期刊文献+
共找到251,881篇文章
< 1 2 250 >
每页显示 20 50 100
断续节理作用的Interface模型及工程应用 被引量:1
1
作者 张强勇 孙爱花 朱维申 《岩土力学》 EI CAS CSCD 北大核心 2006年第S1期17-21,共5页
断续节理是影响地下洞室围岩稳定的重要因素,要有效反映其影响提出 Interface 界面模型模拟断续节理的力学效应。以二滩水电工程大型地下洞室群为背景,对主厂房开挖考虑与不考虑断续节理作用进行了多种地应力工况的数值计算与分析,获得... 断续节理是影响地下洞室围岩稳定的重要因素,要有效反映其影响提出 Interface 界面模型模拟断续节理的力学效应。以二滩水电工程大型地下洞室群为背景,对主厂房开挖考虑与不考虑断续节理作用进行了多种地应力工况的数值计算与分析,获得了主厂房洞周在断续节理影响下的位移场和塑性区分布规律,为大型地下工程围岩稳定分析提供了有益的参考。 展开更多
关键词 断续节理 interface模型 围岩稳定 数值计算与分析
在线阅读 下载PDF
Interface模型模拟断续节理洞群渗流效应的数值分析 被引量:1
2
作者 孙爱花 麻红宝 朱维申 《隧道建设》 2007年第S2期183-187,共5页
采用三维有限差分FLAC3D程序,以二滩工程地下洞群的结构形式为背景,提出interface界面模型模拟断续节理的力学效应,考虑与不考虑节理岩体静水渗流对围岩稳定性进行了大量计算工况的准三维数值模拟。通过系统分析得出相应的结论,为大型... 采用三维有限差分FLAC3D程序,以二滩工程地下洞群的结构形式为背景,提出interface界面模型模拟断续节理的力学效应,考虑与不考虑节理岩体静水渗流对围岩稳定性进行了大量计算工况的准三维数值模拟。通过系统分析得出相应的结论,为大型地下工程围岩稳定分析提供了有益的参考。 展开更多
关键词 节理 渗流 interface模型 系统分析 围岩稳定
在线阅读 下载PDF
Multiple Tin Compounds Modified Carbon Fibers to Construct Heterogeneous Interfaces for Corrosion Prevention and Electromagnetic Wave Absorption 被引量:1
3
作者 Zhiqiang Guo Di Lan +6 位作者 Zirui Jia Zhenguo Gao Xuetao Shi Mukun He Hua Guo Guanglei Wu Pengfei Yin 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期507-527,共21页
Currently,the demand for electromagnetic wave(EMW)absorbing materials with specific functions and capable of withstanding harsh environments is becoming increasingly urgent.Multi-component interface engineering is con... Currently,the demand for electromagnetic wave(EMW)absorbing materials with specific functions and capable of withstanding harsh environments is becoming increasingly urgent.Multi-component interface engineering is considered an effective means to achieve high-efficiency EMW absorption.However,interface modulation engineering has not been fully discussed and has great potential in the field of EMW absorption.In this study,multi-component tin compound fiber composites based on carbon fiber(CF)substrate were prepared by electrospinning,hydrothermal synthesis,and high-temperature thermal reduction.By utilizing the different properties of different substances,rich heterogeneous interfaces are constructed.This effectively promotes charge transfer and enhances interfacial polarization and conduction loss.The prepared SnS/SnS_(2)/SnO_(2)/CF composites with abundant heterogeneous interfaces have and exhibit excellent EMW absorption properties at a loading of 50 wt%in epoxy resin.The minimum reflection loss(RL)is−46.74 dB and the maximum effective absorption bandwidth is 5.28 GHz.Moreover,SnS/SnS_(2)/SnO_(2)/CF epoxy composite coatings exhibited long-term corrosion resistance on Q235 steel surfaces.Therefore,this study provides an effective strategy for the design of high-efficiency EMW absorbing materials in complex and harsh environments. 展开更多
关键词 Electrostatic spinning Component regulation Heterogeneous interfaces Electromagnetic wave absorption Corrosion protection
在线阅读 下载PDF
Advanced Functional Electromagnetic Shielding Materials:A Review Based on Micro‑Nano Structure Interface Control of Biomass Cell Walls
4
作者 Yang Shi Mingjun Wu +14 位作者 Shengbo Ge Jianzhang Li Anoud Saud Alshammari Jing Luo Mohammed A.Amin Hua Qiu Jinxuan Jiang Yazeed M.Asiri Runzhou Huang Hua Hou Zeinhom M.El‑Bahy Zhanhu Guo Chong Jia Kaimeng Xu Xiangmeng Chen 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期98-134,共37页
