The Internet of Medical Things(Io MT) is regarded as a critical technology for intelligent healthcare in the foreseeable 6G era. Nevertheless, due to the limited computing power capability of edge devices and task-rel...The Internet of Medical Things(Io MT) is regarded as a critical technology for intelligent healthcare in the foreseeable 6G era. Nevertheless, due to the limited computing power capability of edge devices and task-related coupling relationships, Io MT faces unprecedented challenges. Considering the associative connections among tasks, this paper proposes a computing offloading policy for multiple-user devices(UDs) considering device-to-device(D2D) communication and a multi-access edge computing(MEC)technique under the scenario of Io MT. Specifically,to minimize the total delay and energy consumption concerning the requirement of Io MT, we first analyze and model the detailed local execution, MEC execution, D2D execution, and associated tasks offloading exchange model. Consequently, the associated tasks’ offloading scheme of multi-UDs is formulated as a mixed-integer nonconvex optimization problem. Considering the advantages of deep reinforcement learning(DRL) in processing tasks related to coupling relationships, a Double DQN based associative tasks computing offloading(DDATO) algorithm is then proposed to obtain the optimal solution, which can make the best offloading decision under the condition that tasks of UDs are associative. Furthermore, to reduce the complexity of the DDATO algorithm, the cacheaided procedure is intentionally introduced before the data training process. This avoids redundant offloading and computing procedures concerning tasks that previously have already been cached by other UDs. In addition, we use a dynamic ε-greedy strategy in the action selection section of the algorithm, thus preventing the algorithm from falling into a locally optimal solution. Simulation results demonstrate that compared with other existing methods for associative task models concerning different structures in the Io MT network, the proposed algorithm can lower the total cost more effectively and efficiently while also providing a tradeoff between delay and energy consumption tolerance.展开更多
Due to the limited computational capability and the diversity of the Internet of Things devices working in different environment,we consider fewshot learning-based automatic modulation classification(AMC)to improve it...Due to the limited computational capability and the diversity of the Internet of Things devices working in different environment,we consider fewshot learning-based automatic modulation classification(AMC)to improve its reliability.A data enhancement module(DEM)is designed by a convolutional layer to supplement frequency-domain information as well as providing nonlinear mapping that is beneficial for AMC.Multimodal network is designed to have multiple residual blocks,where each residual block has multiple convolutional kernels of different sizes for diverse feature extraction.Moreover,a deep supervised loss function is designed to supervise all parts of the network including the hidden layers and the DEM.Since different model may output different results,cooperative classifier is designed to avoid the randomness of single model and improve the reliability.Simulation results show that this few-shot learning-based AMC method can significantly improve the AMC accuracy compared to the existing methods.展开更多
The Internet of Things(IoT)connects objects to Internet through sensor devices,radio frequency identification devices and other information collection and processing devices to realize information interaction.IoT is w...The Internet of Things(IoT)connects objects to Internet through sensor devices,radio frequency identification devices and other information collection and processing devices to realize information interaction.IoT is widely used in many fields,including intelligent transportation,intelligent healthcare,intelligent home and industry.In these fields,IoT devices connected via high-speed internet for efficient and reliable communications and faster response times.展开更多
There are numerous terminals in the satellite Internet of Things(IoT).To save cost and reduce power consumption,the system needs terminals to catch the characteristics of low power consumption and light control.The re...There are numerous terminals in the satellite Internet of Things(IoT).To save cost and reduce power consumption,the system needs terminals to catch the characteristics of low power consumption and light control.The regular random access(RA)protocols may generate large amounts of collisions,which degrade the system throughout severally.The near-far effect and power control technologies are not applicable in capture effect to obtain power difference,resulting in the collisions that cannot be separated.In fact,the optimal design at the receiving end can also realize the condition of packet power domain separation,but there are few relevant researches.In this paper,an auxiliary beamforming scheme is proposed for power domain signal separation.It adds an auxiliary reception beam based on the conventional beam,utilizing the correlation of packets in time-frequency domain between the main and auxiliary beam to complete signal separation.The roll-off belt of auxiliary beam is used to create the carrier-to-noise ratio(CNR)difference.This paper uses the genetic algorithm to optimize the auxiliary beam direction.Simulation results show that the proposed scheme outperforms slotted ALOHA(SA)in terms of system throughput per-formance and without bringing terminals additional control burden.展开更多
One of the major challenges arising in internet of military things(IoMT)is accommodating massive connectivity while providing guaranteed quality of service(QoS)in terms of ultra-high reliability.In this regard,this pa...One of the major challenges arising in internet of military things(IoMT)is accommodating massive connectivity while providing guaranteed quality of service(QoS)in terms of ultra-high reliability.In this regard,this paper presents a class of code-domain nonorthogonal multiple accesses(NOMAs)for uplink ultra reliable networking of massive IoMT based on tactical datalink such as Link-16 and joint tactical information distribution system(JTIDS).In the considered scenario,a satellite equipped with Nr antennas servers K devices including vehicles,drones,ships,sensors,handset radios,etc.Nonorthogonal coded modulation,a special form of multiple input multiple output(MIMO)-NOMA is proposed.The discussion starts with evaluating the output signal to interference-plus-noise(SINR)of receiver filter,leading to the unveiling of a closed-form expression for overloading systems as the number of users is significantly larger than the number of devices admitted such that massive connectivity is rendered.The expression allows for the development of simple yet successful interference suppression based on power allocation and phase shaping techniques that maximizes the sum rate since it is equivalent to fixed-point programming as can be proved.The proposed design is exemplified by nonlinear modulation schemes such as minimum shift keying(MSK)and Gaussian MSK(GMSK),two pivotal modulation formats in IoMT standards such as Link-16 and JITDS.Numerical results show that near capacity performance is offered.Fortunately,the performance is obtained using simple forward error corrections(FECs)of higher coding rate than existing schemes do,while the transmit power is reduced by 6 dB.The proposed design finds wide applications not only in IoMT but also in deep space communications,where ultra reliability and massive connectivity is a keen concern.展开更多
