期刊文献+
共找到305篇文章
< 1 2 16 >
每页显示 20 50 100
Intelligent vehicle lateral controller design based on genetic algorithmand T-S fuzzy-neural network
1
作者 RuanJiuhong FuMengyin LiYibin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2005年第2期382-387,共6页
Non-linearity and parameter time-variety are inherent properties of lateral motions of a vehicle. How to effectively control intelligent vehicle (IV) lateral motions is a challenging task. Controller design can be reg... Non-linearity and parameter time-variety are inherent properties of lateral motions of a vehicle. How to effectively control intelligent vehicle (IV) lateral motions is a challenging task. Controller design can be regarded as a process of searching optimal structure from controller structure space and searching optimal parameters from parameter space. Based on this view, an intelligent vehicle lateral motions controller was designed. The controller structure was constructed by T-S fuzzy-neural network (FNN). Its parameters were searched and selected with genetic algorithm (GA). The simulation results indicate that the controller designed has strong robustness, high precision and good ride quality, and it can effectively resolve IV lateral motion non-linearity and time-variant parameters problem. 展开更多
关键词 intelligent vehicle genetic algorithm fuzzy-neural network lateral control robustness.
在线阅读 下载PDF
An intelligent control method based on artificial neural network for numerical flight simulation of the basic finner projectile with pitching maneuver
2
作者 Yiming Liang Guangning Li +3 位作者 Min Xu Junmin Zhao Feng Hao Hongbo Shi 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期663-674,共12页
In this paper,an intelligent control method applying on numerical virtual flight is proposed.The proposed algorithm is verified and evaluated by combining with the case of the basic finner projectile model and shows a... In this paper,an intelligent control method applying on numerical virtual flight is proposed.The proposed algorithm is verified and evaluated by combining with the case of the basic finner