Research efforts on electromagnetic interference(EMI)shielding materials have begun to converge on green and sustainable biomass materials.These materials offer numerous advantages such as being lightweight,porous,and... Research efforts on electromagnetic interference(EMI)shielding materials have begun to converge on green and sustainable biomass materials.These materials offer numerous advantages such as being lightweight,porous,and hierarchical.Due to their porous nature,interfacial compatibility,and electrical conductivity,biomass materials hold significant potential as EMI shielding materials.Despite concerted efforts on the EMI shielding of biomass materials have been reported,this research area is still relatively new compared to traditional EMI shielding materials.In particular,a more comprehensive study and summary of the factors influencing biomass EMI shielding materials including the pore structure adjustment,preparation process,and micro-control would be valuable.The preparation methods and characteristics of wood,bamboo,cellulose and lignin in EMI shielding field are critically discussed in this paper,and similar biomass EMI materials are summarized and analyzed.The composite methods and fillers of various biomass materials were reviewed.this paper also highlights the mechanism of EMI shielding as well as existing prospects and challenges for development trends in this field. 展开更多
关键词 Biomass materials Electromagnetic interference shielding Micro-nano structure interface control CONDUCTIVITY
在线阅读 下载PDF
Dual-scale insights of two-phase flow in inter-cleats based on microfluidics:Interface jumps and energy dissipation
5
作者 Jicheng Zhang Dawei Lv +3 位作者 Jon Jincai Zhang Feng Wang Dawei Yin Haiyang Yu 《International Journal of Mining Science and Technology》 2025年第3期451-465,共15页
Cleat serves as the primary flow pathway for coalbed methane(CBM)and water.However,few studies consider the impact of local contact on two-phase flow within cleats.A visual generalized model of endogenous cleats was c... Cleat serves as the primary flow pathway for coalbed methane(CBM)and water.However,few studies consider the impact of local contact on two-phase flow within cleats.A visual generalized model of endogenous cleats was constructed based on microfluidics.A microscopic and mesoscopic observation technique was proposed to simultaneously capture gas-liquid interface morphology of pores and throat and the two-phase flow characteristics in entire cleat system.The local contact characteristics of cleats reduced absolute permeability,which resulted in a sharp increase in the starting pressure.The reduced gas flow capacity narrowed the co-infiltration area and decreased water saturation at the isotonic point in a hydrophilic environment.The increased local contact area of cleats weakened gas phase flow capacity and narrowed the co-infiltration area.Jumping events occurred in methane-water flow due to altered porosity caused by local contact in cleats.The distribution of residual phases changed the jumping direction on the micro-scale as well as the dominant channel on the mesoscale.Besides,jumping events caused additional energy dissipation,which was ignored in traditional two-phase flow models.This might contribute to the overestimation of relative permeability.The work provides new methods and insights for investigating unsaturated flow in complex porous media. 展开更多
关键词 Inter-cleat MICROFLUIDICS Two-phase flow Dual-scale interface jump Inertial effect
在线阅读 下载PDF
Catalysis-Induced Highly-Stable Interface on Porous Silicon for High-Rate Lithium-Ion Batteries
6
作者 Zhuobin Han Phornphimon Maitarad +11 位作者 Nuttapon Yodsin Baogang Zhao Haoyu Ma Kexin Liu Yongfeng Hu Siriporn Jungsuttiwong Yumei Wang Li Lu Liyi Shi Shuai Yuan Yongyao Xia Yingying Lv 《Nano-Micro Letters》 2025年第8期548-563,共16页
