We consider a scenario where an unmanned aerial vehicle(UAV),a typical unmanned aerial system(UAS),transmits confidential data to a moving ground target in the presence of multiple eavesdroppers.Multiple friendly reco...We consider a scenario where an unmanned aerial vehicle(UAV),a typical unmanned aerial system(UAS),transmits confidential data to a moving ground target in the presence of multiple eavesdroppers.Multiple friendly reconfigurable intelligent surfaces(RISs) help to secure the UAV-target communication and improve the energy efficiency of the UAV.We formulate an optimization problem to minimize the energy consumption of the UAV,subject to the mobility constraint of the UAV and that the achievable secrecy rate at the target is over a given threshold.We present an online planning method following the framework of model predictive control(MPC) to jointly optimize the motion of the UAV and the configurations of the RISs.The effectiveness of the proposed method is validated via computer simulations.展开更多
车辆临近交叉口的变道行为会制约交叉口通行效率的提升。基于此,本文提出一种网联车辆环境下城市道路交通流分段协同控制方法(Segmented Cooperative cOntrol Method for Urban Road Traffic Flow,SCOM-URTF),该方法采用双层优化模型,...车辆临近交叉口的变道行为会制约交叉口通行效率的提升。基于此,本文提出一种网联车辆环境下城市道路交通流分段协同控制方法(Segmented Cooperative cOntrol Method for Urban Road Traffic Flow,SCOM-URTF),该方法采用双层优化模型,实现路段功能区动态划分和路段—交叉口交通流的协同优化。上层模型设计了一种分车道速度诱导错位变道策略(Misaligned Lane-changing with Separated Lane Speed Guidance,ML-SLSG),通过纵向空间错位排列促成左转和右转车辆的快速变道,最小化车辆变道区长度,并均衡车道组交通流量;下层模型以最小化车均延误为目标,基于动态规划法协同优化网联车辆的轨迹与交叉口信号配时参数。仿真结果表明,ML-SLSG策略能有效缩短变道长度,在低、中和高这3种交通负荷下,本文提出的车辆纵向轨迹优化模型能使交叉口车均延误减少5.9%~8.0%,且与信号配时协同优化后,车均延误可再降低3.7%~22.8%。与同类方法对比研究表明,SCOM-URTF更适合多种驾驶行为相互协调的交通环境。敏感性分析显示,更高的CAV渗透率和道路限速有助于降低车均延误;增大交叉口间距可在初期减少车均延误,但达到临界点后会出现延误反弹,而轨迹与信号的协同优化能有效遏制延误的反弹。展开更多
基金funding from the Australian Government,via grant AUSMURIB000001 associated with ONR MURI Grant N00014-19-1-2571。
文摘We consider a scenario where an unmanned aerial vehicle(UAV),a typical unmanned aerial system(UAS),transmits confidential data to a moving ground target in the presence of multiple eavesdroppers.Multiple friendly reconfigurable intelligent surfaces(RISs) help to secure the UAV-target communication and improve the energy efficiency of the UAV.We formulate an optimization problem to minimize the energy consumption of the UAV,subject to the mobility constraint of the UAV and that the achievable secrecy rate at the target is over a given threshold.We present an online planning method following the framework of model predictive control(MPC) to jointly optimize the motion of the UAV and the configurations of the RISs.The effectiveness of the proposed method is validated via computer simulations.
文摘车辆临近交叉口的变道行为会制约交叉口通行效率的提升。基于此,本文提出一种网联车辆环境下城市道路交通流分段协同控制方法(Segmented Cooperative cOntrol Method for Urban Road Traffic Flow,SCOM-URTF),该方法采用双层优化模型,实现路段功能区动态划分和路段—交叉口交通流的协同优化。上层模型设计了一种分车道速度诱导错位变道策略(Misaligned Lane-changing with Separated Lane Speed Guidance,ML-SLSG),通过纵向空间错位排列促成左转和右转车辆的快速变道,最小化车辆变道区长度,并均衡车道组交通流量;下层模型以最小化车均延误为目标,基于动态规划法协同优化网联车辆的轨迹与交叉口信号配时参数。仿真结果表明,ML-SLSG策略能有效缩短变道长度,在低、中和高这3种交通负荷下,本文提出的车辆纵向轨迹优化模型能使交叉口车均延误减少5.9%~8.0%,且与信号配时协同优化后,车均延误可再降低3.7%~22.8%。与同类方法对比研究表明,SCOM-URTF更适合多种驾驶行为相互协调的交通环境。敏感性分析显示,更高的CAV渗透率和道路限速有助于降低车均延误;增大交叉口间距可在初期减少车均延误,但达到临界点后会出现延误反弹,而轨迹与信号的协同优化能有效遏制延误的反弹。