projectile model and shows a good application prospect.Firstly,a numerical virtual flight simulation model based on overlapping dynamic mesh technology is constructed.In order to verify the accuracy of the dynamic grid technology and the calculation of unsteady flow,a numerical simulation of the basic finner projectile without control is carried out.The simulation results are in good agreement with the experiment data which shows that the algorithm used in this paper can also be used in the design and evaluation of the intelligent controller in the numerical virtual flight simulation.Secondly,combined with the real-time control requirements of aerodynamic,attitude and displacement parameters of the projectile during the flight process,the numerical simulations of the basic finner projectile’s pitch channel are carried out under the traditional PID(Proportional-Integral-Derivative)control strategy and the intelligent PID control strategy respectively.The intelligent PID controller based on BP(Back Propagation)neural network can realize online learning and self-optimization of control parameters according to the acquired real-time flight parameters.Compared with the traditional PID controller,the concerned control variable overshoot,rise time,transition time and steady state error and other performance indicators have been greatly improved,and the higher the learning efficiency or the inertia coefficient,the faster the system,the larger the overshoot,and the smaller the stability error.The intelligent control method applying on numerical virtual flight is capable of solving the complicated unsteady motion and flow with the intelligent PID control strategy and has a strong promotion to engineering application. 展开更多
关键词 Numerical virtual flight intelligent control BP neural network pid Moving chimera grid
在线阅读 下载PDF
基于BP神经网络的Smith-Fuzzy-PID算法在阀门定位中的应用研究 被引量:2
3
作者 谢涛 周邵萍 +1 位作者 王佳硕 裴梓敬 《华东理工大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第5期770-778,共9页