Silicon stands as a key anode material in lithium-ion battery ascribing to its high energy density.Nevertheless,the poor rate performance and limited cycling life remain unresolved through conventional approaches that... Silicon stands as a key anode material in lithium-ion battery ascribing to its high energy density.Nevertheless,the poor rate performance and limited cycling life remain unresolved through conventional approaches that involve carbon composites or nanostructures,primarily due to the un-controllable effects arising from the substantial formation of a solid electrolyte interphase(SEI)during the cycling.Here,an ultra-thin and homogeneous Ti doping alumina oxide catalytic interface is meticulously applied on the porous Si through a synergistic etching and hydrolysis process.This defect-rich oxide interface promotes a selective adsorption of fluoroethylene carbonate,leading to a catalytic reaction that can be aptly described as“molecular concentration-in situ conversion”.The resultant inorganic-rich SEI layer is electrochemical stable and favors ion-transport,particularly at high-rate cycling and high temperature.The robustly shielded porous Si,with a large surface area,achieves a high initial Coulombic efficiency of 84.7%and delivers exceptional high-rate performance at 25 A g^(−1)(692 mAh g^(−1))and a high Coulombic efficiency of 99.7%over 1000 cycles.The robust SEI constructed through a precious catalytic layer promises significant advantages for the fast development of silicon-based anode in fast-charging batteries. 展开更多
关键词 Catalytic interface MESOPOROUS Inorganic-rich SEI Silicon anode Lithium-ion batteries
在线阅读 下载PDF
Tailoring Cathode-Electrolyte Interface for High-Power and Stable Lithium-Sulfur Batteries
7
作者 Mengting Liu Ling-Jiao Hu +6 位作者 Zhao-Kun Guan Tian-Ling Chen Xin-Yu Zhang Shuai Sun Ruoli Shi Panpan Jing Peng-Fei Wang 《Nano-Micro Letters》 2025年第4期181-211,共31页
Global interest in lithium-sulfur batteries as one of the most promising energy storage technologies has been sparked by their low sulfur cathode cost,high gravimetric,volumetric energy densities,abundant resources,an... Global interest in lithium-sulfur batteries as one of the most promising energy storage technologies has been sparked by their low sulfur cathode cost,high gravimetric,volumetric energy densities,abundant resources,and environmental friendliness.However,their practical application is significantly impeded by several serious issues that arise at the cathode-electrolyte interface,such as interface structure degradation including the uneven deposition of Li_(2)S,unstable cathode-electrolyte interphase(CEI)layer and intermediate polysulfide shuttle effect.Thus,an optimized cathode-electrolyte interface along with optimized electrodes is required for overall improvement.Herein,we comprehensively outline the challenges and corresponding strategies,including electrolyte optimization to create a dense CEI layer,regulating the Li_(2)S deposition pattern,and inhibiting the shuttle effect with regard to the solid-liquid-solid pathway,the transformation from solid-liquid-solid to solid-solid pathway,and solid-solid pathway at the cathode-electrolyte interface.In order to spur more perceptive research and hasten the widespread use of lithium-sulfur batteries,viewpoints on designing a stable interface with a deep comprehension are also put forth. 展开更多
关键词 Lithium-sulfur batteries Shuttle effect Cathode-electrolyte interface Structural enhancement Reaction pathway
在线阅读 下载PDF
Ultrastrong nonflammable in-situ polymer electrolyte with enhanced interface stability boosting high-voltage Li metal batteries under harsh conditions
8
作者 Lisi Xu Xuan Wang +3 位作者 Yilu Wu Chaoyang Li Kuirong Deng Zhenhua Yan 《Journal of Energy Chemistry》 2025年第3期63-72,共10页
