期刊文献+
共找到4,919篇文章
< 1 2 246 >
每页显示 20 50 100
BDMFuse:Multi-scale network fusion for infrared and visible images based on base and detail features
1
作者 SI Hai-Ping ZHAO Wen-Rui +4 位作者 LI Ting-Ting LI Fei-Tao Fernando Bacao SUN Chang-Xia LI Yan-Ling 《红外与毫米波学报》 北大核心 2025年第2期289-298,共10页
The fusion of infrared and visible images should emphasize the salient targets in the infrared image while preserving the textural details of the visible images.To meet these requirements,an autoencoder-based method f... The fusion of infrared and visible images should emphasize the salient targets in the infrared image while preserving the textural details of the visible images.To meet these requirements,an autoencoder-based method for infrared and visible image fusion is proposed.The encoder designed according to the optimization objective consists of a base encoder and a detail encoder,which is used to extract low-frequency and high-frequency information from the image.This extraction may lead to some information not being captured,so a compensation encoder is proposed to supplement the missing information.Multi-scale decomposition is also employed to extract image features more comprehensively.The decoder combines low-frequency,high-frequency and supplementary information to obtain multi-scale features.Subsequently,the attention strategy and fusion module are introduced to perform multi-scale fusion for image reconstruction.Experimental results on three datasets show that the fused images generated by this network effectively retain salient targets while being more consistent with human visual perception. 展开更多
关键词 infrared image visible image image fusion encoder-decoder multi-scale features
在线阅读 下载PDF
A 2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran-based near-infrared fluorescence probe for the detection of hydrogen sulfide and imaging of living cells
2
作者 ZHANG Linfang YIN Wenzhu YIN Gui 《无机化学学报》 北大核心 2025年第3期540-548,共9页
Using 2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran(TCF)as a near-infrared fluorescent chromophore,we designed and synthesized a TCF-based fluorescent probe TCF-NS by introducing 2,4-dinitrophenyl ether ... Using 2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran(TCF)as a near-infrared fluorescent chromophore,we designed and synthesized a TCF-based fluorescent probe TCF-NS by introducing 2,4-dinitrophenyl ether as the recognized site for H_(2)S.The probe TCF-NS displayed a rapid-response fluorescent against H_(2)S with high sensitivity and selection but had no significant fluorescence response to other biothiols.Furthermore,TCF-NS was applied to sense H_(2)S in living cells successfully with minimized cytotoxicity and a large Stokes shift. 展开更多
关键词 hydrogen sulfide near⁃infrared fluorescence probe cell imaging
在线阅读 下载PDF
Infrared aircraft few-shot classification method based on cross-correlation network
3
作者 HUANG Zhen ZHANG Yong GONG Jin-Fu 《红外与毫米波学报》 北大核心 2025年第1期103-111,共9页
In response to the scarcity of infrared aircraft samples and the tendency of traditional deep learning to overfit,a few-shot infrared aircraft classification method based on cross-correlation networks is proposed.This... In response to the scarcity of infrared aircraft samples and the tendency of traditional deep learning to overfit,a few-shot infrared aircraft classification method based on cross-correlation networks is proposed.This method combines two core modules:a simple parameter-free self-attention and cross-attention.By analyzing the self-correlation and cross-correlation between support images and query images,it achieves effective classification of infrared aircraft under few-shot conditions.The proposed cross-correlation network integrates these two modules and is trained in an end-to-end manner.The simple parameter-free self-attention is responsible for extracting the internal structure of the image while the cross-attention