing problem with multiple QoS constraints is discussed, which may deal with the delay, bandwidth and cost metrics, and describes a network model for researching the ad hoc networks QoS multicast routing problem. It presents a distributed QoS multicast routing protocol (DQMRP). The proof of correctness and complenty analysis of the DQMRP are also given. Simulation results show that the multicast tree optimized by DQMRP is better than other protocols and is fitter for the network situations with frequently changed status and the realtime multimedia application. It is an available approach to multicast routing decision with multiple QoS constraints.展开更多
Ad hoe wireless networks consist of mobile nodes interconnected by multihop communication paths. Unlike conventional wireless networks, ad hoc networks have no fixed network infrastructure or administrative support. D...Ad hoe wireless networks consist of mobile nodes interconnected by multihop communication paths. Unlike conventional wireless networks, ad hoc networks have no fixed network infrastructure or administrative support. Due to bandwidth constraint and dynamic topology of mobile ad hoc networks, supporting Quality of Service (QoS) is an inherently complex, difficult issue and very important research issue. MAODV (Multicast Ad hoc Ondemand Distance Vector) routing protocol provides fast and efficient route establishment between mobile nodes that need to communicate with each other. MAODV has minimal control overhead and route acquisition latency. In addition to unicast routing, MAODV supports multicast and broadcast as well. The multicast routing problem with multiple QoS constraints, which may deal with the delay, bandwidth and packet loss measurements is discussed, and a network model for researching the ad hoc network QoS multicast routing problem is described. It presents a complete solution for QoS multicast routing based on an extension of the MAODV routing protocol that deals with delay, bandwidth and packet loss mesurements. The solution is based on lower layer specifics. Simulation results show that, with the proposed QoS multicast routing protocol, end-to-end delay, bandwidth and packet loss on a route can be improved in most of cases. It is an available approach to multicast routing decision with multiple QoS constraints.展开更多
The multicast routing problem with multiple QoS constraints in networks with uncertain parameters is discussed, and a network model that is suitable to research such QoS multicast routing problem is described. The QMR...The multicast routing problem with multiple QoS constraints in networks with uncertain parameters is discussed, and a network model that is suitable to research such QoS multicast routing problem is described. The QMRGA, a multicast routing policy for Internet, mobile network or other highperformance networks is mainly presented, which is based on the genetic algorithm(GA), and can provide QoSsensitive paths in a scalable and flexible way in the network environment with uncertain parameters. The QMRGA can also optimize the network resources such as bandwidth and delay, and can converge to the optimal or nearoptimal solution within few iterations, even for the network environment with uncertain parameters. The incremental rate of computational cost can be close to a polynomial and is less than exponential rate. The performance measures of the QMRGA are evaluated by using simulations. The results show that QMRGA provides an available approach to QoS multicast routing in network environment with uncertain parameters.展开更多
In the Internet, a group of replicated servers is commonly used in order to improve the scalability of network service. Anycast service is a new network service that can improve network load distribution and simplify ...In the Internet, a group of replicated servers is commonly used in order to improve the scalability of network service. Anycast service is a new network service that can improve network load distribution and simplify certain applications. In this paper, the authors described a simple anycast service model in the Internet without significant affecting the routing and protocol processing infrastructure that was already in place, and proposed an anycast QoS routing algorithm for this model. The algorithm used randomized method to balance network load and improve its performance. Several new techniques are proposed in the algorithm, first, theminimum hops for each node are used in the algorithm, which are used as metric for computing the probability of possible out links. The metric is pre computed for each node in the network, which can simplify the network complexity and provide the routing process with useful information. Second, randomness is used at the link level and depends dynamically on the routing configuration. This provides great flexibility for the routing process, prevents the routing process from overusing certain fixed routing paths, and adequately balances the delay of the routing path. the authors assess the quality of QoS algorithm in terms of the acceptance ratio on anycast QoS requests, and the simulation results on a variety of network topologies and on various parameters show that the algorithm has good performances and can balance network load effectively.展开更多