In-situ polymer electrolytes prepared by Li salt-initiated polymerization are promising electrolytes for solid-state Li metal batteries owing to their enhanced interface contact and facile and green preparation proces... In-situ polymer electrolytes prepared by Li salt-initiated polymerization are promising electrolytes for solid-state Li metal batteries owing to their enhanced interface contact and facile and green preparation process.However,conventional in-situ polymer electrolytes suffer from poor interface stability,low mechanical strength,low oxidation stability,and certain flammability.Herein,a silsesquioxane(POSS)-nanocage-crosslinked in-situ polymer electrolyte(POSS-DOL@PI-F)regulated by fluorinated plasticizer and enhanced by polyimide skeleton is fabricated by Li salt initiated in-situ polymerization.Polyimide skeleton and POSS-nanocage-crosslinked network significantly enhance the tensile strength(22.8 MPa)and thermal stability(200℃)of POSS-DOL@PI-F.Fluorinated plasticizer improves ionic conductivity(6.83×10^(-4)S cm^(-1)),flame retardance,and oxidation stability(5.0 V)of POSS-DOL@PI-F.The fluorinated plasticizer of POSS-DOL@PI-F constructs robust LiF-rich solid electrolyte interphases and cathode electrolyte interphases,thereby dramatically enhancing the interface stability of Li metal anodes and LiNi_(0.8)Mn_(0.1)Co_(0.1)O_(2)(NCM811)cathodes.POSS-DOL@PI-F enables stable,long-term(1200 h),and dendrite-free cycle of Li‖Li cells.POSS-DOL@PI-F significantly boosts the performance of Li‖NCM811cells,which display superior cycle stability under harsh conditions of high voltage(4.5 V),high temperature(60℃),low temperature(-20℃),and high areal capacity.This work provides a rational design strategy for safe and efficient polymer electrolytes. 展开更多
关键词 Polymer electrolytes interface stability Li salt-initiated polymerization Flame retardant Mechanical strength
在线阅读 下载PDF
Bond length and interface failure mechanism of anchor cable under continuous radial pressure conditions
9
作者 Jian Ouyang Xiuzhi Shi +2 位作者 Xianyang Qiu Zongguo Zhang Zeyu Li 《International Journal of Mining Science and Technology》 2025年第2期231-247,共17页
The anchoring capacity of the anchor cable is closely related to the bonding length and radial pressure conditions.Through field pull-out tests,theoretical analysis,numerical simulation,and industrial tests,this study... The anchoring capacity of the anchor cable is closely related to the bonding length and radial pressure conditions.Through field pull-out tests,theoretical analysis,numerical simulation,and industrial tests,this study clarifies the relationship between radial pressure and bonding length for the ultimate pullout force and reveals the microscopic failure process of the resin-rock interface in the anchoring system.The results show that the ultimate load increases with the increase of bonding length in three different stages:rapid,slow,and uniform growth.The new mechanical model developed considering radial pressure describes the inverse relationship between radial pressure and the plastic zone on the bonding section,and quantifies the reinforcing effect of confining pressure on the anchoring force.During the pull-out process of the anchor cable,the generation of failure cracks is in the order of orifice,bottom,and middle of the hole.Radial pressure can effectively enhance the ultimate pull-out force,alleviate the oscillation increase of pull-out force,and inhibit resin cracking,but will produce an external crushing zone.It also reveals the synergistic effect between bonding length and radial pressure,and successfully carries out industrial tests of anchor cable support,which ensures the stability of the stope roof and provides an important reference for the design of anchor cable support in deep high-stress mines. 展开更多
关键词 Radial pressure Anchor cable Bond length Numerical simulation interface failure Microscopic process
在线阅读 下载PDF
