Intelligent Reflecting Surface(IRS),with the potential capability to reconstruct the electromagnetic propagation environment,evolves a new IRSassisted covert communications paradigm to eliminate the negligible detecti...Intelligent Reflecting Surface(IRS),with the potential capability to reconstruct the electromagnetic propagation environment,evolves a new IRSassisted covert communications paradigm to eliminate the negligible detection of malicious eavesdroppers by coherently beaming the scattered signals and suppressing the signals leakage.However,when multiple IRSs are involved,accurate channel estimation is still a challenge due to the extra hardware complexity and communication overhead.Besides the crossinterference caused by massive reflecting paths,it is hard to obtain the close-formed solution for the optimization of covert communications.On this basis,the paper improves a heterogeneous multi-agent deep deterministic policy gradient(MADDPG)approach for the joint active and passive beamforming(Joint A&P BF)optimization without the channel estimation,where the base station(BS)and multiple IRSs are taken as different types of agents and learn to enhance the covert spectrum efficiency(CSE)cooperatively.Thanks to the‘centralized training and distributed execution’feature of MADDPG,each agent can execute the active or passive beamforming independently based on its partial observation without referring to others.Numeral results demonstrate that the proposed deep reinforcement learning(DRL)approach could not only obtain a preferable CSE of legitimate users and a low detection of probability(LPD)of warden,but also alleviate the communication overhead and simplify the IRSs deployment.展开更多
Lower Earth Orbit(LEO) satellite becomes an important part of complementing terrestrial communication due to its lower orbital altitude and smaller propagation delay than Geostationary satellite. However, the LEO sate...Lower Earth Orbit(LEO) satellite becomes an important part of complementing terrestrial communication due to its lower orbital altitude and smaller propagation delay than Geostationary satellite. However, the LEO satellite communication system cannot meet the requirements of users when the satellite-terrestrial link is blocked by obstacles. To solve this problem, we introduce Intelligent reflect surface(IRS) for improving the achievable rate of terrestrial users in LEO satellite communication. We investigated joint IRS scheduling, user scheduling, power and bandwidth allocation(JIRPB) optimization algorithm for improving LEO satellite system throughput.The optimization problem of joint user scheduling and resource allocation is formulated as a non-convex optimization problem. To cope with this problem, the nonconvex optimization problem is divided into resource allocation optimization sub-problem and scheduling optimization sub-problem firstly. Second, we optimize the resource allocation sub-problem via alternating direction multiplier method(ADMM) and scheduling sub-problem via Lagrangian dual method repeatedly.Third, we prove that the proposed resource allocation algorithm based ADMM approaches sublinear convergence theoretically. Finally, we demonstrate that the proposed JIRPB optimization algorithm improves the LEO satellite communication system throughput.展开更多
Wireless Power Transfer(WPT)technology can provide real-time power for many terminal devices in Internet of Things(IoT)through millimeterWave(mmWave)to support applications with large capacity and low latency.Although...Wireless Power Transfer(WPT)technology can provide real-time power for many terminal devices in Internet of Things(IoT)through millimeterWave(mmWave)to support applications with large capacity and low latency.Although the intelligent reflecting surface(IRS)can be adopted to create effective virtual links to address the mmWave blockage problem,the conventional solutions only adopt IRS in the downlink from the Base Station(BS)to the users to enhance the received signal strength.In practice,the reflection of IRS is also applicable to the uplink to improve the spectral efficiency.It is a challenging to jointly optimize IRS beamforming and system resource allocation for wireless energy acquisition and information transmission.In this paper,we first design a Low-Energy Adaptive Clustering Hierarchy(LEACH)clustering protocol for clustering and data collection.Then,the problem of maximizing the minimum system spectral efficiency is constructed by jointly optimizing the transmit power of sensor devices,the uplink and downlink transmission times,the active beamforming at the BS,and the IRS dynamic beamforming.To solve this non-convex optimization problem,we propose an alternating optimization(AO)-based joint solution algorithm.Simulation results show that the use of IRS dynamic beamforming can significantly improve the spectral efficiency of the system,and ensure the reliability of equipment communication and the sustainability of energy supply under NLOS link.展开更多
In this paper,we aim to unlock the potential of intelligent reflecting surfaces(IRSs)in cognitive internet of things(loT).Considering that the secondary IoT devices send messages to the secondary access point(SAP)by s...In this paper,we aim to unlock the potential of intelligent reflecting surfaces(IRSs)in cognitive internet of things(loT).Considering that the secondary IoT devices send messages to the secondary access point(SAP)by sharing the spectrum with the primary network,the interference is introduced by the IoT devices to the primary access point(PAP)which profits from the IoT devices by pricing the interference power charged by them.A practical path loss model is adopted such that the IRSs deployed between the IoT devices and SAP serve as diffuse scatterers,but each reflected signal can be aligned with its own desired direction.Moreover,two transmission policies of the secondary network are investigated without/with a successive interference cancellation(SIC)technique.The signal-to-interference plus noise ratio(SINR)balancing is considered to overcome the nearfar effect of the IoT devices so as to allocate the resource fairly among them.We propose a Stackelberg game strategy to characterize the interaction between primary and secondary networks.For the proposed game,the Stackelberg equilibrium is analytically derived to optimally obtain the closed-form solution of the power allocation and interference pricing.Numerical results are demonstrated to validate the performance of the theoretical derivations.展开更多