An efficient QoS routing algorithm was proposed for multiple constrained path selection. Making use of efficient pruning policy, the algorithm reduces greatly the size of search space and the computing time. Although ...An efficient QoS routing algorithm was proposed for multiple constrained path selection. Making use of efficient pruning policy, the algorithm reduces greatly the size of search space and the computing time. Although the proposed algorithm has exponential time complexity in the worst case, it can get the running results quickly in practical application. When the scale of network increases, the algorithm can efficiently control the size of search space by constraint conditions and prior queue. The results of simulation show that successful request ratio ( r ) of efficient algorithm for multi-constrained optimal path (EAMCOP) is better than that of heuristic algorithm for multi-constrained optimal path (H-MCOP), but average computing time ( t ) of EAMCOP is far less than that of H-MCOP. And it can be seen that the computing time of EAMCOP is only one fourth of that of H-MCOP in Advanced Research Projects Agency Network (ARPANet) topology.展开更多
考虑了卫星Internet拓扑变化的可预测性和组播应用的服务质量QoS(quality of service)需求,设计了一种QoS组播路由机制.给出了卫星Internet中QoS组播路由问题模型及其数学描述,引入拉格朗日松弛,设定适应度函数,使用PRIM算法,基于次梯...考虑了卫星Internet拓扑变化的可预测性和组播应用的服务质量QoS(quality of service)需求,设计了一种QoS组播路由机制.给出了卫星Internet中QoS组播路由问题模型及其数学描述,引入拉格朗日松弛,设定适应度函数,使用PRIM算法,基于次梯度优化,寻找生存周期最大化的QoS组播路由树.基于NS2进行了仿真实现和性能评价.仿真结果表明,同传统的组播路由机制相比,该机制是可行和有效的,提高了QoS组播路由树生存周期,具有良好的性能.展开更多
1 引言目前的Internet网络中,一个会话的数据分组可以通过不同的传输路径到达目的节点,而且不同任务分组公平地共享网络资源,例如,链路带宽、交换缓冲区等。这种结构不能支持多媒体数据和实时数据传输。多媒体业务需求的日益增长推动了...1 引言目前的Internet网络中,一个会话的数据分组可以通过不同的传输路径到达目的节点,而且不同任务分组公平地共享网络资源,例如,链路带宽、交换缓冲区等。这种结构不能支持多媒体数据和实时数据传输。多媒体业务需求的日益增长推动了现有多媒体应用的进一步发展,这也对新一代网络提出了新的要求。服务质量(QoS,Quality of Services)的概念已经用于定量和定性地描述服务的提供者和服务的接受者之间协商的服务性能。服务质量可以由一些特定的参数来描述,服务的提供者允许服务的使用者在建立连接时对各种服务参数指定希望的、可接受的最低限度值。展开更多
Constraint-based multicast routing, which aims at identifying a path that satisfies a set of quality of service (QoS) constraints, has became a very important research issue in the areas of networks and distributed sy...Constraint-based multicast routing, which aims at identifying a path that satisfies a set of quality of service (QoS) constraints, has became a very important research issue in the areas of networks and distributed systems. In general, multi-constrained path selection with or without optimization is a NP-complete problem that can not be exactly solved in polynomial time. Hence, accurate constraints-based routing algorithms with a fast running time are scarce, perhaps even non-existent. The expected impact of such a constrained-based routing algorithm has resulted in the proposal of numerous heuristics and a few exact QoS algorithms. This paper aims to give a thorough, concise and fair evaluation of the most important multiple constraint-based QoS multicast routing algorithms known today, and it provides a descriptive overview and simulation results of these multi-constrained routing algorithms.展开更多
为了提高网络路由性能,提出并设计了一种基于遗传-蚁群优化算法的服务质量(quality of service,QoS)组播路由算法。首先,设计了自适应变频采集策略用于采集网络与节点信息,以此获得网络和节点的状态,为后续路由优化提供数据支持;其次,...为了提高网络路由性能,提出并设计了一种基于遗传-蚁群优化算法的服务质量(quality of service,QoS)组播路由算法。首先,设计了自适应变频采集策略用于采集网络与节点信息,以此获得网络和节点的状态,为后续路由优化提供数据支持;其次,计算路径代价,将路径代价最小作为优化目标,建立QoS组播路由优化模型,并设置相关约束条件;最后,结合遗传算法和蚁群算法提出一种遗传-蚁群优化算法求解上述模型,输出最优路径,完成路由优化。实验结果表明,所提算法可有效降低路径长度与路径代价,提高搜索效率与路由请求成功率,优化后的路由时延抖动较小。展开更多
基金National Key Research and Development Program(2021YFB2900604)。
文摘Low Earth orbit(LEO)satellite networks exhibit distinct characteristics,e.g.,limited resources of individual satellite nodes and dynamic network topology,which have brought many challenges for routing algorithms.To satisfy quality of service(QoS)requirements of various users,it is critical to research efficient routing strategies to fully utilize satellite resources.This paper proposes a multi-QoS information optimized routing algorithm based on reinforcement learning for LEO satellite networks,which guarantees high level assurance demand services to be prioritized under limited satellite resources while considering the load balancing performance of the satellite networks for low level assurance demand services to ensure the full and effective utilization of satellite resources.An auxiliary path search algorithm is proposed to accelerate the convergence of satellite routing algorithm.Simulation results show that the generated routing strategy can timely process and fully meet the QoS demands of high assurance services while effectively improving the load balancing performance of the link.