The power Internet of Things(IoT)is a significant trend in technology and a requirement for national strategic development.With the deepening digital transformation of the power grid,China’s power system has initiall...The power Internet of Things(IoT)is a significant trend in technology and a requirement for national strategic development.With the deepening digital transformation of the power grid,China’s power system has initially built a power IoT architecture comprising a perception,network,and platform application layer.However,owing to the structural complexity of the power system,the construction of the power IoT continues to face problems such as complex access management of massive heterogeneous equipment,diverse IoT protocol access methods,high concurrency of network communications,and weak data security protection.To address these issues,this study optimizes the existing architecture of the power IoT and designs an integrated management framework for the access of multi-source heterogeneous data in the power IoT,comprising cloud,pipe,edge,and terminal parts.It further reviews and analyzes the key technologies involved in the power IoT,such as the unified management of the physical model,high concurrent access,multi-protocol access,multi-source heterogeneous data storage management,and data security control,to provide a more flexible,efficient,secure,and easy-to-use solution for multi-source heterogeneous data access in the power IoT.展开更多
With the proportion of intelligent services in the industrial internet of things(IIoT)rising rapidly,its data dependency and decomposability increase the difficulty of scheduling computing resources.In this paper,we p...With the proportion of intelligent services in the industrial internet of things(IIoT)rising rapidly,its data dependency and decomposability increase the difficulty of scheduling computing resources.In this paper,we propose an intelligent service computing framework.In the framework,we take the long-term rewards of its important participants,edge service providers,as the optimization goal,which is related to service delay and computing cost.Considering the different update frequencies of data deployment and service offloading,double-timescale reinforcement learning is utilized in the framework.In the small-scale strategy,the frequent concurrency of services and the difference in service time lead to the fuzzy relationship between reward and action.To solve the fuzzy reward problem,a reward mapping-based reinforcement learning(RMRL)algorithm is proposed,which enables the agent to learn the relationship between reward and action more clearly.The large time scale strategy adopts the improved Monte Carlo tree search(MCTS)algorithm to improve the learning speed.The simulation results show that the strategy is superior to popular reinforcement learning algorithms such as double Q-learning(DDQN)and dueling Q-learning(dueling-DQN)in learning speed,and the reward is also increased by 14%.展开更多
Effective control of time-sensitive industrial applications depends on the real-time transmission of data from underlying sensors.Quantifying the data freshness through age of information(AoI),in this paper,we jointly...Effective control of time-sensitive industrial applications depends on the real-time transmission of data from underlying sensors.Quantifying the data freshness through age of information(AoI),in this paper,we jointly design sampling and non-slot based scheduling policies to minimize the maximum time-average age of information(MAoI)among sensors with the constraints of average energy cost and finite queue stability.To overcome the intractability involving high couplings of such a complex stochastic process,we first focus on the single-sensor time-average AoI optimization problem and convert the constrained Markov decision process(CMDP)into an unconstrained Markov decision process(MDP)by the Lagrangian method.With the infinite-time average energy and AoI expression expended as the Bellman equation,the singlesensor time-average AoI optimization problem can be approached through the steady-state distribution probability.Further,we propose a low-complexity sub-optimal sampling and semi-distributed scheduling scheme for the multi-sensor scenario.The simulation results show that the proposed scheme reduces the MAoI significantly while achieving a balance between the sampling rate and service rate for multiple sensors.展开更多
Puncturing has been recognized as a promising technology to cope with the coexistence problem of enhanced mobile broadband(eMBB) and ultra-reliable low latency communications(URLLC)traffic. However, the steady perform...Puncturing has been recognized as a promising technology to cope with the coexistence problem of enhanced mobile broadband(eMBB) and ultra-reliable low latency communications(URLLC)traffic. However, the steady performance of eMBB traffic while meeting the requirements of URLLC traffic with puncturing is a major challenge in some realistic scenarios. In this paper, we pay attention to the timely and energy-efficient processing for eMBB traffic in the industrial Internet of Things(IIoT), where mobile edge computing(MEC) is employed for data processing. Specifically, the performance of eMBB traffic and URLLC traffic in a MEC-based IIoT system is ensured by setting the threshold of tolerable delay and outage probability, respectively. Furthermore,considering the limited energy supply, an energy minimization problem of eMBB device is formulated under the above constraints, by jointly optimizing the resource blocks(RBs) punctured by URLLC traffic, data offloading and transmit power of eMBB device. With Markov's inequality, the problem is reformulated by transforming the probabilistic outage constraint into a deterministic constraint. Meanwhile, an iterative energy minimization algorithm(IEMA) is proposed.Simulation results demonstrate that our algorithm has a significant reduction in the energy consumption for eMBB device and achieves a better overall effect compared to several benchmarks.展开更多