This work employs intelligent reflecting surface(IRS)to enhance secure and covert communication performance.We formulate an optimization problem to jointly design both the reflection beamformer at IRS and transmit pow...This work employs intelligent reflecting surface(IRS)to enhance secure and covert communication performance.We formulate an optimization problem to jointly design both the reflection beamformer at IRS and transmit power at transmitter Alice in order to optimize the achievable secrecy rate at Bob subject to a covertness constraint.We first develop a Dinkelbach-based algorithm to achieve an upper bound performance and a high-quality solution.For reducing the overhead and computational complexity of the Dinkelbach-based scheme,we further conceive a low-complexity algorithm in which analytical expression for the IRS reflection beamforming is derived at each iteration.Examination result shows that the devised low-complexity algorithm is able to achieve similar secrecy rate performance as the Dinkelbach-based algorithm.Our examination also shows that introducing an IRS into the considered system can significantly improve the secure and covert communication performance relative to the scheme without IRS.展开更多
Terahertz(THz)communications have been widely envisioned as a promising enabler to provide adequate bandwidth and achieve ultra-high data rates for sixth generation(6G)wireless networks.In order to mitigate blockage v...Terahertz(THz)communications have been widely envisioned as a promising enabler to provide adequate bandwidth and achieve ultra-high data rates for sixth generation(6G)wireless networks.In order to mitigate blockage vulnerability caused by serious propagation attenuation and poor diffraction of THz waves,an intelligent reflecting surface(IRS),which manipulates the propagation of incident electromagnetic waves in a programmable manner by adjusting the phase shifts of passive reflecting elements,is proposed to create smart radio environments,improve spectrum efficiency and enhance coverage capability.Firstly,some prospective application scenarios driven by the IRS empowered THz communications are introduced,including wireless mobile communications,secure communications,unmanned aerial vehicle(UAV)scenario,mobile edge computing(MEC)scenario and THz localization scenario.Then,we discuss the enabling technologies employed by the IRS empowered THz system,involving hardware design,channel estimation,capacity optimization,beam control,resource allocation and robustness design.Moreover,the arising challenges and open problems encountered in the future IRS empowered THz communications are also highlighted.Concretely,these emerging problems possibly originate from channel modeling,new material exploration,experimental IRS testbeds and intensive deployment.Ultimately,the combination of THz communications and IRS is capable of accelerating the development of 6G wireless networks.展开更多
A joint beamforming algorithm is proposed for intelligent reflecting surface(IRS) aided wireless multiple-input multiple-output(MIMO) communication using statistical channel state information(CSI). The beamforming is ...A joint beamforming algorithm is proposed for intelligent reflecting surface(IRS) aided wireless multiple-input multiple-output(MIMO) communication using statistical channel state information(CSI). The beamforming is done by alternatively optimizing the IRS reflecting coefficients and the covariance matrix of the transmit symbol vector, such that the ergodic rate of the system is maximized. The algorithm utilizes only the second order momentum of the random channel matrices and does assume any specific channel distribution, leading to a general framework for ergodic rate evaluation. A practical channel correlation model is configured to validate the performance gain. It is found that the rate can be enlarged by the joint optimization algorithm, however, the gain over that of randomly deployed reflecting coefficients depends highly on the relative correlation distance of the IRS elements and the spatial position of the IRS. In particular, the results suggest that IRS should be placed in the vicinity of either the transmitter or the receiver. Placing IRS far away from those positions is non-beneficial.展开更多
基金supported by the Key Laboratory of Near Ground Detection and Perception Technology(No.6142414220406 and 6142414210101)Shaanxi and Taicang Keypoint Research and Invention Program(No.2021GXLH-01-15 and TC2019SF03)。
文摘Intelligent Reflecting Surface(IRS),with the potential capability to reconstruct the electromagnetic propagation environment,evolves a new IRSassisted covert communications paradigm to eliminate the negligible detection of malicious eavesdroppers by coherently beaming the scattered signals and suppressing the signals leakage.However,when multiple IRSs are involved,accurate channel estimation is still a challenge due to the extra hardware complexity and communication overhead.Besides the crossinterference caused by massive reflecting paths,it is hard to obtain the close-formed solution for the optimization of covert communications.On this basis,the paper improves a heterogeneous multi-agent deep deterministic policy gradient(MADDPG)approach for the joint active and passive beamforming(Joint A&P BF)optimization without the channel estimation,where the base station(BS)and multiple IRSs are taken as different types of agents and learn to enhance the covert spectrum efficiency(CSE)cooperatively.Thanks to the‘centralized training and distributed execution’feature of MADDPG,each agent can execute the active or passive beamforming independently based on its partial observation without referring to others.Numeral results demonstrate that the proposed deep reinforcement learning(DRL)approach could not only obtain a preferable CSE of legitimate users and a low detection of probability(LPD)of warden,but also alleviate the communication overhead and simplify the IRSs deployment.
