With the warming up and continuous development of machine learning,especially deep learning,the research on visual question answering field has made significant progress,with important theoretical research significanc...With the warming up and continuous development of machine learning,especially deep learning,the research on visual question answering field has made significant progress,with important theoretical research significance and practical application value.Therefore,it is necessary to summarize the current research and provide some reference for researchers in this field.This article conducted a detailed and in-depth analysis and summarized of relevant research and typical methods of visual question answering field.First,relevant background knowledge about VQA(Visual Question Answering)was introduced.Secondly,the issues and challenges of visual question answering were discussed,and at the same time,some promising discussion on the particular methodologies was given.Thirdly,the key sub-problems affecting visual question answering were summarized and analyzed.Then,the current commonly used data sets and evaluation indicators were summarized.Next,in view of the popular algorithms and models in VQA research,comparison of the algorithms and models was summarized and listed.Finally,the future development trend and conclusion of visual question answering were prospected.展开更多
The information integration method of semantic web based on agent ontology(SWAO method) was put forward aiming at the problems in current network environment,which integrates,analyzes and processes enormous web inform...The information integration method of semantic web based on agent ontology(SWAO method) was put forward aiming at the problems in current network environment,which integrates,analyzes and processes enormous web information and extracts answers on the basis of semantics. With SWAO method as the clue,the following technologies were studied:the method of concept extraction based on semantic term mining,agent ontology construction method on account of multi-points and the answer extraction in view of semantic inference. Meanwhile,the structural model of the question answering system applying ontology was presented,which adopts OWL language to describe domain knowledge from where QA system infers and extracts answers by Jena inference engine. In the system testing,the precision rate reaches 86%,and the recalling rate is 93%. The experimental results prove that it is feasible to use the method to develop a question answering system,which is valuable for further study in more depth.展开更多
钻井顶部驱动装置结构复杂、故障类型多样,现有的故障树分析法和专家系统难以有效应对复杂多变的现场情况。为此,利用知识图谱在结构化与非结构化信息融合、故障模式关联分析以及先验知识传递方面的优势,提出了一种基于知识图谱的钻井...钻井顶部驱动装置结构复杂、故障类型多样,现有的故障树分析法和专家系统难以有效应对复杂多变的现场情况。为此,利用知识图谱在结构化与非结构化信息融合、故障模式关联分析以及先验知识传递方面的优势,提出了一种基于知识图谱的钻井顶部驱动装置故障诊断方法,利用以Transformer为基础的双向编码器模型(Bidirectional Encoder Representations from Transformers,BERT)构建了混合神经网络模型BERT-BiLSTM-CRF与BERT-BiLSTM-Attention,分别实现了顶驱故障文本数据的命名实体识别和关系抽取,并通过相似度计算,实现了故障知识的有效融合和智能问答,最终构建了顶部驱动装置故障诊断方法。研究结果表明:①在故障实体识别任务上,BERT-BiLSTM-CRF模型的精确度达到95.49%,能够有效识别故障文本中的信息实体;②在故障关系抽取上,BERT-BiLSTM-Attention模型的精确度达到93.61%,实现了知识图谱关系边的正确建立;③开发的问答系统实现了知识图谱的智能应用,其在多个不同类型问题上的回答准确率超过了90%,能够满足现场使用需求。结论认为,基于知识图谱的故障诊断方法能够有效利用顶部驱动装置的先验知识,实现故障的快速定位与智能诊断,具备良好的应用前景。展开更多
构建了基于BERT的双向连接模式BERT-based Bi-directional Association Model(BBAM)以实现在意图识别和槽位填充之间建立双向关系的目标,来实现意图识别与槽位填充的双向关联,融合两个任务的上下文信息,对意图识别与槽位填充两个任务之...构建了基于BERT的双向连接模式BERT-based Bi-directional Association Model(BBAM)以实现在意图识别和槽位填充之间建立双向关系的目标,来实现意图识别与槽位填充的双向关联,融合两个任务的上下文信息,对意图识别与槽位填充两个任务之间的联系进行深度挖掘,从而优化问句理解的整体性能.为了验证模型在旅游领域中的实用性和有效性,通过远程监督和人工校验构建了旅游领域问句数据集TFQD(Tourism Field Question Dataset),BBAM模型在此数据集上的槽填充任务F 1值得分为95.21%,意图分类准确率(A)为96.71%,整体识别准确率(A_(sentence))高达89.62%,显著优于多种基准模型.所提出的模型在ATIS和Snips两个公开数据集上与主流联合模型进行对比实验后,结果表明其具备一定的泛化能力.展开更多
基金Project(61702063)supported by the National Natural Science Foundation of China。
文摘With the warming up and continuous development of machine learning,especially deep learning,the research on visual question answering field has made significant progress,with important theoretical research significance and practical application value.Therefore,it is necessary to summarize the current research and provide some reference for researchers in this field.This article conducted a detailed and in-depth analysis and summarized of relevant research and typical methods of visual question answering field.First,relevant background knowledge about VQA(Visual Question Answering)was introduced.Secondly,the issues and challenges of visual question answering were discussed,and at the same time,some promising discussion on the particular methodologies was given.Thirdly,the key sub-problems affecting visual question answering were summarized and analyzed.Then,the current commonly used data sets and evaluation indicators were summarized.Next,in view of the popular algorithms and models in VQA research,comparison of the algorithms and models was summarized and listed.Finally,the future development trend and conclusion of visual question answering were prospected.