为解决气动调节阀控制过程中出现的超调大、精度低等问题,本文采用BP神经网络整定出较优的PID(Proportional Integral Derivative)控制参数,对Smith预估控制器以及模糊控制器进行设计,实现了基于BP神经网络的Smith-Fuzzy-PID控制方法。... 为解决气动调节阀控制过程中出现的超调大、精度低等问题,本文采用BP神经网络整定出较优的PID(Proportional Integral Derivative)控制参数,对Smith预估控制器以及模糊控制器进行设计,实现了基于BP神经网络的Smith-Fuzzy-PID控制方法。搭建了实验平台,通过阶跃响应实验来对控制方法进行验证,验证结果表明,提出的方法调节过程无超调,调节时间仅为1.9 s,定位精度在±0.5%以内,有效提高了系统的稳定性,实现了气动调节阀的快速精准定位。 展开更多
关键词 气动调节阀 Smith预估 模糊控制 BP神经网络 pid控制
在线阅读 下载PDF
基于卷积神经网络和模糊PID的掘进机截割控制系统研究 被引量:1
4
作者 李英娜 崔彦平 +2 位作者 安博烁 刘百健 靳建伟 《工矿自动化》 北大核心 2025年第1期61-70,137,共11页
针对悬臂式掘进机在掘进过程中面对煤岩硬度复杂变化时适应性不足、系统稳定性低等问题,提出一种基于卷积神经网络(CNN)及模糊PID的掘进机截割控制系统,该系统包括巷道断面成形特性和智能截割控制策略2个部分,其中掘进机智能截割控制策... 针对悬臂式掘进机在掘进过程中面对煤岩硬度复杂变化时适应性不足、系统稳定性低等问题,提出一种基于卷积神经网络(CNN)及模糊PID的掘进机截割控制系统,该系统包括巷道断面成形特性和智能截割控制策略2个部分,其中掘进机智能截割控制策略由CNN煤岩硬度动态感知模块和截割臂摆速模糊PID控制模块组成。提出一种有效的截割路径,使截割头沿规划路径从上至下进行煤岩截割,以提高断面完整性,减小掘进方向的误差。采用CNN煤岩硬度动态感知模块分析采集的截割电动机电流、截割臂振动加速度、回转油缸压力数据信息,以感知煤岩特性;采用截割臂摆速模糊PID控制模块对感知后的数据进行模糊化与解模糊化处理,输出相应控制参数信号;电液比例阀根据接收到的信号控制液压油的流量和压力,通过阀控液压缸控制截割臂摆速,实现截割臂摆速的自适应控制。现场实验结果表明:当掘进机截割较软介质与煤时,截割臂以高摆速工作;当掘进机截割复杂岩层时,摆速随截割信号的增大而降低,截割信号在0~1之间变动;当掘进机截割较硬岩层时,截割载荷信号接近1,截割臂的摆速降低至0。 展开更多
关键词 悬臂式掘进机 智能截割 截割臂摆速 截割路径 模糊pid控制 煤岩硬度动态感知 卷积神经网络
在线阅读 下载PDF
基于PSO-BP模糊PID的变距取苗机构控制系统设计 被引量:2
5
作者 李润泽 王卫兵 李小军 《农机化研究》 北大核心 2025年第2期9-18,共10页
为满足番茄、辣椒等蔬菜作物的移栽需求,基于向下取苗原理设计了一种适用72穴和128穴两种主要番茄钵苗穴盘规格的变距取苗机构,通过建立数学模型获得了取苗机械手参数的目标函数,并利用粒子群和模拟退火混合算法对其结构参数进行优化。... 为满足番茄、辣椒等蔬菜作物的移栽需求,基于向下取苗原理设计了一种适用72穴和128穴两种主要番茄钵苗穴盘规格的变距取苗机构,通过建立数学模型获得了取苗机械手参数的目标函数,并利用粒子群和模拟退火混合算法对其结构参数进行优化。同时,为实现变距取苗机构的精确控制,提出了一种基于PSO-BP的模糊PID算法以提高控制精度,介绍了系统的结构与工作原理,并通过选型计算与分析建模建立了控制系统的数学模型。针对传统PID控制器稳定性差、响应速度慢等不足之处,利用PSO-BP模糊PID对控制器的参数进行在线调整,以满足控制过程中对参数的不同需求。仿真结果与试验数据的分析表明:在参数相同条件下,基于PSO-BP模糊PID控制系统系统稳定性更好、响应速度更快,具有良好的鲁棒性,提升取苗成功率的同时降低了基质损伤率,能够满足变距取苗机构高精度快速稳定控制的需求。 展开更多
关键词 变距取苗机构 PSO-BP神经网络 模糊pid算法 控制系统
在线阅读 下载PDF
基于神经网络逆模型的Fuzzy-PID控制方法及其应用研究 被引量:4
6
作者 潘永湘 刘兴伟 《西安理工大学学报》 CAS 1999年第3期42-45,共4页
在Fuzzy-PID复合控制的基础上提出了一种基于神经网络逆模型的Fuzzy-PID控制方法。该方法综合了模糊控制、神经网络控制和PID控制的优点, 使复杂工业过程中的非线性、时变等问题都得到了较好的解决。仿真结果表明... 在Fuzzy-PID复合控制的基础上提出了一种基于神经网络逆模型的Fuzzy-PID控制方法。该方法综合了模糊控制、神经网络控制和PID控制的优点, 使复杂工业过程中的非线性、时变等问题都得到了较好的解决。仿真结果表明, 该控制器具有较好的适应性和鲁棒性, 结构简单, 易于实现。 展开更多
关键词 神经网络逆模型 fuzzy-pid控制 控制器
在线阅读 下载PDF
基于模糊神经网络PID的煤矿掘进机俯仰控制研究 被引量:5