基金supported by the National Key R&D Program of China under Grant 2020YFB1807900the National Natural Science Foundation of China (NSFC) under Grant 61931005Beijing University of Posts and Telecommunications-China Mobile Research Institute Joint Innovation Center。
文摘Lower Earth Orbit(LEO) satellite becomes an important part of complementing terrestrial communication due to its lower orbital altitude and smaller propagation delay than Geostationary satellite. However, the LEO satellite communication system cannot meet the requirements of users when the satellite-terrestrial link is blocked by obstacles. To solve this problem, we introduce Intelligent reflect surface(IRS) for improving the achievable rate of terrestrial users in LEO satellite communication. We investigated joint IRS scheduling, user scheduling, power and bandwidth allocation(JIRPB) optimization algorithm for improving LEO satellite system throughput.The optimization problem of joint user scheduling and resource allocation is formulated as a non-convex optimization problem. To cope with this problem, the nonconvex optimization problem is divided into resource allocation optimization sub-problem and scheduling optimization sub-problem firstly. Second, we optimize the resource allocation sub-problem via alternating direction multiplier method(ADMM) and scheduling sub-problem via Lagrangian dual method repeatedly.Third, we prove that the proposed resource allocation algorithm based ADMM approaches sublinear convergence theoretically. Finally, we demonstrate that the proposed JIRPB optimization algorithm improves the LEO satellite communication system throughput.
基金supported by the National Natural Science Foundation of China 62001051.
文摘Wireless Power Transfer(WPT)technology can provide real-time power for many terminal devices in Internet of Things(IoT)through millimeterWave(mmWave)to support applications with large capacity and low latency.Although the intelligent reflecting surface(IRS)can be adopted to create effective virtual links to address the mmWave blockage problem,the conventional solutions only adopt IRS in the downlink from the Base Station(BS)to the users to enhance the received signal strength.In practice,the reflection of IRS is also applicable to the uplink to improve the spectral efficiency.It is a challenging to jointly optimize IRS beamforming and system resource allocation for wireless energy acquisition and information transmission.In this paper,we first design a Low-Energy Adaptive Clustering Hierarchy(LEACH)clustering protocol for clustering and data collection.Then,the problem of maximizing the minimum system spectral efficiency is constructed by jointly optimizing the transmit power of sensor devices,the uplink and downlink transmission times,the active beamforming at the BS,and the IRS dynamic beamforming.To solve this non-convex optimization problem,we propose an alternating optimization(AO)-based joint solution algorithm.Simulation results show that the use of IRS dynamic beamforming can significantly improve the spectral efficiency of the system,and ensure the reliability of equipment communication and the sustainability of energy supply under NLOS link.
基金This work was supported by the U.K.Engineering and Physical Sciences Research Council under Grants EP/P008402/2 and EP/R001588/1.