基金Projects(60773462, 60672171) supported by the National Natural Science Foundation of ChinaProjects(2009AA12143, 2009AA012136) supported by the National High-Tech Research and Development Program of ChinaProject(20080430250) supported by the Foundation of Post-Doctor in China
文摘The information integration method of semantic web based on agent ontology(SWAO method) was put forward aiming at the problems in current network environment,which integrates,analyzes and processes enormous web information and extracts answers on the basis of semantics. With SWAO method as the clue,the following technologies were studied:the method of concept extraction based on semantic term mining,agent ontology construction method on account of multi-points and the answer extraction in view of semantic inference. Meanwhile,the structural model of the question answering system applying ontology was presented,which adopts OWL language to describe domain knowledge from where QA system infers and extracts answers by Jena inference engine. In the system testing,the precision rate reaches 86%,and the recalling rate is 93%. The experimental results prove that it is feasible to use the method to develop a question answering system,which is valuable for further study in more depth.
文摘钻井顶部驱动装置结构复杂、故障类型多样,现有的故障树分析法和专家系统难以有效应对复杂多变的现场情况。为此,利用知识图谱在结构化与非结构化信息融合、故障模式关联分析以及先验知识传递方面的优势,提出了一种基于知识图谱的钻井顶部驱动装置故障诊断方法,利用以Transformer为基础的双向编码器模型(Bidirectional Encoder Representations from Transformers,BERT)构建了混合神经网络模型BERT-BiLSTM-CRF与BERT-BiLSTM-Attention,分别实现了顶驱故障文本数据的命名实体识别和关系抽取,并通过相似度计算,实现了故障知识的有效融合和智能问答,最终构建了顶部驱动装置故障诊断方法。研究结果表明:①在故障实体识别任务上,BERT-BiLSTM-CRF模型的精确度达到95.49%,能够有效识别故障文本中的信息实体;②在故障关系抽取上,BERT-BiLSTM-Attention模型的精确度达到93.61%,实现了知识图谱关系边的正确建立;③开发的问答系统实现了知识图谱的智能应用,其在多个不同类型问题上的回答准确率超过了90%,能够满足现场使用需求。结论认为,基于知识图谱的故障诊断方法能够有效利用顶部驱动装置的先验知识,实现故障的快速定位与智能诊断,具备良好的应用前景。
文摘构建了基于BERT的双向连接模式BERT-based Bi-directional Association Model(BBAM)以实现在意图识别和槽位填充之间建立双向关系的目标,来实现意图识别与槽位填充的双向关联,融合两个任务的上下文信息,对意图识别与槽位填充两个任务之间的联系进行深度挖掘,从而优化问句理解的整体性能.为了验证模型在旅游领域中的实用性和有效性,通过远程监督和人工校验构建了旅游领域问句数据集TFQD(Tourism Field Question Dataset),BBAM模型在此数据集上的槽填充任务F 1值得分为95.21%,意图分类准确率(A)为96.71%,整体识别准确率(A_(sentence))高达89.62%,显著优于多种基准模型.所提出的模型在ATIS和Snips两个公开数据集上与主流联合模型进行对比实验后,结果表明其具备一定的泛化能力.