can calculate the cross-correlation between images further extracting and fusing the features between images.Compared with existing few-shot infrared target classification models,this model focuses on the geometric structure and thermal texture information of infrared images by modeling the semantic relevance between the features of the support set and query set,thus better attending to the target objects.Experimental results show that this method outperforms existing infrared aircraft classification methods in various classification tasks,with the highest classification accuracy improvement exceeding 3%.In addition,ablation experiments and comparative experiments also prove the effectiveness of the method. 展开更多
关键词 infrared imaging aircraft classification few-shot learning parameter-free attention cross attention
在线阅读 下载PDF
Infrared image segmentation method based on 2D histogram shape modification and optimal objective function 被引量:8
4
作者 Songtao Liu Donghua Gao Fuliang Yin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2013年第3期528-536,共9页
In the methods of image thresholding segmentation, such methods based on two-dimensional (2D) histogram and optimal objective functions are important. However, when they are used for infrared image segmentation, the... In the methods of image thresholding segmentation, such methods based on two-dimensional (2D) histogram and optimal objective functions are important. However, when they are used for infrared image segmentation, they are weak in suppressing background noises and worse in segmenting targets with non-uniform gray level. The concept of 2D histogram shape modification is proposed, which is realized by target information prior restraint after enhancing target information using plateau histogram equalization. The formula of 2D minimum Renyi entropy is deduced for image segmentation, then the shape-modified 2D histogram is combined wfth four optimal objective functions (i.e., maximum between-class variance, maximum entropy, maximum correlation and minimum Renyi entropy) respectively for the appli- cation of infrared image segmentation. Simultaneously, F-measure is introduced to evaluate the segmentation effects objectively. The experimental results show that F-measure is an effective evaluation index for image segmentation since its value is fully consistent with the subjective evaluation, and after 2D histogram shape modification, the methods of optimal objective functions can overcome their original forms' deficiency and their segmentation effects are more or less improvements, where the best one is the maximum entropy method based on 2D histogram shape modification. 展开更多
关键词 infrared image segmentation 2D histogram Otsu maximum entropy maximum correlation minimum Renyi entropy.
在线阅读 下载PDF
Utilization of Thermal Infrared Image for Inversion of Winter Wheat Yield and Biomass 被引量:3
5
作者 DU Wen-yong ZHANG Lu-da +7 位作者 HU Zhen-fang Shamaila Z ZENG Ai-jun SONG Jian-li LIU Ya-jia Wolfram S Joachim M HE Xiong-kui 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2011年第6期1476-1480,共5页
The present paper utilizes thermal infrared image for inversion of winter wheat yield and biomass with different technology of irrigation(drip irrigation,sprinkler irrigation,flood irrigation).It is the first time tha... The present paper utilizes thermal infrared image for inversion of winter wheat yield and biomass with different technology of irrigation(drip irrigation,sprinkler irrigation,flood irrigation).It is the first time that thermal infrared image is used for predicting the winter wheat yield and biomass.The temperature of crop and background was measured by thermal infrared image.It is necessary to get the crop background separation index(CBSIL,CBSIH),which can be used for distinguishing the crop value from the image.CBSIL and CBSIH(the temperature when the leaves are wet adequately;the