7
作者 毛清华 陈彦璋 +3 位作者 马骋 王川伟 张飞 柴建权 《工矿自动化》 CSCD 北大核心 2024年第8期135-143,共9页
目前煤矿掘进机俯仰控制主要采用PID控制方法,在掘进机俯仰控制时变性与液压系统非线性情况下的控制精度不高。掘进机俯仰控制通过控制液压缸行程实现,将传统PID算法与模糊控制、神经网络等相结合,可有效提高液压缸行程控制精度。提出... 目前煤矿掘进机俯仰控制主要采用PID控制方法,在掘进机俯仰控制时变性与液压系统非线性情况下的控制精度不高。掘进机俯仰控制通过控制液压缸行程实现,将传统PID算法与模糊控制、神经网络等相结合,可有效提高液压缸行程控制精度。提出了一种基于模糊神经网络PID的煤矿掘进机俯仰控制方法。通过分析掘进机支撑部运动学关系,得到俯仰角与支撑部液压缸的数学关系;介绍了掘进机俯仰控制液压系统工作原理,建立了液压系统及其传递函数模型;将模糊控制与神经网络相结合,形成模糊神经网络,利用模糊神经网络优化PID控制参数,再结合支撑机构数学模型和液压系统传递函数模型,建立掘进机俯仰角模糊神经网络PID控制模型,实现煤矿掘进机俯仰机构自动精确控制。该方法可使掘进机俯仰机构更加快速、准确到达预设位置,解决掘进机俯仰控制中的时变性与非线性难题。仿真结果表明:模糊神经网络PID控制算法相较于模糊PID和PID控制算法,跟踪误差分别降低了69.34%和74.49%。通过液压缸位移控制模拟煤矿掘进机在突变工况和跟随工况下的俯仰控制,结果表明:模糊神经网络PID控制算法相比模糊PID和PID控制算法,俯仰控制跟踪误差最小,对位置信号的平均响应时间分别缩短了27.22%和50.33%,动态控制性能更好。 展开更多
关键词 掘进机俯仰控制 俯仰角 模糊神经网络pid 液压系统 液压缸位移控制 支撑机构
在线阅读 下载PDF
基于FUZZY-PID控制的无损探伤智能控制仪
8
作者 常发亮 王桂青 刘长有 《电子测量与仪器学报》 CSCD 1995年第4期29-35,共7页
本文介绍了无损探伤控制仪的特点,采用FUZZY-PID并行复合控制方式,通过调整脉冲电压波形来调整激发电流,并在特大偏差范围内通过调整给定电压以改善系统的控制性能。主要介绍了模糊控制器的结构、模糊规则及控制算法。结果表明,该... 本文介绍了无损探伤控制仪的特点,采用FUZZY-PID并行复合控制方式,通过调整脉冲电压波形来调整激发电流,并在特大偏差范围内通过调整给定电压以改善系统的控制性能。主要介绍了模糊控制器的结构、模糊规则及控制算法。结果表明,该系统具有较强的鲁棒性,更小的超调量和更小的调整时间,具有更好的静动态特性,胶片感光质量比一般PID控制有明显的提高。 展开更多
关键词 pid控制 模糊控制 无损探伤 智能控制仪
在线阅读 下载PDF
基于模糊神经网络的氢液化氦气压力PID控制 被引量:2
9
作者 李安琪 秦可欣 +1 位作者 杨思锋 兰玉岐 《低温工程》 CAS CSCD 北大核心 2024年第2期92-98,共7页
为了解决氢液化装置氦气压力调节系统超调量大、响应速度慢、调节时间长、控制参数无法在线整定等问题,针对系统具有非线性和时变性的特点,设计了基于模糊神经网络的PID控制器以及基于双曲正切函数的改进型激活函数。仿真结果表明:相比... 为了解决氢液化装置氦气压力调节系统超调量大、响应速度慢、调节时间长、控制参数无法在线整定等问题,针对系统具有非线性和时变性的特点,设计了基于模糊神经网络的PID控制器以及基于双曲正切函数的改进型激活函数。仿真结果表明:相比传统PID控制或模糊PID控制,采用模糊神经网络PID控制的系统动态性能显著改善,使得氢液化装置的氦气压力调节更加稳定可靠。 展开更多
关键词 氦气压力调节系统 模糊神经网络 pid控制 压力控制
在线阅读 下载PDF
Non-Minimum Phase Nonlinear System Predictive Control Based on Local Recurrent Neural Networks 被引量:2
10
作者 张燕 陈增强 袁著祉 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2003年第1期70-73,共4页