Dual-phase interface engineering via parallel modulation strategy for highly reversible Zn metal batteries
10
作者 Zhean Bao Yang Wang +6 位作者 Kun Zhang Guosheng Duan Leilei Sun Sinan Zheng Bin Luo Zhizhen Ye Jingyun Huang 《Journal of Energy Chemistry》 2025年第2期163-174,I0005,共13页
The reversibility and stability of aqueous Zn metal batteries(AZMBs)are largely limited by Zn dendrites and interfacial parasitic reactions.Herein,we propose a parallel modulation strategy to boost the reversibility o... The reversibility and stability of aqueous Zn metal batteries(AZMBs)are largely limited by Zn dendrites and interfacial parasitic reactions.Herein,we propose a parallel modulation strategy to boost the reversibility of the Zn anode by introducing N,N,N',N'-tetramethylchloroformamidinium hexafluorophosphate(TCFH)as an additive in the electrolyte.TCFH is composed of PF6-and TN+with opposite charges.PF6-can spontaneously induce the in-situ generation of ZnF_(2)solid electrolyte interface(SEI)on the anode,which can improve the transport kinetics of Zn^(2+)at the interface,thus promoting the rapid and uniform deposition of Zn as well as inhibiting the growth of dendrites.In addition,TN+is enriched at the anode surface during Zn deposition through the anchoring effect,which brings a reconfiguration of the ion/molecule distribution.The anchored-TN+reduces the concentrations of H_(2)O and SO_(4)^(2-),sufficiently restraining the parasitic reaction.Thanks to the dual-phase interface engineering constructed of PF6-and TN+in parallel,the symmetric cell with the proposed electrolyte survives long cycling stability over750 h at 20 mA cm^(-2),10 mAh cm^(-2).This study offers a distinct viewpoint to the multidimensional optimization of Zn anodes for high-performance AZMBs. 展开更多
关键词 Aqueous Znmetal batteries Electrolyte additive Zn anode Solid electrolyte interface Anchoring effect
在线阅读 下载PDF
Interface compatibility between sulfide solid electrolytes and Ni-rich oxide cathode materials:Factors,modification,perspectives
11
作者 Tianwen Yang Haijuan Pei +3 位作者 Haijian Lv Shijie Lu Qi Liu Daobin Mu 《Journal of Energy Chemistry》 2025年第2期233-262,I0006,共31页
All-solid-state batteries(ASSBs)assembled with sulfide solid electrolytes(SSEs)and nickel(Ni)-rich oxide cathode materials are expected to achieve high energy density and safety,representing potential candidates for t... All-solid-state batteries(ASSBs)assembled with sulfide solid electrolytes(SSEs)and nickel(Ni)-rich oxide cathode materials are expected to achieve high energy density and safety,representing potential candidates for the next-generation energy storage systems.However,interfacial issues between SSEs and Nirich oxide cathode materials,attributed to space charge layer,interfacial side reactions,and mechanical contact failure,significantly restrict the performances of ASSBs.The interface degradation is closely related to the components of the composite cathode and the process of electrode fabrication.Focusing on the influencing factors of interface compatibility between SSEs and Ni-rich oxide cathode,this article systematically discusses how cathode active materials(CAMs),electrolytes,conductive additives,binders,and electrode fabrication impact the interface compatibility.In addition,the strategies for the compatibility modification are reviewed.Furthermore,the challenges and prospects of intensive research on the degradation and modification of the SSE/Ni-rich cathode material interface are discussed.This review is intended to inspire the development of high-energy-density and high-safety all-solid-state batteries. 展开更多
关键词 Sulfide solid electrolyte Ni-rich oxide cathode interface compatibility Influencing factors All-solid-state batteries
在线阅读 下载PDF