temperature when the stomata of leaf is closed completely) are the threshold values.The temperature of crop ranged from CBSIL to CBSIH.Then the ICWSI was calculated based on relevant theoretical method.The value of stomata leaf has strong negative correlation with ICWSI proving the reliable value of ICWSI.In order to construct the high accuracy simulation model,the samples were divided into two parts.One was used for constructing the simulation model,the other for checking the accuracy of the model.Such result of the model was concluded as:(1) As for the simulation model of soil moisture,the correlation coefficient(R2) is larger than 0.887 6,the average of relative error(Er) ranges from 13.33% to 16.88%;(2) As for the simulation model of winter wheat yield,drip irrigation(0.887 6,16.89%,-0.12),sprinkler irrigation(0.970 0,14.85%,-0.12),flood irrigation(0.969 0,18.87%,0.18),with the values of R2,Er and CRM listed in the parentheses followed by the individual term.(3) As for winter wheat biomass,drip irrigation(0.980 0,13.70%,0.13),sprinkler irrigation(0.95,13.15%,-0.14),flood irrigation(0.970 0,14.48%,-0.13),and the values in the parentheses are demonstrated the same as above.Both the CRM and Er are shown to be very low values,which points to the accuracy and reliability of the model investigated.The accuracy of model is high and reliable.The results indicated that thermal infrared image can be used potentially for inversion of winter wheat yield and biomass. 展开更多
关键词 Thermal infrared image infrared index ICWSI Technology of irrigation
在线阅读 下载PDF
Model-based deep learning for fiber bundle infrared image restoration 被引量:2
6
作者 Bo-wen Wang Le Li +4 位作者 Hai-bo Yang Jia-xin Chen Yu-hai Li Qian Chen Chao Zuo 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第9期38-45,共8页
As the representative of flexibility in optical imaging media,in recent years,fiber bundles have emerged as a promising architecture in the development of compact visual systems.Dedicated to tackling the problems of u... As the representative of flexibility in optical imaging media,in recent years,fiber bundles have emerged as a promising architecture in the development of compact visual systems.Dedicated to tackling the problems of universal honeycomb artifacts and low signal-to-noise ratio(SNR)imaging in fiber bundles,the iterative super-resolution reconstruction network based on a physical model is proposed.Under the constraint of solving the two subproblems of data fidelity and prior regularization term alternately,the network can efficiently“regenerate”the lost spatial resolution with deep learning.By building and calibrating a dual-path imaging system,the real-world dataset where paired low-resolution(LR)-high-resolution(HR)images on the same scene can be generated simultaneously.Numerical results on both the United States Air Force(USAF)resolution target and complex target objects demonstrate that the algorithm can restore high-contrast images without pixilated noise.On the basis of super-resolution reconstruction,compound eye image composition based on fiber bundle is also embedded in this paper for the actual imaging requirements.The proposed work is the first to apply a physical model-based deep learning network to fiber bundle imaging in the infrared band,effectively promoting the engineering application of thermal radiation detection. 展开更多
关键词 Fiber bundle Deep learning infrared imaging image restoration
在线阅读 下载PDF
Method of Infrared Image Enhancement Based on Stationary Wavelet Transform
7
作者 祁飞 李言俊 张科 《Defence Technology(防务技术)》 SCIE EI CAS 2008年第3期181-187,共7页