After a recursive multi-step-ahead predictor for nonlinear systems based on local recurrent neural networks is introduced, an intelligent FID controller is adopted to correct the errors including identified model erro... After a recursive multi-step-ahead predictor for nonlinear systems based on local recurrent neural networks is introduced, an intelligent FID controller is adopted to correct the errors including identified model errors and accumulated errors produced in the recursive process. Characterized by predictive control, this method can achieve a good control accuracy and has good robustness. A simulation study shows that this control algorithm is very effective. 展开更多
关键词 Multi-step-ahead predictive control Recurrent neural networks intelligent pid control.
在线阅读 下载PDF
干涉式闭环光纤陀螺仪的PSO-PID控制优化方法 被引量:5
11
作者 刘尚波 丹泽升 +2 位作者 廉保旺 徐金涛 曹辉 《红外与激光工程》 EI CSCD 北大核心 2024年第3期242-253,共12页
控制系统的设计会对响应速度快且应用范围较广的数字干涉式闭环光纤陀螺(ICFOG)动态性能产生影响。通过分析ICFOG的工作原理,推导出闭环离散控制系统,并利用粒子群优化算法(Particle Swarm Optimization,PSO)对传统的PID控制器参数进行... 控制系统的设计会对响应速度快且应用范围较广的数字干涉式闭环光纤陀螺(ICFOG)动态性能产生影响。通过分析ICFOG的工作原理,推导出闭环离散控制系统,并利用粒子群优化算法(Particle Swarm Optimization,PSO)对传统的PID控制器参数进行优化。基于这个优化过程,设计一种新型的PSO-PID复合控制器,以取代传统的PID控制器。通过与其他BP神经网络、模糊控制等方法进行对比凸显该控制方法的优越。通过数字仿真分析显示,跟踪速度相较于BP-PID控制方法提高了1.91倍,相对于PID控制方法提高了3.5倍,相对于F-PID控制方法提高了1.75倍。同时,控制精度相对于BP-PID控制方法提高了46.03%,相对于PID控制方法提高了66.30%,相对于F-PID控制方法提高了45.27%。结果显示,采用PSO-PID控制器能够快速达到控制目标且具有较小的超调量。 展开更多
关键词 干涉式光纤陀螺 小超调量 粒子群优化pid方法 BP神经网络 模糊控制器
在线阅读 下载PDF
基于BP-NSGA-Ⅱ优化的高速电梯轿厢水平振动变论域模糊PID控制 被引量:5
12
作者 陈岁繁 杨松 李其朋 《噪声与振动控制》 CSCD 北大核心 2024年第2期63-69,81,共8页
针对影响高速电梯乘坐舒适性和安全性的轿厢水平振动问题,提出一种基于反向传播(Backpropagation,BP)神经网络和非支配排序遗传算法-Ⅱ(Non-dominant Sorting Genetic Algorithm-Ⅱ,NSGA-Ⅱ)的变论域模糊PID控制方法。首先建立基于达朗... 针对影响高速电梯乘坐舒适性和安全性的轿厢水平振动问题,提出一种基于反向传播(Backpropagation,BP)神经网络和非支配排序遗传算法-Ⅱ(Non-dominant Sorting Genetic Algorithm-Ⅱ,NSGA-Ⅱ)的变论域模糊PID控制方法。首先建立基于达朗贝尔原理的轿厢动力学模型,其次在传统变论域模糊PID控制的基础上建立以量化因子作为输入,轿厢水平振动加速度均方根和位移均方根作为输出的BP神经网络模型,最后将该模型作为NSGA-Ⅱ算法的适应度函数,通过NSGA-Ⅱ算法优化量化因子来提高系统控制精度。仿真分析结果表明:基于BP神经网络和NSGA-Ⅱ算法的变论域模糊PID控制方法对轿厢水平振动的抑制效果优于变论域模糊PID控制方法。 展开更多
关键词 振动与波 变论域模糊pid控制 量化因子 BP神经网络 NSGA-Ⅱ算法
在线阅读 下载PDF
基于模糊RBF神经网络PID的AUV姿态控制研究 被引量:2
13
作者 牛亮 党晓圆 +1 位作者 冯元 崔卫星 《传感器与微系统》 CSCD 北大核心 2024年第10期11-14,共4页