2D/3D heterojunction carrier dynamics and interface evolution for efficient inverted perovskite solar cells
12
作者 Yi Chen Zhu Ma +16 位作者 Zhuowei Du Wei You Junbo Yang Qiang Yang Qian Zhang Hao Du Yixian Li Fuchun Gou Shanyue Hou Shenshen Zheng Fengying Zhang Cheng Huang Yuelong Huang Yan Xiang Liming Ding Kuan Sun Mojtaba Abdi-Jalebi 《Journal of Energy Chemistry》 2025年第3期808-819,共12页
The 2D/3D heterojunction perovskites have garnered increasing attention due to their exceptional moisture and thermal stability.However,few works have paid attention to the influence of the subsequent change process o... The 2D/3D heterojunction perovskites have garnered increasing attention due to their exceptional moisture and thermal stability.However,few works have paid attention to the influence of the subsequent change process of 2D/3D heterojunction PSC on the stability of PSCs.Moreover,the evolution of the interface and carrier dynamic behavior of the 2D/3D perovskite films with long-term operation has not been systematically developed befo re.In this work,the effects of 2D/3 D heterojunction evolution on the interface of perovskite films and different carrier dynamics during 2D/3D evolution are systematically analyzed for the first time.The decomposition of 2D/3D heterojunction in the perovskite film will have a certain impact on the surface and carrier dynamics behavior of perovskite.During the evolution of 2D/3D heterojunction,PbI_(2)crystals will appear,which will improve the interfacial energy level matching between the electron transport layer and perovskite film.With a long evolution time,some holes will appear on the surface of perovskite film.The open circuit voltage(V_(OC))of PSCs increased from 1.14 to1.18 V and the PCE increased to 23.21%after 300 h storage in the nitrogen atmosphere,and maintained 89%initial performance for with 3000 h stability test in N_(2)box.This discovery has a significant role in promoting the development of inverted heterojunction PSCs and constructing the revolution mechanism of charge carrier dynamic. 展开更多
关键词 2D/3D heterojunction interface Carrier dynamics EVOLUTION Inverted PSCs
在线阅读 下载PDF
CaH2-promoted activity of Ni-carbonate interface for CO_(2) methanation
13
作者 Jin-Peng Wang Guo-Cui Mao +2 位作者 Hui-Lin Jiang Bao-Xia Dong Yun-Lei Teng 《Journal of Energy Chemistry》 2025年第1期522-532,共11页
Transition metal-carbonate interfaces often act as active sites in heterogeneous catalytic reactions.The interface between transition metal and metal carbonate exhibits a dynamic equilibrium during the CO_(2)hydrogena... Transition metal-carbonate interfaces often act as active sites in heterogeneous catalytic reactions.The interface between transition metal and metal carbonate exhibits a dynamic equilibrium during the CO_(2)hydrogenation reaction,involving surface carbonate hydrogenation and CO_(2)chemisorption.Nonetheless,there have been few reports on engineering the activity of the interface between transition metal and alkaline earth metal carbonate for catalytic CO_(2)conversion.This work demonstrated that the incorporation of CaH_(2)in Ni/CaCO_(3)enhances the CO_(2)methanation activity of the catalysts.The CO_(2)conversion for Ni/CaH_(2)-CaCO_(3)reached 68.5%at 400°C,which was much higher than that of the Ni/CaCO_(3)(31.6%) and Ni/CaH_(2)-CaO (42.4%) catalysts.Furthermore,the Ni/CaH_(2)-CaCO_(3)catalysts remained stable during the stability test for 24 h at 400°C and 8 bar.Our research revealed that CaH_(2)played a crucial role in promoting the activity of the Ni-carbonate interface for CO_(2)methanation.CaH_(2)could modify the electronic structure of Ni and tune the structural properties of CaCO_(3)to generate medium basic sites (OH groups),which are favorable for the activation of H2and CO_(2).In-situ Fourier transform infrared spectroscopy (FTIR) analysis combined with density functional theory calculations demonstrated that CO_(2)activation occurs at the hydroxyl group (OH) on the CaH_(2)-modified Ni-carbonate surface,leading to the formation of CO_(3)H*species.Furthermore,our study has confirmed that CO_(2)methanation over the Ni/CaH_(2)-CaCO_(3)catalysts proceeds via the formate pathway. 展开更多