基金Project supported by the Second Stage of Brain Korea 21 ProjectsProject(10035236)supported by the IT_R&D Program of MKE/KEIT,Korea
文摘Though the WiMedia supports higher data rates than other WPAN technologies,a WiMedia device cannot reach other devices that are separated from it by more than 10 m,which is the typical limited transmission range of the WiMedia protocol.In this work,we propose a multi-hop QoS routing protocol to enable WiMedia devices to transmit real-time data to devices that are located out of the transmission range.The proposed routing protocol is a hybrid algorithm,which mixes the table-driven and on-demand routing algorithms,searching one or more routes according to the number of hops to a destination device.WiMedia MAC is potentially capable of learning the existence of neighbor devices by using a beacon frame.By utilizing the neighbors' information,all devices can create routing entries for devices within 2-hops periodically.For devices beyond the 2-hop range,the newly designed on-demand routing algorithm is applied to multi-hop routing.If a routing entry for a destination device is not listed in the routing table,the source device sends a request packet to 2-hop range devices which could be found in the routing table.Since every device maintains routing entries for 2-hop range devices in the routing table,the request packet is replied in advance before its arrival at the destination device.Also,to decide the optimal route for a destination device,the number of medium access slots(MASs),received signal strength indicator(RSSI)and hop count are utilized to establish a QoS-enabled routing table.We perform ns-2 simulation to investigate the performance of the proposed routing protocol with AODV and DSDV.The simulation results show that the proposed protocol has better throughput and lower overhead than other protocols.
基金This project was supported by the National Natural Science Foundation of China (60172035 ,90304018) NSF of HubeiProvince (2004ABA014) and Teaching Research Project of Higher Educational Institutions of Hubei Province (20040231)
文摘Quality of service (QoS) routing and multicasting protocols in ad hoc networks are face with the challenge of delivering data to destinations through multihop routes in the presence of node movements and topology changes. The multicast routing problem with multiple QoS constraints is discussed, which may deal with the delay, bandwidth and cost metrics, and describes a network model for researching the ad hoc networks QoS multicast routing problem. It presents a distributed QoS multicast routing protocol (DQMRP). The proof of correctness and complenty analysis of the DQMRP are also given. Simulation results show that the multicast tree optimized by DQMRP is better than other protocols and is fitter for the network situations with frequently changed status and the realtime multimedia application. It is an available approach to multicast routing decision with multiple QoS constraints.
基金This project was supported by the National Natural Science Foundation of China (60172035 ,90304018) NSF of HubeiProvince (2004ABA014) and Teaching Research Project of Higher Educational Institutions of Hubei Province (20040231)
文摘Ad hoe wireless networks consist of mobile nodes interconnected by multihop communication paths. Unlike conventional wireless networks, ad hoc networks have no fixed network infrastructure or administrative support. Due to bandwidth constraint and dynamic topology of mobile ad hoc networks, supporting Quality of Service (QoS) is an inherently complex, difficult issue and very important research issue. MAODV (Multicast Ad hoc Ondemand Distance Vector) routing protocol provides fast and efficient route establishment between mobile nodes that need to communicate with each other. MAODV has minimal control overhead and route acquisition latency. In addition to unicast routing, MAODV supports multicast and broadcast as well. The multicast routing problem with multiple QoS constraints, which may deal with the delay, bandwidth and packet loss measurements is discussed, and a network model for researching the ad hoc network QoS multicast routing problem is described. It presents a complete solution for QoS multicast routing based on an extension of the MAODV routing protocol that deals with delay, bandwidth and packet loss mesurements. The solution is based on lower layer specifics. Simulation results show that, with the proposed QoS multicast routing protocol, end-to-end delay, bandwidth and packet loss on a route can be improved in most of cases. It is an available approach to multicast routing decision with multiple QoS constraints.
文摘The multicast routing problem with multiple QoS constraints in networks with uncertain parameters is discussed, and a network model that is suitable to research such QoS multicast routing problem is described. The QMRGA, a multicast routing policy for Internet, mobile network or other highperformance networks is mainly presented, which is based on the genetic algorithm(GA), and can provide QoSsensitive paths in a scalable and flexible way in the network environment with uncertain parameters. The QMRGA can also optimize the network resources such as bandwidth and delay, and can converge to the optimal or nearoptimal solution within few iterations, even for the network environment with uncertain parameters. The incremental rate of computational cost can be close to a polynomial and is less than exponential rate. The performance measures of the QMRGA are evaluated by using simulations. The results show that QMRGA provides an available approach to QoS multicast routing in network environment with uncertain parameters.