针对自主水下航行器(AUV)高精度、强鲁棒性的运动姿态控制需求,提出了一种径向基函数(RBF)神经网络结合模糊PID控制的水下机器人运动控制器;采用RBF神经网络对模糊PID控制器参数进行优化,有效解决了模糊PID控制过度依赖经验,难以应对水... 针对自主水下航行器(AUV)高精度、强鲁棒性的运动姿态控制需求,提出了一种径向基函数(RBF)神经网络结合模糊PID控制的水下机器人运动控制器;采用RBF神经网络对模糊PID控制器参数进行优化,有效解决了模糊PID控制过度依赖经验,难以应对水下复杂工况的问题。仿真结果表明:模糊RBF神经网络PID控制器在AUV姿态调节中表现出较传统模糊PID控制器更好的响应速度和抗干扰能力,有效改善了AUV姿态控制性能;经实际应用验证,控制器在复杂工况下可以快速收敛至期望姿态并维持稳定。 展开更多
关键词 自主水下航行器 运动控制 径向基函数神经网络 模糊pid 运动控制器
在线阅读 下载PDF
飞机起落架自适应模糊神经PID控制方法的研究
14
作者 李明鹏 胡俊宏 智鑫 《机床与液压》 北大核心 2024年第1期51-58,共8页
针对传统PID控制与模糊PID控制的飞机起落架控制系统存在达不到理想控制精度以及控制速度的问题,提出一种基于模糊控制和神经网络的模糊神经PID控制算法。通过对起落架运动特点以及动力学相关的理论分析建立飞机起落架的运动模型,将此智... 针对传统PID控制与模糊PID控制的飞机起落架控制系统存在达不到理想控制精度以及控制速度的问题,提出一种基于模糊控制和神经网络的模糊神经PID控制算法。通过对起落架运动特点以及动力学相关的理论分析建立飞机起落架的运动模型,将此智能PID控制方法应用到飞机起落架的姿态控制系统中。利用MATLAB/Simulink软件进行仿真,并基于树莓派装置进行了起落架单腿实验。仿真和实验结果表明:模糊神经网络PID控制系统的响应速度和抗干扰能力相较于传统PID和模糊PID都有了较大的提升,系统稳定性更强。在飞机起落架控制系统中,应用模糊神经PID控制可进一步提升系统的响应速度,降低系统运动的惯性冲击,提高整体机构的稳定性。 展开更多
关键词 起落架 姿态控制 pid 模糊神经网络
在线阅读 下载PDF
基于QPSO改进LSTM发动机怠速预测的FPID控制 被引量:2
15
作者 赵晴 潘江如 +1 位作者 董恒祥 郭鸿鑫 《现代电子技术》 北大核心 2024年第8期75-82,共8页
以北京现代伊兰特G4GD发动机为试验台,将电控系统故障作为实验变量,测得规定时间内双传感器组合发生故障时的发动机怠速,并选原车ECU较难控制的6种组合怠速故障进行分析。基于量子粒子群算法(QPSO)对长短时记忆神经网络(LSTM)隐含层节... 以北京现代伊兰特G4GD发动机为试验台,将电控系统故障作为实验变量,测得规定时间内双传感器组合发生故障时的发动机怠速,并选原车ECU较难控制的6种组合怠速故障进行分析。基于量子粒子群算法(QPSO)对长短时记忆神经网络(LSTM)隐含层节点、训练次数与学习率进行寻优预测,将预测结果与多种神经网络进行对比,并通过均方根误差(RMSE)评价指标进行判断。使用Origin数据拟合将预测输出结果进行数值拟合,之后输入Matlab中使用Simulink搭建控制单元模型,由模糊常量-积分-微分(FPID)控制器对输出结果进行怠速控制。结果表明:基于量子粒子群算法改进的长短时记忆神经网络预测效果最好;模糊常量-积分-微分控制器对怠速的控制可有效缩短电子控制单元(ECU)的控制时间,无超调,且可有效调节至规定怠速。 展开更多
关键词 发动机怠速 量子粒子群优化算法 长短时记忆神经网络 模糊pid控制 故障分析 时间序列预测
在线阅读 下载PDF
基于模糊T-S型内模PID控制算法的无刷直流电机仿真分析 被引量:1
16
作者 孙崇智 吴永伟 +2 位作者 安建民 杨佳 郭伟伟 《现代电子技术》 北大核心 2024年第24期18-24,共7页
针对无刷直流电机(BLDCM)双闭环控制调速系统的控制响应速度慢、转速波动较大等问题,提出一种模糊神经网络与内模控制相结合的驱动方式。该方式利用Matlab/Simulink来构建一种基于BLDCM和控制器的电梯一体式限速器仿真模型,得到BLDCM的... 针对无刷直流电机(BLDCM)双闭环控制调速系统的控制响应速度慢、转速波动较大等问题,提出一种模糊神经网络与内模控制相结合的驱动方式。该方式利用Matlab/Simulink来构建一种基于BLDCM和控制器的电梯一体式限速器仿真模型,得到BLDCM的速度、转矩响应曲线。仿真分析和实验结果均表明,模糊T-S型内模PID控制算法在响应速度、转速误差、抗干扰能力和控制精度等性能方面优于内模PID控制算法与常规双闭环PID控制系统。该研究可为模糊神经网络T-S型内模PID算法在电梯一体式限速器上的应用积累经验。 展开更多
关键词 无刷直流电机 模糊T-S 内模pid控制 双闭环控制系统 模糊神经网络 电梯限速器
在线阅读 下载PDF
基于负载预测的节能型泵控单元稳压控制研究
17
作者 王飞 郝钰杰 +3 位作者 赵慧兵 刘克毅 陈革新 艾超 《液压与气动》 北大核心 2025年第7期53-66,共14页