The increasing penetration of renewable energy on the transmission and distribution power network is driving the adoption of two-way power flow control, data and communications needed to meet the dependency of balanci...The increasing penetration of renewable energy on the transmission and distribution power network is driving the adoption of two-way power flow control, data and communications needed to meet the dependency of balancing generation and load. Thus, creating an environment where power and information flow seamlessly in real time to enable reliable and economically viable energy delivery, the advent of Internet of Energy(IoE) as well as the rising of Internet of Things(IoT) based smart systems.The evolution of IT to Io T has shown that an information network can be connected in an autonomous way via routers from operating system(OS) based computers and devices to build a highly intelligent eco-system. Conceptually, we are applying the same methodology to the Io E concept so that Energy Operating System(EOS) based assets and devices can be developed into a distributed energy network via energy gateway and self-organized into a smart energy eco-system.This paper introduces a laboratory based IIo T driven software and controls platform developed on the NICE Nano-grid as part of a NICE smart system Initiative for Shenhua group. The goal of this effort is to develop an open architecture based Industrial Smart Energy Consortium(ISEC) to attract industrial partners, academic universities, module supplies, equipment vendors and related stakeholder to explore and contribute into a test-bed centric open laboratory template and platform for next generation energy-oriented smart industry applications.In the meanwhile, ISEC will play an important role to drive interoperability standards for the mining industry so that the era of un-manned underground mining operation can become the reality as well as increasing safety regulation enforcement.展开更多
物联网实现物与物、人与物的互联,具有十分广阔的市场和应用前景。运用信息计量学、自研软件和以Citespace为代表的知识图谱工具相结合的方法对1987至2014年英文"Internet of Things"SCI文献的基本情况和研究热点与趋势进行...物联网实现物与物、人与物的互联,具有十分广阔的市场和应用前景。运用信息计量学、自研软件和以Citespace为代表的知识图谱工具相结合的方法对1987至2014年英文"Internet of Things"SCI文献的基本情况和研究热点与趋势进行了初步分析与可视化展现。通过对数据的处理和分析得出了英文"Internet of Things"SCI文献的期刊、国家、机构、学科、作者、高被引用文献等基本情况,并利用关键词共现、突现词检测等方法对英文"Internet of Things"研究的热点和未来的研究趋势进行了初步预测。研究表明,运用知识图谱工具分析物联网研究点与趋势,是一种有意义的手段。展开更多
Internet of Things (IoT) has attracted extensive interest from both academia and industries, and is recognized as an ultimate infrastructure to connect everything at anytime and anywhere. The implementation of IoT gen...Internet of Things (IoT) has attracted extensive interest from both academia and industries, and is recognized as an ultimate infrastructure to connect everything at anytime and anywhere. The implementation of IoT generally faces the challenges from energy constraint and implementation cost. In this paper, we will introduce a new green communication paradigm, the ambient backscatter (AmBC), that could utilize the environmental wireless signals for both powering a tiny-cost device and backscattering the information symbols. Specifically, we will present the basic principles of AmBC, analyze its features and advantages, suggest its open problems, and predict its potential applications for our future IoT.展开更多
This paper proposes an open hierarchical network architecture for the Internet of Things (IoT), which can provide a unified network topology by using heterogeneous Wireless Sensor Networks (WSNs). With this proposed a...This paper proposes an open hierarchical network architecture for the Internet of Things (IoT), which can provide a unified network topology by using heterogeneous Wireless Sensor Networks (WSNs). With this proposed architecture, our research focuses on the optimal deployment strategy of the nodes on the convergence level. We aim at the maximization of the sub-network's lifetime while minimizing the deployment cost. Meanwhile, a novel metric named as the Ratio of Lifetime to Cost (RLC) is proposed to estimate the efficiency of convergence nodes deployment. Simulation results indicate that the proposed deployment algorithm can achieve the optimal number of convergence nodes. The proposed deployment strategy is able to achieve a balanced tradeoff between the network lifetime and the deployment cost.展开更多
The industrial Internet of Things(IoT)is a trend of factory development and a basic condition of intelligent factory.It is very important to ensure the security of data transmission in industrial IoT.Applying a new ch...The industrial Internet of Things(IoT)is a trend of factory development and a basic condition of intelligent factory.It is very important to ensure the security of data transmission in industrial IoT.Applying a new chaotic secure communication scheme to address the security problem of data transmission is the main contribution of this paper.The scheme is proposed and studied based on the synchronization of different-structure fractional-order chaotic systems with different order.The Lyapunov stability theory is used to prove the synchronization between the fractional-order drive system and the response system.The encryption and decryption process of the main data signals is implemented by using the n-shift encryption principle.We calculate and analyze the key space of the scheme.Numerical simulations are introduced to show the effectiveness of theoretical approach we proposed.展开更多
With the rapid development of the sixth generation(6G)network and Internet of Things(IoT),it has become extremely challenging to efficiently detect and prevent the distributed denial of service(DDoS)attacks originatin...With the rapid development of the sixth generation(6G)network and Internet of Things(IoT),it has become extremely challenging to efficiently detect and prevent the distributed denial of service(DDoS)attacks originating from IoT devices.In this paper we propose an innovative trust model for IoT devices to prevent potential DDoS attacks by evaluating their trustworthiness,which can be deployed in the access network of 6G IoT.Based on historical communication behaviors,this model combines spatial trust and temporal trust values to comprehensively characterize the normal behavior patterns of IoT devices,thereby effectively distinguishing attack traffic.Experimental results show that the proposed method can efficiently distinguish normal traffic from DDoS traffic.Compared with the benchmark methods,our method has advantages in terms of both accuracy and efficiency in identifying attack flows.展开更多