文摘In this paper,we aim to unlock the potential of intelligent reflecting surfaces(IRSs)in cognitive internet of things(loT).Considering that the secondary IoT devices send messages to the secondary access point(SAP)by sharing the spectrum with the primary network,the interference is introduced by the IoT devices to the primary access point(PAP)which profits from the IoT devices by pricing the interference power charged by them.A practical path loss model is adopted such that the IRSs deployed between the IoT devices and SAP serve as diffuse scatterers,but each reflected signal can be aligned with its own desired direction.Moreover,two transmission policies of the secondary network are investigated without/with a successive interference cancellation(SIC)technique.The signal-to-interference plus noise ratio(SINR)balancing is considered to overcome the nearfar effect of the IoT devices so as to allocate the resource fairly among them.We propose a Stackelberg game strategy to characterize the interaction between primary and secondary networks.For the proposed game,the Stackelberg equilibrium is analytically derived to optimally obtain the closed-form solution of the power allocation and interference pricing.Numerical results are demonstrated to validate the performance of the theoretical derivations.
基金supported in part by National Natural Science Foundation of China under Grant 62371004 and Grant 62301005in part by the University Synergy Innovation Program of Anhui Province under Grant GXXT-2022-055+1 种基金in part by the Natural Science Foundation of Anhui Province under Grant 2308085QF197in part by the Natural Science Research Project of Education Department of Anhui Province of China under Grant 2023AH051031。
文摘This work employs intelligent reflecting surface(IRS)to enhance secure and covert communication performance.We formulate an optimization problem to jointly design both the reflection beamformer at IRS and transmit power at transmitter Alice in order to optimize the achievable secrecy rate at Bob subject to a covertness constraint.We first develop a Dinkelbach-based algorithm to achieve an upper bound performance and a high-quality solution.For reducing the overhead and computational complexity of the Dinkelbach-based scheme,we further conceive a low-complexity algorithm in which analytical expression for the IRS reflection beamforming is derived at each iteration.Examination result shows that the devised low-complexity algorithm is able to achieve similar secrecy rate performance as the Dinkelbach-based algorithm.Our examination also shows that introducing an IRS into the considered system can significantly improve the secure and covert communication performance relative to the scheme without IRS.
基金supported by the National Key Research and Development Project of China under Grant 2018YFB1801500supported in part by The National Natural Science Foundation of China under Grant 6162780166 and Grant 61831012.
文摘Terahertz(THz)communications have been widely envisioned as a promising enabler to provide adequate bandwidth and achieve ultra-high data rates for sixth generation(6G)wireless networks.In order to mitigate blockage vulnerability caused by serious propagation attenuation and poor diffraction of THz waves,an intelligent reflecting surface(IRS),which manipulates the propagation of incident electromagnetic waves in a programmable manner by adjusting the phase shifts of passive reflecting elements,is proposed to create smart radio environments,improve spectrum efficiency and enhance coverage capability.Firstly,some prospective application scenarios driven by the IRS empowered THz communications are introduced,including wireless mobile communications,secure communications,unmanned aerial vehicle(UAV)scenario,mobile edge computing(MEC)scenario and THz localization scenario.Then,we discuss the enabling technologies employed by the IRS empowered THz system,involving hardware design,channel estimation,capacity optimization,beam control,resource allocation and robustness design.Moreover,the arising challenges and open problems encountered in the future IRS empowered THz communications are also highlighted.Concretely,these emerging problems possibly originate from channel modeling,new material exploration,experimental IRS testbeds and intensive deployment.Ultimately,the combination of THz communications and IRS is capable of accelerating the development of 6G wireless networks.
基金supported by the National Key R&D Program of China under grant 2018YFB1801101 and 2016YFB0502202Zhejiang Lab(No.2019LC0AB02),NSFC projects(61971136,61601119,61960206005,and 61803211)+3 种基金Jiangsu NSF project(No.BK20191261)the Fundamental Research Funds for the Central UniversitiesYoung Elite Scientist Sponsorship Program by CAST(YESS20160042)Zhishan Youth Scholar Program of SEU。
文摘A joint beamforming algorithm is proposed for intelligent reflecting surface(IRS) aided wireless multiple-input multiple-output(MIMO) communication using statistical channel state information(CSI). The beamforming is done by alternatively optimizing the IRS reflecting coefficients and the covariance matrix of the transmit symbol vector, such that the ergodic rate of the system is maximized. The algorithm utilizes only the second order momentum of the random channel matrices and does assume any specific channel distribution, leading to a general framework for ergodic rate evaluation. A practical channel correlation model is configured to validate the performance gain. It is found that the rate can be enlarged by the joint optimization algorithm, however, the gain over that of randomly deployed reflecting coefficients depends highly on the relative correlation distance of the IRS elements and the spatial position of the IRS. In particular, the results suggest that IRS should be placed in the vicinity of either the transmitter or the receiver. Placing IRS far away from those positions is non-beneficial.