针对泵控单元静态精度不高和动态性能受限的问题,为提高泵控单元的压力控制能力,提出了一种基于负载预测前馈补偿的模糊PID稳压控制方法。首先,建立了泵控单元中伺服电机和定量泵的数学模型;其次,设计了基于长短期记忆神经网络的负载预... 针对泵控单元静态精度不高和动态性能受限的问题,为提高泵控单元的压力控制能力,提出了一种基于负载预测前馈补偿的模糊PID稳压控制方法。首先,建立了泵控单元中伺服电机和定量泵的数学模型;其次,设计了基于长短期记忆神经网络的负载预测算法,进行了模型的训练,优化了模型的超参数设置,计算了评价指标,进行了仿真验证;然后,对基于负载预测前馈补偿的模糊PID控制方法进行仿真分析;最后,开展试验研究,验证了该控制方法的效果。结果表明,评价指标印证了负载预测模型具有较高的预测精度;在负载预测结果作为前馈信号输入补偿的前提下,与传统PID控制器相比,模糊PID控制器在两种信号响应下的输出压力和期望压力之间的误差分别减小了72.2%和71.1%,实现了泵控单元的高精度稳压控制。 展开更多
关键词 泵控单元 负载预测 前馈补偿 模糊pid 稳压控制 长短期记忆神经网络
在线阅读 下载PDF
基于FNN优化的AUV姿态控制研究
18
作者 张海龙 齐向东 +1 位作者 普勇博 张涛 《舰船科学技术》 北大核心 2025年第5期132-137,共6页
为了满足自主水下潜航器(AUV)快速达到稳定姿态的需求,在传统增量式PID的基础上引入神经网络理论和模糊控制逻辑,提出一种模糊神经网络(FNN)PID姿态控制器。首先建立双坐标系系统,并通过受力分析得到AUV动力学模型,其次融合模糊逻辑和... 为了满足自主水下潜航器(AUV)快速达到稳定姿态的需求,在传统增量式PID的基础上引入神经网络理论和模糊控制逻辑,提出一种模糊神经网络(FNN)PID姿态控制器。首先建立双坐标系系统,并通过受力分析得到AUV动力学模型,其次融合模糊逻辑和人工神经网络的计算模型,设计AUV姿态控制器并搭建Matlab仿真模型,有效解决模糊PID控制过度依赖经验,难以应对水下复杂工况的问题。仿真结果表明,相比于传统的模糊PID控制和BP神经网络,模糊神经网络PID姿态控制器具有更快的响应速度,达到稳定姿态所需时间减少一倍以上,有效改善了AUV姿态控制性能。 展开更多
关键词 自主水下潜航器 模糊pid BP神经网络 控制优化
在线阅读 下载PDF
基于人工智能技术的舰船自动驾驶控制系统
19
作者 李尚富 陈大伟 《舰船科学技术》 北大核心 2025年第10期181-184,共4页
为增强舰船面对大风、海浪等外界干扰时的航向控制能力,设计基于人工智能技术的舰船自动驾驶控制系统。构建具备非线性特征的船舶航向控制系统数学模型,并将其转换成状态空间形式进行描述,以此为基础,采用人工智能技术中的模糊神经网络(... 为增强舰船面对大风、海浪等外界干扰时的航向控制能力,设计基于人工智能技术的舰船自动驾驶控制系统。构建具备非线性特征的船舶航向控制系统数学模型,并将其转换成状态空间形式进行描述,以此为基础,采用人工智能技术中的模糊神经网络(FNN)与Bang-Bang控制相结合的方式搭建舰船自动控制系统结构,其中Bang-Bang控制器以航向偏差和偏差变化率为输入,实现快速消除较大航向偏差,模糊神经控制器同样以此为输入,负责在偏差较小时进行精细调控,二者协同实现舰船自动驾驶控制。实验结果表明,该系统能有效应对外界干扰,稳定跟踪航向,减少频繁操舵与超调,可快速将航向稳定在目标值,实现更优的舰船自动驾驶控制。 展开更多
关键词 人工智能 模糊神经网络 航向偏差 自动驾驶 舰船控制
在线阅读 下载PDF
基于模糊神经网络的精密角度定位PID控制 被引量:51
20
作者 张金龙 徐慧 +2 位作者 刘京南 内田敬久 郭怡倩 《仪器仪表学报》 EI CAS CSCD 北大核心 2012年第3期549-554,共6页
针对精密角度定位系统存在非线性、时变性,传统PID控制难以获得理想控制效果的问题,提出一种基于模糊神经网络的PID控制方法,将模糊控制、神经网络与PID控制相结合,采用3层前向网络、动态BP算法,利用神经网络的自学习和自适应能力,实时... 针对精密角度定位系统存在非线性、时变性,传统PID控制难以获得理想控制效果的问题,提出一种基于模糊神经网络的PID控制方法,将模糊控制、神经网络与PID控制相结合,采用3层前向网络、动态BP算法,利用神经网络的自学习和自适应能力,实时调整网络的权值,改变PID控制器的控制参数,整定出一组适用于控制对象的kp、ki、kd参数,实现精密角度定位PID控制的自适应和智能化。实验结果表明,采用BP神经网络整定的PID控制较传统的PID控制,控制性能有较大的提高,能有效提高定位精度,缩短定位时间。 展开更多
关键词 角度定位 模糊控制 BP神经网络 pid控制
在线阅读 下载PDF
上一页 1 2 16 下一页 到第
使用帮助 返回顶部