Exploiting random access for the underlying connectivity provisioning has great potential to incorporate massive machine-type communication(MTC)devices in an Internet of Things(Io T)network.However,massive access atte...Exploiting random access for the underlying connectivity provisioning has great potential to incorporate massive machine-type communication(MTC)devices in an Internet of Things(Io T)network.However,massive access attempts from versatile MTC devices may bring congestion to the IIo T network,thereby hindering service increasing of IIo T applications.In this paper,an intelligence enabled physical(PHY-)layer user signature code acquisition(USCA)algorithm is proposed to overcome the random access congestion problem with reduced signaling and control overhead.In the proposed scheme,the detector aims at approximating the optimal observation on both active user detection and user data reception by iteratively learning and predicting the convergence of the user signature codes that are in active.The crossentropy based low-complexity iterative updating rule is present to guarantee that the proposed USCA algorithm is computational feasible.A closed-form bit error rate(BER)performance analysis is carried out to show the efficiency of the proposed intelligence USCA algorithm.Simulation results confirm that the proposed USCA algorithm provides an inherent tradeoff between performance and complexity and allows the detector achieves an approximate optimal performance with a reasonable computational complexity.展开更多
In the era of 5G and the Internet of things(IoTs),vari-ous human-computer interaction systems based on the integration of triboelectric nanogenerators(TENGs)and IoTs technologies dem-onstrate the feasibility of sustai...In the era of 5G and the Internet of things(IoTs),vari-ous human-computer interaction systems based on the integration of triboelectric nanogenerators(TENGs)and IoTs technologies dem-onstrate the feasibility of sustainable and self-powered functional systems.The rapid development of intelligent applications of IoTs based on TENGs mainly relies on supplying the harvested mechanical energy from surroundings and implementing active sensing,which have greatly changed the way of human production and daily life.This review mainly introduced the TENG applications in multidisci-pline scenarios of IoTs,including smart agriculture,smart industry,smart city,emergency monitoring,and machine learning-assisted artificial intelligence applications.The challenges and future research directions of TENG toward IoTs have also been proposed.The exten-sive developments and applications of TENG will push forward the IoTs into an energy autonomy fashion.展开更多
In recent years,LoRa has been extensively researched in the satellite Internet of Things(IoT).However,the multiple access technology of LoRa is still one of the bottlenecks of satellite IoT.To improve the multiple acc...In recent years,LoRa has been extensively researched in the satellite Internet of Things(IoT).However,the multiple access technology of LoRa is still one of the bottlenecks of satellite IoT.To improve the multiple access performance of LoRa satellite IoT,based on the orthogonality of LoRa symbols in the fractional domain,this paper proposes a low complexity Orthogonal LoRa Multiple Access(OLMA)algorithm for multiple LoRa users occupying the same frequency bandwidth.The algorithm introduces the address code to divide the fractional bandwidth into multiple parts,and the OLMA users with different address codes occupy different parts to transmit the information code,thus avoiding mutual interference caused by collisions in the same frequency bandwidth.The multiple access capability of OLMA can be flexibly configured only by simply adjusting the length of the address code according to the actual application requirements of data transmission.Theoretical analysis and simulation results show that the OLMA algorithm can greatly improve the multiple access capability and the total transmission bit rate of LoRa IoT without changing the existing LoRa modulation parameters and process.展开更多
Smart appliances and renewable energy resources are becoming an integral part of smart homes. Nowadays, home appliances are communicating with each other with home short-range home area gateways, using existing netwo...Smart appliances and renewable energy resources are becoming an integral part of smart homes. Nowadays, home appliances are communicating with each other with home short-range home area gateways, using existing network communication protocols such as ZigBee, Bluetooth, RFID, and WiFi. A Gateway allows homeowners and utilities to communicate remotely with the appliances via long-range communication networks such as GPRS, WiMax, LTE, and power liner carrier. This paper utilizes the Internet of Things (IoT) concepts to monitor and control home appliances. Moreover, this paper proposes a framework that enables the integration and the coordination of Human-to-Appliance, Utility-to- Appliance, and Appliance-to-Appliance. Utilizing the concepts of Internet of Things leads to one standard communication protocols, TCP/IPV6, which overcomes the many diverse home area networks and neighborhood area networks protocols. This work proposes a cloud based framework that enables the IoTs integration and supports the coordination between devices, as well as with device-human interaction. A prototype is designed, implemented, and tested to validate the proposed solution.展开更多
Network and communications models are built for target tracking and pursuing in the Internet of Things (IoT).According to these models,two tracking schemes which jointly optimize the pursuing energy and delay are prop...Network and communications models are built for target tracking and pursuing in the Internet of Things (IoT).According to these models,two tracking schemes which jointly optimize the pursuing energy and delay are proposed.The merits of these schemes are that they can enhance energy efficiency of both the pursuing route and communication in the network.Moreover,experimental results are provided to demonstrate the benefits of the proposed schemes which will be used as optimization schemes for the IoT tracking service.展开更多
基金supported by National Natural Science Foundation of China(Grant No.62071377,62101442,62201456)Natural Science Foundation of Shaanxi Province(Grant No.2023-YBGY-036,2022JQ-687)The Graduate Student Innovation Foundation Project of Xi’an University of Posts and Telecommunications under Grant CXJJDL2022003.
