The heating and current drive using NBI (neutral beam injection) with a variable injection angle (the angle between the axis of the NBI system with the center axis of the injection window) on EAST is simulated by ...The heating and current drive using NBI (neutral beam injection) with a variable injection angle (the angle between the axis of the NBI system with the center axis of the injection window) on EAST is simulated by using NBEAMS code. The influence of the injection angle on the neutral beam current drive, heating efficiency and beam shinethrough power is discussed to explore the optimum injection angle for the EAST NBI system. According to the simulation, an injection angle of 19.5° is the optimum for EAST with its typical experimental parameters. With this injection angle, the increase in both the beam energy and power can improve the current drive and heating efficiency. The problem that the beam shinethrough power increases with the higher injection energy and power could be controlled through an increase of the plasma density.展开更多
A new electron cyclotron resonance launcher system has been designed and installed on heating and current drive (ECRH/ECCD) the HL-2A tokamak to inject four beams and enable continuous millimeter-wave beam scanning ...A new electron cyclotron resonance launcher system has been designed and installed on heating and current drive (ECRH/ECCD) the HL-2A tokamak to inject four beams and enable continuous millimeter-wave beam scanning independently in the toroidal and poloidal direc- tions for ECRH/ECCD experiments. The launcher is connected to four mm-wave lines capable of transmitting high power up to 3 MW with two 1 MW/140 GHz/3 s and two 0.5 MW/68 GHz/1 s beams. Based on ray tracing simulation using the TORAY-GA code, tile scanning range of wave beams is -15~~15~ in the toroidal direction and 0~~10~ in the poloidal one for 140 GHz beams, which could cover half of the cross section of plasmas and can satisfy the requirements of advanced physical experiments. The beam radii in the plasma is 17.1 mm and 20 mm for the two 140 GHz beams and 29.5 nnn for the two 68 GHz beams, respectively, allowing a very high localization of the absorbed power. The performance of the steering system was proven to be reliable and the linearity is perfect between the displacement of drive shaft and rotate angle of mirror. Addition- ally the injection performance of the wave beams was optinfized by simultaneously setting the injection angle and the polarization to realize desirable pure O- or X-mode injection.展开更多
基金supported by Knowledge Innovation Program of the Chinese Academy of Sciences (No.075FCQ012C)National Natural Science Foundation of China (No.10975160)
文摘The heating and current drive using NBI (neutral beam injection) with a variable injection angle (the angle between the axis of the NBI system with the center axis of the injection window) on EAST is simulated by using NBEAMS code. The influence of the injection angle on the neutral beam current drive, heating efficiency and beam shinethrough power is discussed to explore the optimum injection angle for the EAST NBI system. According to the simulation, an injection angle of 19.5° is the optimum for EAST with its typical experimental parameters. With this injection angle, the increase in both the beam energy and power can improve the current drive and heating efficiency. The problem that the beam shinethrough power increases with the higher injection energy and power could be controlled through an increase of the plasma density.
基金supported by National Magnetic Confinement Thermonuclear Fusion Energy Research Project(No.2009GB102004)Cooperation on Key Technology of Plasma Heating in Tokamak(No.2010DFA63860)+1 种基金National Natural Science Foundation of China(No.11175059)Critical Technology Research of Nuclear Fusion and Physical Experiments and on HL-2A Tokamak(No.H660003)
文摘A new electron cyclotron resonance launcher system has been designed and installed on heating and current drive (ECRH/ECCD) the HL-2A tokamak to inject four beams and enable continuous millimeter-wave beam scanning independently in the toroidal and poloidal direc- tions for ECRH/ECCD experiments. The launcher is connected to four mm-wave lines capable of transmitting high power up to 3 MW with two 1 MW/140 GHz/3 s and two 0.5 MW/68 GHz/1 s beams. Based on ray tracing simulation using the TORAY-GA code, tile scanning range of wave beams is -15~~15~ in the toroidal direction and 0~~10~ in the poloidal one for 140 GHz beams, which could cover half of the cross section of plasmas and can satisfy the requirements of advanced physical experiments. The beam radii in the plasma is 17.1 mm and 20 mm for the two 140 GHz beams and 29.5 nnn for the two 68 GHz beams, respectively, allowing a very high localization of the absorbed power. The performance of the steering system was proven to be reliable and the linearity is perfect between the displacement of drive shaft and rotate angle of mirror. Addition- ally the injection performance of the wave beams was optinfized by simultaneously setting the injection angle and the polarization to realize desirable pure O- or X-mode injection.