关键词 CO_(2)methanation Metal hydride Ni catalysts CARBONATE Metal-carbonate interface
在线阅读 下载PDF
Unlocking the stable interface in aqueous zinc-ion battery with multifunctional xylose-based electrolyte additives
14
作者 Xiaoqin Li Jian Xiang +9 位作者 Lu Qiu Xiaohan Chen Yinkun Zhao Yujue Wang Qu Yue Taotao Gao Wenlong Liu Dan Xiao Zhaoyu Jin Panpan Li 《Journal of Energy Chemistry》 2025年第1期770-778,共9页
The growth of dendrites and the side reactions occurring at the Zn anode pose significant challenges to the commercialization of aqueous Zn-ion batteries(AZIBs). These challenges arise from the inherent conflict betwe... The growth of dendrites and the side reactions occurring at the Zn anode pose significant challenges to the commercialization of aqueous Zn-ion batteries(AZIBs). These challenges arise from the inherent conflict between mass transfer and electrochemical kinetics. In this study, we propose the use of a multifunctional electrolyte additive based on the xylose(Xylo) molecule to address these issues by modulating the solvation structure and electrode/electrolyte interface, thereby stabilizing the Zn anode. The introduction of the additive alters the solvation structure, creating steric hindrance that impedes charge transfer and then reduces electrochemical kinetics. Furthermore, in-situ analyses demonstrate that the reconstructed electrode/electrolyte interface facilitates stable and rapid Zn^(2+)ion migration and suppresses corrosion and hydrogen evolution reactions. As a result, symmetric cells incorporating the Xylo additive exhibit significantly enhanced reversibility during the Zn plating/stripping process, with an impressively long lifespan of up to 1986 h, compared to cells using pure ZnSO4electrolyte. When combined with a polyaniline cathode, the full cells demonstrate improved capacity and long-term cyclic stability. This work offers an effective direction for improving the stability of Zn anode via electrolyte design, as well as highperformance AZIBs. 展开更多
关键词 Aqueous Zn-ion battery Electrolyte additive Solvation structure Electrode/electrolyte interface Zn anode
在线阅读 下载PDF
Engineering nanoparticle structure at synergistic Ru-Na interface for integrated CO_(2)capture and hydrogenation
15
作者 Hanzi Liu Ling Cen +3 位作者 Xinlin Xie Lei Liu Zhao Sun Zhiqiang Sun 《Journal of Energy Chemistry》 2025年第1期779-791,共13页
The development of dual functional material for cyclic CO_(2)capture and hydrogenation is of great significance for converting diluted CO_(2)into valuable fuels,but suffers from kinetic limitation and deactivation of ... The development of dual functional material for cyclic CO_(2)capture and hydrogenation is of great significance for converting diluted CO_(2)into valuable fuels,but suffers from kinetic limitation and deactivation of adsorbent and catalyst.Herein,we engineered a series of RuNa/γ-Al_(2)O_(3)materials,varying the size of ruthenium from single atoms to clusters/nanoparticles.The coordination environment and structure sensitivity of ruthenium were quantitatively investigated at atomic scale.Our findings reveal that the reduced Ru nanoparticles,approximately 7.1 nm in diameter with a Ru-Ru coordination number of 5.9,exhibit high methane formation activity and selectivity at 340°C.The Ru-Na interfacial sites facilitate CO_(2)migration through a deoxygenation pathway,involving carbonate dissociation,carbonyl formation,and hydrogenation.In-situ experiments and theoretical calculations show that stable carbonyl intermediates on metallic Ru nanoparticles facilitate heterolytic C–O scission and C–H bonding,significantly lowering the energy barrier for activating stored CO_(2). 展开更多