文摘The Internet of Medical Things(Io MT) is regarded as a critical technology for intelligent healthcare in the foreseeable 6G era. Nevertheless, due to the limited computing power capability of edge devices and task-related coupling relationships, Io MT faces unprecedented challenges. Considering the associative connections among tasks, this paper proposes a computing offloading policy for multiple-user devices(UDs) considering device-to-device(D2D) communication and a multi-access edge computing(MEC)technique under the scenario of Io MT. Specifically,to minimize the total delay and energy consumption concerning the requirement of Io MT, we first analyze and model the detailed local execution, MEC execution, D2D execution, and associated tasks offloading exchange model. Consequently, the associated tasks’ offloading scheme of multi-UDs is formulated as a mixed-integer nonconvex optimization problem. Considering the advantages of deep reinforcement learning(DRL) in processing tasks related to coupling relationships, a Double DQN based associative tasks computing offloading(DDATO) algorithm is then proposed to obtain the optimal solution, which can make the best offloading decision under the condition that tasks of UDs are associative. Furthermore, to reduce the complexity of the DDATO algorithm, the cacheaided procedure is intentionally introduced before the data training process. This avoids redundant offloading and computing procedures concerning tasks that previously have already been cached by other UDs. In addition, we use a dynamic ε-greedy strategy in the action selection section of the algorithm, thus preventing the algorithm from falling into a locally optimal solution. Simulation results demonstrate that compared with other existing methods for associative task models concerning different structures in the Io MT network, the proposed algorithm can lower the total cost more effectively and efficiently while also providing a tradeoff between delay and energy consumption tolerance.
基金supported in part by National Key Research and Development Program of China under Grant 2021YFB2900404.
文摘Due to the limited computational capability and the diversity of the Internet of Things devices working in different environment,we consider fewshot learning-based automatic modulation classification(AMC)to improve its reliability.A data enhancement module(DEM)is designed by a convolutional layer to supplement frequency-domain information as well as providing nonlinear mapping that is beneficial for AMC.Multimodal network is designed to have multiple residual blocks,where each residual block has multiple convolutional kernels of different sizes for diverse feature extraction.Moreover,a deep supervised loss function is designed to supervise all parts of the network including the hidden layers and the DEM.Since different model may output different results,cooperative classifier is designed to avoid the randomness of single model and improve the reliability.Simulation results show that this few-shot learning-based AMC method can significantly improve the AMC accuracy compared to the existing methods.
文摘The Internet of Things(IoT)connects objects to Internet through sensor devices,radio frequency identification devices and other information collection and processing devices to realize information interaction.IoT is widely used in many fields,including intelligent transportation,intelligent healthcare,intelligent home and industry.In these fields,IoT devices connected via high-speed internet for efficient and reliable communications and faster response times.
基金supported by the National Science Foundation of China(No.U21A20450)Natural Science Foundation of Jiangsu Province Major Project(No.BK20192002)+1 种基金National Natural Science Foundation of China(No.61971440)National Natural Science Foundation of China(No.62271266).
文摘There are numerous terminals in the satellite Internet of Things(IoT).To save cost and reduce power consumption,the system needs terminals to catch the characteristics of low power consumption and light control.The regular random access(RA)protocols may generate large amounts of collisions,which degrade the system throughout severally.The near-far effect and power control technologies are not applicable in capture effect to obtain power difference,resulting in the collisions that cannot be separated.In fact,the optimal design at the receiving end can also realize the condition of packet power domain separation,but there are few relevant researches.In this paper,an auxiliary beamforming scheme is proposed for power domain signal separation.It adds an auxiliary reception beam based on the conventional beam,utilizing the correlation of packets in time-frequency domain between the main and auxiliary beam to complete signal separation.The roll-off belt of auxiliary beam is used to create the carrier-to-noise ratio(CNR)difference.This paper uses the genetic algorithm to optimize the auxiliary beam direction.Simulation results show that the proposed scheme outperforms slotted ALOHA(SA)in terms of system throughput per-formance and without bringing terminals additional control burden.
基金supported in part by the National Natural Science Foundation of China(Grant Nos.61601346 and 62377039)the Natural Science Basic Research Plan in Shaanxi Province of China(Grant No.2018JQ6044)+2 种基金the Ministry of Industry and Information Technology of the People's Republic of China(Grant No.2023-276-1-1)the Fundamental Research Funds for the Central Universities,Northwestern Polytechnical University(Grant No.31020180QD089)the Aeronautical Science Foundation of China(Grant Nos.20200043053004 and 20200043053005)。
文摘One of the major challenges arising in internet of military things(IoMT)is accommodating massive connectivity while providing guaranteed quality of service(QoS)in terms of ultra-high reliability.In this regard,this paper presents a class of code-domain nonorthogonal multiple accesses(NOMAs)for uplink ultra reliable networking of massive IoMT based on tactical datalink such as Link-16 and joint tactical information distribution system(JTIDS).In the considered scenario,a satellite equipped with Nr antennas servers K devices including vehicles,drones,ships,sensors,handset radios,etc.Nonorthogonal coded modulation,a special form of multiple input multiple output(MIMO)-NOMA is proposed.The discussion starts with evaluating the output signal to interference-plus-noise(SINR)of receiver filter,leading to the unveiling of a closed-form expression for overloading systems as the number of users is significantly larger than the number of devices admitted such that massive connectivity is rendered.The expression allows for the development of simple yet successful interference suppression based on power allocation and phase shaping techniques that maximizes the sum rate since it is equivalent to fixed-point programming as can be proved.The proposed design is exemplified by nonlinear modulation schemes such as minimum shift keying(MSK)and Gaussian MSK(GMSK),two pivotal modulation formats in IoMT standards such as Link-16 and JITDS.Numerical results show that near capacity performance is offered.Fortunately,the performance is obtained using simple forward error corrections(FECs)of higher coding rate than existing schemes do,while the transmit power is reduced by 6 dB.The proposed design finds wide applications not only in IoMT but also in deep space communications,where ultra reliability and massive connectivity is a keen concern.