Aiming at the problem,i.e.infrared images own the characters of bad contrast ratio and fuzzy edges,a method to enhance the contrast of infrared image is given,which is based on stationary wavelet transform.After makin... Aiming at the problem,i.e.infrared images own the characters of bad contrast ratio and fuzzy edges,a method to enhance the contrast of infrared image is given,which is based on stationary wavelet transform.After making stationary wavelet transform to an infrared image,denoising is done by the proposed method of double-threshold shrinkage in detail coefficient matrixes that have high noisy intensity.For the approximation coefficient matrix with low noisy intensity,enhancement is done by the proposed method based on histogram.The enhanced image can be got by wavelet coefficient reconstruction.Furthermore,an evaluation criterion of enhancement performance is introduced.The results show that this algorithm ensures target enhancement and restrains additive Gauss white noise effectively.At the same time,its amount of calculation is small and operation speed is fast. 展开更多
关键词 信息处理 工程材料 图象增大 红外线图象
在线阅读 下载PDF
Infrared Image Small Target Detection Based on Bi-orthogonal Wavelet and Morphology
8
作者 迟健男 张朝晖 +1 位作者 王东署 郝彦爽 《Defence Technology(防务技术)》 SCIE EI CAS 2007年第3期203-208,共6页
An image multi-scale edge detection method based on anti-symmetrical bi-orthogonal wavelet is given in theory. Convolution operation property and function as a differential operator are analyzed,which anti-symmetrical... An image multi-scale edge detection method based on anti-symmetrical bi-orthogonal wavelet is given in theory. Convolution operation property and function as a differential operator are analyzed,which anti-symmetrical bi-orthogonal wavelet transform have. An algorithm for wavelet reconstruction in which multi-scale edge can be detected is put forward. Based on it, a detection method for small target in infrared image with sea or sky background based on the anti-symmetrical bi-orthogonal wavelet and morphology is proposed. The small target detection is considered as a process in which structural background is removed, correlative background is suppressed, and noise is restrained. In this approach, the multi-scale edge is extracted by means of the anti-symmetrical bi-orthogonal wavelet decomposition. Then, module maximum chains formed by complicated background of clouds, sea wave and sea-sky-line are removed, and the image background becomes smoother. Finally, the morphology based edge detection method is used to get small target and restrain undulate background and noise. Experiment results show that the approach can suppress clutter background and detect the small target effectively. 展开更多
关键词 控制导航系统 航天器 边缘方向 红外线图像 小目标探测
在线阅读 下载PDF
Research on fast detection method of infrared small targets under resourceconstrained conditions 被引量:2
9
作者 ZHANG Rui LIU Min LI Zheng 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 2024年第4期582-587,共6页
Infrared small target detection is a common task in infrared image processing.Under limited computa⁃tional resources.Traditional methods for infrared small target detection face a trade-off between the detection rate ... Infrared small target detection is a common task in infrared image processing.Under limited computa⁃tional resources.Traditional methods for infrared small target detection face a trade-off between the detection rate and the accuracy.A fast infrared small target detection method tailored for resource-constrained conditions is pro⁃posed for the YOLOv5s model.This method introduces an additional small target detection head and replaces the original Intersection over Union(IoU)metric with Normalized Wasserstein Distance(NWD),while considering both the detection accuracy and the detection speed of infrared small targets.Experimental results demonstrate that the proposed algorithm achieves a maximum effective detection speed of 95 FPS on a 15 W TPU,while reach⁃ing a maximum effective detection accuracy of 91.9 AP@0.5,effectively improving the efficiency of infrared small target detection under resource-constrained conditions. 展开更多
关键词 infrared UAV image fast small object detection low impedance loss function