基金TheNationalScienceFundforOverseasDistinguishedYoungScholars (No .6 992 82 0 1)FoundationforUniversityKeyTeacherbytheMinist
文摘In the Internet, a group of replicated servers is commonly used in order to improve the scalability of network service. Anycast service is a new network service that can improve network load distribution and simplify certain applications. In this paper, the authors described a simple anycast service model in the Internet without significant affecting the routing and protocol processing infrastructure that was already in place, and proposed an anycast QoS routing algorithm for this model. The algorithm used randomized method to balance network load and improve its performance. Several new techniques are proposed in the algorithm, first, theminimum hops for each node are used in the algorithm, which are used as metric for computing the probability of possible out links. The metric is pre computed for each node in the network, which can simplify the network complexity and provide the routing process with useful information. Second, randomness is used at the link level and depends dynamically on the routing configuration. This provides great flexibility for the routing process, prevents the routing process from overusing certain fixed routing paths, and adequately balances the delay of the routing path. the authors assess the quality of QoS algorithm in terms of the acceptance ratio on anycast QoS requests, and the simulation results on a variety of network topologies and on various parameters show that the algorithm has good performances and can balance network load effectively.
文摘An efficient QoS routing algorithm was proposed for multiple constrained path selection. Making use of efficient pruning policy, the algorithm reduces greatly the size of search space and the computing time. Although the proposed algorithm has exponential time complexity in the worst case, it can get the running results quickly in practical application. When the scale of network increases, the algorithm can efficiently control the size of search space by constraint conditions and prior queue. The results of simulation show that successful request ratio ( r ) of efficient algorithm for multi-constrained optimal path (EAMCOP) is better than that of heuristic algorithm for multi-constrained optimal path (H-MCOP), but average computing time ( t ) of EAMCOP is far less than that of H-MCOP. And it can be seen that the computing time of EAMCOP is only one fourth of that of H-MCOP in Advanced Research Projects Agency Network (ARPANet) topology.
文摘考虑了卫星Internet拓扑变化的可预测性和组播应用的服务质量QoS(quality of service)需求,设计了一种QoS组播路由机制.给出了卫星Internet中QoS组播路由问题模型及其数学描述,引入拉格朗日松弛,设定适应度函数,使用PRIM算法,基于次梯度优化,寻找生存周期最大化的QoS组播路由树.基于NS2进行了仿真实现和性能评价.仿真结果表明,同传统的组播路由机制相比,该机制是可行和有效的,提高了QoS组播路由树生存周期,具有良好的性能.
文摘1 引言目前的Internet网络中,一个会话的数据分组可以通过不同的传输路径到达目的节点,而且不同任务分组公平地共享网络资源,例如,链路带宽、交换缓冲区等。这种结构不能支持多媒体数据和实时数据传输。多媒体业务需求的日益增长推动了现有多媒体应用的进一步发展,这也对新一代网络提出了新的要求。服务质量(QoS,Quality of Services)的概念已经用于定量和定性地描述服务的提供者和服务的接受者之间协商的服务性能。服务质量可以由一些特定的参数来描述,服务的提供者允许服务的使用者在建立连接时对各种服务参数指定希望的、可接受的最低限度值。
文摘Constraint-based multicast routing, which aims at identifying a path that satisfies a set of quality of service (QoS) constraints, has became a very important research issue in the areas of networks and distributed systems. In general, multi-constrained path selection with or without optimization is a NP-complete problem that can not be exactly solved in polynomial time. Hence, accurate constraints-based routing algorithms with a fast running time are scarce, perhaps even non-existent. The expected impact of such a constrained-based routing algorithm has resulted in the proposal of numerous heuristics and a few exact QoS algorithms. This paper aims to give a thorough, concise and fair evaluation of the most important multiple constraint-based QoS multicast routing algorithms known today, and it provides a descriptive overview and simulation results of these multi-constrained routing algorithms.
文摘为了提高网络路由性能,提出并设计了一种基于遗传-蚁群优化算法的服务质量(quality of service,QoS)组播路由算法。首先,设计了自适应变频采集策略用于采集网络与节点信息,以此获得网络和节点的状态,为后续路由优化提供数据支持;其次,计算路径代价,将路径代价最小作为优化目标,建立QoS组播路由优化模型,并设置相关约束条件;最后,结合遗传算法和蚁群算法提出一种遗传-蚁群优化算法求解上述模型,输出最优路径,完成路由优化。实验结果表明,所提算法可有效降低路径长度与路径代价,提高搜索效率与路由请求成功率,优化后的路由时延抖动较小。