基金supported by the National Key Research and Development Program of China(grant number 2019YFE0123600)。
文摘The power Internet of Things(IoT)is a significant trend in technology and a requirement for national strategic development.With the deepening digital transformation of the power grid,China’s power system has initially built a power IoT architecture comprising a perception,network,and platform application layer.However,owing to the structural complexity of the power system,the construction of the power IoT continues to face problems such as complex access management of massive heterogeneous equipment,diverse IoT protocol access methods,high concurrency of network communications,and weak data security protection.To address these issues,this study optimizes the existing architecture of the power IoT and designs an integrated management framework for the access of multi-source heterogeneous data in the power IoT,comprising cloud,pipe,edge,and terminal parts.It further reviews and analyzes the key technologies involved in the power IoT,such as the unified management of the physical model,high concurrent access,multi-protocol access,multi-source heterogeneous data storage management,and data security control,to provide a more flexible,efficient,secure,and easy-to-use solution for multi-source heterogeneous data access in the power IoT.
基金supported by the National Natural Science Foundation of China(No.62171051)。
文摘With the proportion of intelligent services in the industrial internet of things(IIoT)rising rapidly,its data dependency and decomposability increase the difficulty of scheduling computing resources.In this paper,we propose an intelligent service computing framework.In the framework,we take the long-term rewards of its important participants,edge service providers,as the optimization goal,which is related to service delay and computing cost.Considering the different update frequencies of data deployment and service offloading,double-timescale reinforcement learning is utilized in the framework.In the small-scale strategy,the frequent concurrency of services and the difference in service time lead to the fuzzy relationship between reward and action.To solve the fuzzy reward problem,a reward mapping-based reinforcement learning(RMRL)algorithm is proposed,which enables the agent to learn the relationship between reward and action more clearly.The large time scale strategy adopts the improved Monte Carlo tree search(MCTS)algorithm to improve the learning speed.The simulation results show that the strategy is superior to popular reinforcement learning algorithms such as double Q-learning(DDQN)and dueling Q-learning(dueling-DQN)in learning speed,and the reward is also increased by 14%.
基金supported in part by the National Key R&D Program of China(No.2021YFB3300100)the National Natural Science Foundation of China(No.62171062)。
文摘Effective control of time-sensitive industrial applications depends on the real-time transmission of data from underlying sensors.Quantifying the data freshness through age of information(AoI),in this paper,we jointly design sampling and non-slot based scheduling policies to minimize the maximum time-average age of information(MAoI)among sensors with the constraints of average energy cost and finite queue stability.To overcome the intractability involving high couplings of such a complex stochastic process,we first focus on the single-sensor time-average AoI optimization problem and convert the constrained Markov decision process(CMDP)into an unconstrained Markov decision process(MDP)by the Lagrangian method.With the infinite-time average energy and AoI expression expended as the Bellman equation,the singlesensor time-average AoI optimization problem can be approached through the steady-state distribution probability.Further,we propose a low-complexity sub-optimal sampling and semi-distributed scheduling scheme for the multi-sensor scenario.The simulation results show that the proposed scheme reduces the MAoI significantly while achieving a balance between the sampling rate and service rate for multiple sensors.
基金supported by the Natural Science Foundation of China (No.62171051)。
文摘Puncturing has been recognized as a promising technology to cope with the coexistence problem of enhanced mobile broadband(eMBB) and ultra-reliable low latency communications(URLLC)traffic. However, the steady performance of eMBB traffic while meeting the requirements of URLLC traffic with puncturing is a major challenge in some realistic scenarios. In this paper, we pay attention to the timely and energy-efficient processing for eMBB traffic in the industrial Internet of Things(IIoT), where mobile edge computing(MEC) is employed for data processing. Specifically, the performance of eMBB traffic and URLLC traffic in a MEC-based IIoT system is ensured by setting the threshold of tolerable delay and outage probability, respectively. Furthermore,considering the limited energy supply, an energy minimization problem of eMBB device is formulated under the above constraints, by jointly optimizing the resource blocks(RBs) punctured by URLLC traffic, data offloading and transmit power of eMBB device. With Markov's inequality, the problem is reformulated by transforming the probabilistic outage constraint into a deterministic constraint. Meanwhile, an iterative energy minimization algorithm(IEMA) is proposed.Simulation results demonstrate that our algorithm has a significant reduction in the energy consumption for eMBB device and achieves a better overall effect compared to several benchmarks.