关键词 CO_(2)capture HYDROGENATION Ru-Na interface Dual functional material Reaction mechanism
在线阅读 下载PDF
Disentangling electronic and phononic thermal transport across two-dimensional interfaces
16
作者 Linxin Zhai Zhiping Xu 《Chinese Physics B》 2025年第2期401-406,共6页
Electrical and thermal transport at two-dimensional(2D) interfaces is critical for semiconductor technology, yet their interplay remains unclear. We report a theoretical proposal to separate electronic and phononic co... Electrical and thermal transport at two-dimensional(2D) interfaces is critical for semiconductor technology, yet their interplay remains unclear. We report a theoretical proposal to separate electronic and phononic contributions to thermal conductance at 2D interfaces with graphene, which is validated by non-equilibrium Green's function calculations and molecular dynamics simulations for graphene–gold contacts. Our results reveal that while metal–graphene interfaces are transparent for both electrons and phonons, non-covalent graphene interfaces block electronic tunneling beyond two layers but not phonon transport. This suggests that the Wiedemann–Franz law can be experimentally tested by measuring transport across interfaces with varying graphene layers. 展开更多
关键词 electrical and thermal transport 2D interfaces Wiedemann–Franz law theoretical proposal
在线阅读 下载PDF
FLAC3D复杂模型interface建模方法探讨 被引量:4
17
作者 郑文华 《土木建筑工程信息技术》 2012年第2期67-70,共4页
针对FLAC3D中复杂模型接触单元(interface)建模难的问题,利用ansys强大的前处理功能,探讨了适用于岩土工程全过程数值模拟分析的复杂模型"先实体面后接触面"的interface建模方法。并将该方法运用到实际的工程数值计算过程中,... 针对FLAC3D中复杂模型接触单元(interface)建模难的问题,利用ansys强大的前处理功能,探讨了适用于岩土工程全过程数值模拟分析的复杂模型"先实体面后接触面"的interface建模方法。并将该方法运用到实际的工程数值计算过程中,验证了该建模方法的有效性、实用性,对今后的FLAC3D的接触面的建模过程具有重要的参考价值。 展开更多
关键词 FLAC3D 接触单元 interface 数值模拟
在线阅读 下载PDF
FLAC^(3D)模型interface法向应力的MATLAB处理 被引量:2
18
作者 王志强 朱丙龙 +2 位作者 孔繁龙 周恒 赵位位 《中州煤炭》 2015年第3期37-41,44,共6页
采矿工程领域经常用到FLAC3D软件进行工作面开挖、巷道支护以及边坡稳定性的研究,但FLAC3D在后处理有关力时仅能出云图。针对FLAC3D在后处理功能中的缺陷,利用MATLAB在数据可视化方面的优越性,通过用FLAC3D自带的fish语言提取相应结构... 采矿工程领域经常用到FLAC3D软件进行工作面开挖、巷道支护以及边坡稳定性的研究,但FLAC3D在后处理有关力时仅能出云图。针对FLAC3D在后处理功能中的缺陷,利用MATLAB在数据可视化方面的优越性,通过用FLAC3D自带的fish语言提取相应结构的应力,特别是interface上的法向应力,并运用MATLAB将提取的应力用三维网格展现出来,可以为FLAC3D后续分析提供重要价值。 展开更多
关键词 FLAC3D MATLAB fish语言 interface法向应力 底板应力
在线阅读 下载PDF
主观症状动物模型研发的思考 被引量:1
19
作者 潘志强 《南京中医药大学学报》 北大核心 2025年第1期19-25,共7页
主观症状的发生机制及新药研发有赖于实验动物模型。纵观目前常见的主观症状动物模型,以疼痛、失眠、瘙痒、眼干等主观症状动物模型较为成熟且稳定,为新药研发做出突出贡献。然而,眩晕、烦躁、胸闷、痞满、腰酸、肢体麻木等主观症状动... 主观症状的发生机制及新药研发有赖于实验动物模型。纵观目前常见的主观症状动物模型,以疼痛、失眠、瘙痒、眼干等主观症状动物模型较为成熟且稳定,为新药研发做出突出贡献。然而,眩晕、烦躁、胸闷、痞满、腰酸、肢体麻木等主观症状动物模型未见报道。基于此,简要概述了部分主观症状动物模型制备现状,并提出主观症状动物模型制备方法及评价指标的建议,以加大该领域的探索力度。 展开更多
关键词 主观症状 疾病模型 证候模型 动物模型 疼痛 失眠 瘙痒 眼干
在线阅读 下载PDF
基于深度学习贝叶斯模型平均代理的油藏自动历史拟合研究
20
作者 张凯 陈旭 +3 位作者 刘丕养 张金鼎 张黎明 姚军 《钻采工艺》 北大核心 2025年第1期147-156,共10页
油藏自动历史拟合过程中,需要频繁调用数值模拟器进行正向计算,导致计算时间长、资源消耗大。基于深度学习的油藏数值模拟代理模型提供了一种快速计算油水井生产动态的替代方案。然而,单一神经网络产量预测代理模型在特征提取和学习能... 油藏自动历史拟合过程中,需要频繁调用数值模拟器进行正向计算,导致计算时间长、资源消耗大。基于深度学习的油藏数值模拟代理模型提供了一种快速计算油水井生产动态的替代方案。然而,单一神经网络产量预测代理模型在特征提取和学习能力方面存在局限性。基于空间特征构建的代理模型侧重于学习油藏渗流的空间特性,但忽视了时间维度;基于时空特征构建的模型虽然擅长捕捉时间序列特征,却在空间特征学习方面不足。为此,文章提出了一种基于深度学习的贝叶斯模型平均代理方法,利用贝叶斯模型平均方法对两种深度学习代理模型进行集成,结合二者优势,增强代理模型对油藏特征的多维度学习能力,从而提高预测精度。该方法进一步结合多重数据同化集合平滑器,应用于实际油藏历史拟合中。实验结果表明,基于深度学习贝叶斯模型平均代理的历史拟合方法能够在保证高效计算的同时,准确拟合油藏实际生产动态,为快速、精确的历史拟合提供了一种创新解决方案。 展开更多
关键词 深度学习 历史拟合 产量预测 贝叶斯模型平均方法 集成代理模型
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部