在线阅读 下载PDF
Near-Infrared Imaging Using a High-Speed Monitoring Near Infrared Hyperspectral Camera(Compovision) 被引量:3
10
作者 Daitaro Ishikawa Asako Motomura +1 位作者 Yoko Igarashi Yukihiro Ozaki 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2015年第4期865-869,共5页
This review paper reports near-infrared(NIR)imaging studies using a newly-developed NIR camera,Compovision.Compovision can measure a significantly wide area of 150mm×250mm at high speed of between 2and 5s.It enab... This review paper reports near-infrared(NIR)imaging studies using a newly-developed NIR camera,Compovision.Compovision can measure a significantly wide area of 150mm×250mm at high speed of between 2and 5s.It enables a wide spectral region measurement in the 1 000~2 350nm range at 6nm intervals.We investigated the potential of Compovision in the applications to industrial problems such as the evaluation of pharmaceutical tablets and polymers.Our studies have demonstrated that NIR imaging based on Compovision can solve several issues such as long acquisition times and relatively low sensitivity of detection.NIR imaging with Compovision is strongly expected to be applied not only to pharmaceutical tablet monitoring and polymer characterization but also to various applications such as those to food products,biomedical substances and organic and inorganic materials. 展开更多
关键词 Near infrared spectroscopy imagING Hyperspectral camera
在线阅读 下载PDF
Long wavelength infrared metalens fabricated by photolithography
11
作者 LI Yun-Peng LUO Jia-Cheng +5 位作者 JI Ruo-Nan XIE Mao-Bin CUI Wen-Nan WANG Shao-Wei LIU Feng LU Wei 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 2024年第5期603-608,共6页
Metasurfaces in the long wave infrared(LWIR)spectrum hold great potential for applications in ther-mal imaging,atmospheric remote sensing,and target identification,among others.In this study,we designed and experiment... Metasurfaces in the long wave infrared(LWIR)spectrum hold great potential for applications in ther-mal imaging,atmospheric remote sensing,and target identification,among others.In this study,we designed and experimentally demonstrated a 4 mm size,all-silicon metasurface metalens with large depth of focus opera-tional across a broadband range from 9µm to 11.5µm.The experimental results confirm effective focusing and imaging capabilities of the metalens in LWIR region,thus paving the way for practical LWIR applications of met-alens technology. 展开更多
关键词 long wave infrared broadband operation passive imaging
在线阅读 下载PDF
Feasibility study of assessing cotton fiber maturity from near infrared hyperspectral imaging technique
12
作者 LIU Yongliang TAO Feifei +1 位作者 YAO Haibo KINCAID Russell 《Journal of Cotton Research》 CAS 2023年第4期266-276,共11页
Background Fiber maturity is a key cotton quality property,and its variability in a sample impacts fiber processing and dyeing performance.Currently,the maturity is determined by using established protocols in laborat... Background Fiber maturity is a key cotton quality property,and its variability in a sample impacts fiber processing and dyeing performance.Currently,the maturity is determined by using established protocols in laboratories under a controlled environment.There is an increasing need to measure fiber maturity using low-cost(in general less than $20000)and small portable systems.In this study,a laboratory feasibility was performed to assess the ability of the shortwave infrared hyperspectral imaging(SWIR HSI)technique for determining the conditioned fiber maturity,and as a comparison,a bench-top commercial and expensive(in general greater than $60000)near infrared(NIR)instrument was used.Results Although SWIR HSI and NIR represent different measurement technologies,consistent spectral characteristics were observed between the two instruments when they were used to measure the maturity of the locule fiber samples in seed cotton and of the well-defined fiber samples,respectively.Partial least squares(PLS)models were established using different spectral preprocessing parameters to predict fiber maturity.The high prediction precision was observed by a lower root mean square error of prediction(RMSEP)(<0.046),higher R_(p)^(2)(>0.518),and greater percentage(97.0%)of samples within the 95% agreement range in the entire NIR region(1000-2500 nm)without the moisture band at 1940 nm.Conclusion SWIR HSI has a good potential for assessing cotton fiber maturity in a laboratory environment. 展开更多