基金supported by National Key Research and Development Program(2016YFE0102600)National Natural Science Foundation of China(51577096,51477082)
文摘The increasing penetration of renewable energy on the transmission and distribution power network is driving the adoption of two-way power flow control, data and communications needed to meet the dependency of balancing generation and load. Thus, creating an environment where power and information flow seamlessly in real time to enable reliable and economically viable energy delivery, the advent of Internet of Energy(IoE) as well as the rising of Internet of Things(IoT) based smart systems.The evolution of IT to Io T has shown that an information network can be connected in an autonomous way via routers from operating system(OS) based computers and devices to build a highly intelligent eco-system. Conceptually, we are applying the same methodology to the Io E concept so that Energy Operating System(EOS) based assets and devices can be developed into a distributed energy network via energy gateway and self-organized into a smart energy eco-system.This paper introduces a laboratory based IIo T driven software and controls platform developed on the NICE Nano-grid as part of a NICE smart system Initiative for Shenhua group. The goal of this effort is to develop an open architecture based Industrial Smart Energy Consortium(ISEC) to attract industrial partners, academic universities, module supplies, equipment vendors and related stakeholder to explore and contribute into a test-bed centric open laboratory template and platform for next generation energy-oriented smart industry applications.In the meanwhile, ISEC will play an important role to drive interoperability standards for the mining industry so that the era of un-manned underground mining operation can become the reality as well as increasing safety regulation enforcement.
文摘物联网实现物与物、人与物的互联,具有十分广阔的市场和应用前景。运用信息计量学、自研软件和以Citespace为代表的知识图谱工具相结合的方法对1987至2014年英文"Internet of Things"SCI文献的基本情况和研究热点与趋势进行了初步分析与可视化展现。通过对数据的处理和分析得出了英文"Internet of Things"SCI文献的期刊、国家、机构、学科、作者、高被引用文献等基本情况,并利用关键词共现、突现词检测等方法对英文"Internet of Things"研究的热点和未来的研究趋势进行了初步预测。研究表明,运用知识图谱工具分析物联网研究点与趋势,是一种有意义的手段。
基金supported in part by National Key R&D Program of China under Grant 2016YFE0200900part by Scientific Research Program of Beijing Municipal Commission of Education under Grant KM201910853003part by Major projects of Beijing Municipal Science and Technology Commission under Grant Z181100003218010
文摘Internet of Things (IoT) has attracted extensive interest from both academia and industries, and is recognized as an ultimate infrastructure to connect everything at anytime and anywhere. The implementation of IoT generally faces the challenges from energy constraint and implementation cost. In this paper, we will introduce a new green communication paradigm, the ambient backscatter (AmBC), that could utilize the environmental wireless signals for both powering a tiny-cost device and backscattering the information symbols. Specifically, we will present the basic principles of AmBC, analyze its features and advantages, suggest its open problems, and predict its potential applications for our future IoT.
基金supported by National S&T Major Project of China under Grant No.2010 ZX03005-003National Key Technology Research and Develop ment Program of China under Grant No.2011BAK12B02Program for New Century Excellent Talents in University (NCET-10-0294),China
文摘This paper proposes an open hierarchical network architecture for the Internet of Things (IoT), which can provide a unified network topology by using heterogeneous Wireless Sensor Networks (WSNs). With this proposed architecture, our research focuses on the optimal deployment strategy of the nodes on the convergence level. We aim at the maximization of the sub-network's lifetime while minimizing the deployment cost. Meanwhile, a novel metric named as the Ratio of Lifetime to Cost (RLC) is proposed to estimate the efficiency of convergence nodes deployment. Simulation results indicate that the proposed deployment algorithm can achieve the optimal number of convergence nodes. The proposed deployment strategy is able to achieve a balanced tradeoff between the network lifetime and the deployment cost.
基金supported in part by the National Science Foundation Project of China (61931001, 61873026)the National Key R&D Program of China (2017YFC0820700)
文摘The industrial Internet of Things(IoT)is a trend of factory development and a basic condition of intelligent factory.It is very important to ensure the security of data transmission in industrial IoT.Applying a new chaotic secure communication scheme to address the security problem of data transmission is the main contribution of this paper.The scheme is proposed and studied based on the synchronization of different-structure fractional-order chaotic systems with different order.The Lyapunov stability theory is used to prove the synchronization between the fractional-order drive system and the response system.The encryption and decryption process of the main data signals is implemented by using the n-shift encryption principle.We calculate and analyze the key space of the scheme.Numerical simulations are introduced to show the effectiveness of theoretical approach we proposed.
基金This work was supported in part by the National Key R&D Program of China under Grant 2020YFA0711301in part by the National Natural Science Foundation of China under Grant 61922049,and Grant 61941104in part by the Tsinghua University-China Mobile Communications Group Company Ltd.,Joint Institute.
文摘With the rapid development of the sixth generation(6G)network and Internet of Things(IoT),it has become extremely challenging to efficiently detect and prevent the distributed denial of service(DDoS)attacks originating from IoT devices.In this paper we propose an innovative trust model for IoT devices to prevent potential DDoS attacks by evaluating their trustworthiness,which can be deployed in the access network of 6G IoT.Based on historical communication behaviors,this model combines spatial trust and temporal trust values to comprehensively characterize the normal behavior patterns of IoT devices,thereby effectively distinguishing attack traffic.Experimental results show that the proposed method can efficiently distinguish normal traffic from DDoS traffic.Compared with the benchmark methods,our method has advantages in terms of both accuracy and efficiency in identifying attack flows.
基金supported in part by Natural Science Foundation of Heilongjiang Province of China under Grant YQ2021F003in part by the National Natural Science Foundation of China under Grant 61901140+1 种基金in part by China Postdoctoral Science Foundation Funded Project under Grant 2019M650067in part by Science and Technology on Communication Networks Laboratory under Grant SCX21641X003。
文摘Exploiting random access for the underlying connectivity provisioning has great potential to incorporate massive machine-type communication(MTC)devices in an Internet of Things(Io T)network.However,massive access attempts from versatile MTC devices may bring congestion to the IIo T network,thereby hindering service increasing of IIo T applications.In this paper,an intelligence enabled physical(PHY-)layer user signature code acquisition(USCA)algorithm is proposed to overcome the random access congestion problem with reduced signaling and control overhead.In the proposed scheme,the detector aims at approximating the optimal observation on both active user detection and user data reception by iteratively learning and predicting the convergence of the user signature codes that are in active.The crossentropy based low-complexity iterative updating rule is present to guarantee that the proposed USCA algorithm is computational feasible.A closed-form bit error rate(BER)performance analysis is carried out to show the efficiency of the proposed intelligence USCA algorithm.Simulation results confirm that the proposed USCA algorithm provides an inherent tradeoff between performance and complexity and allows the detector achieves an approximate optimal performance with a reasonable computational complexity.
基金supported by the National Key Research and Development Program of China(2021YFB3200304)the National Natural Science Foundation of China(52073031)+2 种基金Beijing Nova Program(Z191100001119047,Z211100002121148)Fundamental Research Funds for the Central Universities(E0EG6801X2)the“Hundred Talents Program”of the Chinese Academy of Sciences.
文摘In the era of 5G and the Internet of things(IoTs),vari-ous human-computer interaction systems based on the integration of triboelectric nanogenerators(TENGs)and IoTs technologies dem-onstrate the feasibility of sustainable and self-powered functional systems.The rapid development of intelligent applications of IoTs based on TENGs mainly relies on supplying the harvested mechanical energy from surroundings and implementing active sensing,which have greatly changed the way of human production and daily life.This review mainly introduced the TENG applications in multidisci-pline scenarios of IoTs,including smart agriculture,smart industry,smart city,emergency monitoring,and machine learning-assisted artificial intelligence applications.The challenges and future research directions of TENG toward IoTs have also been proposed.The exten-sive developments and applications of TENG will push forward the IoTs into an energy autonomy fashion.
基金supported in part by the National Natural Science Foundation of China under Grant 61871153in part by Science and Technology on Communication Networks Laboratory under Grant 6142104200202in part by Science and Technology Project of Ministry of Public Security(2019GABJC35)。
文摘In recent years,LoRa has been extensively researched in the satellite Internet of Things(IoT).However,the multiple access technology of LoRa is still one of the bottlenecks of satellite IoT.To improve the multiple access performance of LoRa satellite IoT,based on the orthogonality of LoRa symbols in the fractional domain,this paper proposes a low complexity Orthogonal LoRa Multiple Access(OLMA)algorithm for multiple LoRa users occupying the same frequency bandwidth.The algorithm introduces the address code to divide the fractional bandwidth into multiple parts,and the OLMA users with different address codes occupy different parts to transmit the information code,thus avoiding mutual interference caused by collisions in the same frequency bandwidth.The multiple access capability of OLMA can be flexibly configured only by simply adjusting the length of the address code according to the actual application requirements of data transmission.Theoretical analysis and simulation results show that the OLMA algorithm can greatly improve the multiple access capability and the total transmission bit rate of LoRa IoT without changing the existing LoRa modulation parameters and process.
基金supported in part by the Department of Computer Science and Engineering at the American University of Sharjah,UAE
文摘Smart appliances and renewable energy resources are becoming an integral part of smart homes. Nowadays, home appliances are communicating with each other with home short-range home area gateways, using existing network communication protocols such as ZigBee, Bluetooth, RFID, and WiFi. A Gateway allows homeowners and utilities to communicate remotely with the appliances via long-range communication networks such as GPRS, WiMax, LTE, and power liner carrier. This paper utilizes the Internet of Things (IoT) concepts to monitor and control home appliances. Moreover, this paper proposes a framework that enables the integration and the coordination of Human-to-Appliance, Utility-to- Appliance, and Appliance-to-Appliance. Utilizing the concepts of Internet of Things leads to one standard communication protocols, TCP/IPV6, which overcomes the many diverse home area networks and neighborhood area networks protocols. This work proposes a cloud based framework that enables the IoTs integration and supports the coordination between devices, as well as with device-human interaction. A prototype is designed, implemented, and tested to validate the proposed solution.
基金supported by the Special Funds for Key Program of China(No.2009ZX01039-002-001-07,2010ZX03005-001-03)the National Natural Science Foundation of China(Grant Nos.61070205and61070206)+1 种基金Beijing Municipal Commission of Education Build Together Project Ministry of Education Infrastructure Construction Project(2-5-2)
文摘Network and communications models are built for target tracking and pursuing in the Internet of Things (IoT).According to these models,two tracking schemes which jointly optimize the pursuing energy and delay are proposed.The merits of these schemes are that they can enhance energy efficiency of both the pursuing route and communication in the network.Moreover,experimental results are provided to demonstrate the benefits of the proposed schemes which will be used as optimization schemes for the IoT tracking service.