关键词 Near infrared spectroscopy Near infrared hyperspectral imaging Fiber maturity Seed cotton Partial least squares regression
在线阅读 下载PDF
Advantages of QWIP technology in infrared thermal cameras 被引量:1
13
作者 Eric Belhaire Regis Pichon 《应用光学》 CAS CSCD 北大核心 2017年第2期298-303,共6页
Standard GaAs/AlGaAs quantum well infrared photodetectors(QWIP)have been seriously considered as atechnological choice for the 3^(rd) generation of thermal imagers in the long wave infrared band(LWIR)for some time.Alt... Standard GaAs/AlGaAs quantum well infrared photodetectors(QWIP)have been seriously considered as atechnological choice for the 3^(rd) generation of thermal imagers in the long wave infrared band(LWIR)for some time.Alternative technology like MCT(HgCdTe)was the technology choice of the 2^(nd) generation because of its high quantum efficiency.In the paper,measurements on the QWIP technology will be presented and a comparison with alternative technology will be done. 展开更多
关键词 infrared detectors image sensors quantum well infrared photodetectors(QWIP)
在线阅读 下载PDF
Infrared-PV:面向监控应用的红外目标检测数据集
14
作者 陈旭 吴蔚 +1 位作者 彭冬亮 谷雨 《红外技术》 CSCD 北大核心 2023年第12期1304-1313,共10页
红外摄像机虽然能够全天候24 h工作,但是相比于可见光摄像机,其获得的红外图像分辨率和信杂比低,目标纹理信息缺乏,因此足够的标记图像和进行模型优化设计对于提高基于深度学习的红外目标检测性能具有重要意义。为解决面向监控应用场景... 红外摄像机虽然能够全天候24 h工作,但是相比于可见光摄像机,其获得的红外图像分辨率和信杂比低,目标纹理信息缺乏,因此足够的标记图像和进行模型优化设计对于提高基于深度学习的红外目标检测性能具有重要意义。为解决面向监控应用场景的红外目标检测数据集缺乏的问题,首先采用红外摄像机采集了不同极性的红外图像,基于自研图像标注软件实现了VOC格式的图像标注任务,构建了一个包含行人和车辆两类目标的红外图像数据集(Infrared-PV),并对数据集中的目标特性进行了统计分析。然后采用主流的基于深度学习的目标检测模型进行了模型训练与测试,定性和定量分析了YOLO系列和Faster R-CNN系列等模型对于该数据集的目标检测性能。构建的红外目标数据集共包含图像2138张,场景中目标包含白热、黑热和热力图3种模式。当采用各模型进行目标检测性能测试时,Cascade R-CNN模型性能最优,mAP0.5值达到了82.3%,YOLO v5系列模型能够兼顾实时性和检测精度的平衡,推理速度达到175.4帧/s的同时mAP0.5值仅降低2.7%。构建的红外目标检测数据集能够为基于深度学习的红外图像目标检测模型优化研究提供一定的数据支撑,同时也可以用于目标的红外特性分析。 展开更多
关键词 红外图像 数据集 监控应用 深度学习 基准测试
在线阅读 下载PDF
Dim Moving Small Target Detection by Local and Global Variance Filtering on Temporal Profiles in Infrared Sequences
15
作者 Chen Hao Liu Delian 《航空兵器》 CSCD 北大核心 2019年第6期43-49,共7页
In this paper, the temporal different characteristics between the target and background pixels are used to detect dim moving targets in the slow-evolving complex background. A local and global variance filter on tempo... In this paper, the temporal different characteristics between the target and background pixels are used to detect dim moving targets in the slow-evolving complex background. A local and global variance filter on temporal profiles is presented that addresses the temporal characteristics of the target and background pixels to eliminate the large variation of background temporal profiles. Firstly, the temporal behaviors of different types of image pixels of practical infrared scenes are analyzed.Then, the new local and global variance filter is proposed. The baseline of the fluctuation level of background temporal profiles is obtained by using the local and global variance filter. The height of the target pulse signal is extracted by subtracting the baseline from the original temporal profiles. Finally, a new target detection criterion is designed. The proposed method is applied to detect dim and small targets in practical infrared sequence images. The experimental results show that the proposed algorithm has good detection performance for dim moving small targets in the complex background. 展开更多
关键词 small target detection infrared image sequences complex background temporal profile variance filtering
在线阅读 下载PDF
An Effective Method of Threshold Selection for Small Object Image
16
作者 吴一全 吴加明 占必超 《Defence Technology(防务技术)》 SCIE EI CAS 2011年第4期235-242,共8页
The image segmentation difficulties of small objects which are much smaller than their background often occur in target detection and recognition. The existing threshold segmentation methods almost fail under the circ... The image segmentation difficulties of small objects which are much smaller than their background often occur in target detection and recognition. The existing threshold segmentation methods almost fail under the circumstances. Thus, a threshold selection method is proposed on the basis of area difference between background and object and intra-class variance. The threshold selection formulae based on one-dimensional (1-D) histogram, two-dimensional (2-D) histogram vertical segmentation and 2-D histogram oblique segmentation are given. A fast recursive algorithm of threshold selection in 2-D histogram oblique segmentation is derived. The segmented images and processing time of the proposed method are given in experiments. It is compared with some fast algorithms, such as Otsu, maximum entropy and Fisher threshold selection methods. The experimental results show that the proposed method can effectively segment the small object images and has better anti-noise property. 展开更多
关键词 information processing small infrared target detection image segmentation threshold selection 2-D histogram oblique segmentation fast recursive algorithm
在线阅读 下载PDF
多尺度特征提取与融合的红外图像增强算法 被引量:3
17
作者 李牧 张一朗 柯熙政 《红外与激光工程》 北大核心 2025年第2期240-253,共14页
针对传统的特征融合算法多从单一的尺度上抽取图像的特征,并且在红外图像亮度增强过程中可能导致局部特征信息的丢失与退化而引起红外图像细节分辨率不高的问题,提出了多尺度特征提取与融合的红外图像增强算法,主要由多尺度自适应特征... 针对传统的特征融合算法多从单一的尺度上抽取图像的特征,并且在红外图像亮度增强过程中可能导致局部特征信息的丢失与退化而引起红外图像细节分辨率不高的问题,提出了多尺度特征提取与融合的红外图像增强算法,主要由多尺度自适应特征提取模块、亮度增强迭代函数以及特征融合和图像重建模块构成。首先,提出的多尺度自适应特征提取融合模块保存和融合了来自不同卷积层特征的多尺度信息;然后,改进的亮度增强迭代函数使用了融合特征作为逐像素参数,用于红外图像亮度增强;最后,通过提出的特征融合和图像重建模块,增强了特征在网络中的传播能力,并保持了局部信息的完整性。实验结果表明:多尺度特征提取与融合的红外图像增强算法与其它表现较好的网络相比,峰值信噪比、余弦相似度以及信息熵分别提高了3.7%、1.3%、1.6%。且在测试数据集上根据引用的火灾隐患检测算法判断是否存在火灾隐患进行早期火灾检测,其准确率为97.86%,说明了提出的多尺度特征提取与融合的红外图像增强算法的有效性与可行性。 展开更多
关键词 红外图像 图像增强 深度学习 特征融合 注意力机制
在线阅读 下载PDF
高动态范围红外成像技术研究进展及发展趋势 被引量:1
18
作者 粟宇路 李泽民 +4 位作者 王鑫 丁留琼 姜海 李林 杨帆 《激光与红外》 北大核心 2025年第1期10-17,共8页
随着红外技术的发展,红外相机被越来越多地应用到军事、安防、医学、农业等领域。由于红外场景具有辐射差异大的特点,为适应各种场景需要,通常要求红外相机具有高动态范围成像性能。本文介绍了近二十年来国内外公开报道的典型的高动态... 随着红外技术的发展,红外相机被越来越多地应用到军事、安防、医学、农业等领域。由于红外场景具有辐射差异大的特点,为适应各种场景需要,通常要求红外相机具有高动态范围成像性能。本文介绍了近二十年来国内外公开报道的典型的高动态范围红外成像技术的基本原理及其特点。基于当前技术的发展现状,本文也预测了高动态范围红外成像技术在今后一段时期内的发展趋势。 展开更多
关键词 红外成像 高动态范围 超帧 读出集成电路
在线阅读 下载PDF
基于改进YOLOv7-Tiny的变电设备红外图像识别 被引量:1
19
作者 邓长征 刘明泽 +2 位作者 付添 弓萌庆 骆冰洁 《红外技术》 北大核心 2025年第1期44-51,共8页
针对复杂背景下变电设备红外图像目标识别精度不高、识别速度慢的问题,本文提出一种基于改进YOLOv7-Tiny的变电设备红外图像识别算法。首先,引入轻量级瓶颈结构GhostNetV2 BottleNeck替换部分CBS模块构建轻量级高效聚合网络L-ELAN(Light... 针对复杂背景下变电设备红外图像目标识别精度不高、识别速度慢的问题,本文提出一种基于改进YOLOv7-Tiny的变电设备红外图像识别算法。首先,引入轻量级瓶颈结构GhostNetV2 BottleNeck替换部分CBS模块构建轻量级高效聚合网络L-ELAN(Lightweight-Efficient Layer Aggregation Network),同时在特征提取阶段嵌入CA(Coordinate Attention)注意力机制,在降低网络参数量的同时加强网络对目标关键特征的提取,提升检测精度;将网络坐标损失函数替换为SIoU Loss,以提升锚框定位精度和网络收敛速度;在变电设备红外数据集上进行测试,结果表明,改进后网络的精确率达到96.28%,检测速率达到26.42 frame/s,模型大小降低至7.82 M。与YOLOv7-Tiny原算法相比较,本文算法在提升识别精度的同时将检测速率提升21.69%,模型大小减少36.89%,可以满足变电站设备的精准实时识别要求,为后续的变电站设备故障诊断奠定基础。 展开更多
关键词 变电设备 红外图像识别 YOLOv7-Tiny 注意力机制 轻量化
在线阅读 下载PDF
基于改进YOLOv7的变电站设备红外图像识别 被引量:1
20
作者 刘昕明 李玮 +1 位作者 吉建光 石光磁 《红外技术》 北大核心 2025年第1期63-71,共9页
高效快速地识别变电站设备是变电站安全状态检测中至关重要的一个环节。针对变电站场景复杂且目标设备尺度不同的特点,在YOLOv7的基础上引入PSA模块,实现局部和全局通道之间的信息交互,提高模型对不同尺度设备的识别精度。再结合PConv和... 高效快速地识别变电站设备是变电站安全状态检测中至关重要的一个环节。针对变电站场景复杂且目标设备尺度不同的特点,在YOLOv7的基础上引入PSA模块,实现局部和全局通道之间的信息交互,提高模型对不同尺度设备的识别精度。再结合PConv和GSConv,建立轻量化网络,在确保模型精度的同时提升检测速度。使用Dyhead将3个感知嵌入一个目标检测头中,提升了目标的检测能力。构建变电站设备红外图像数据集,并进行训练、测试和验证,与原来的YOLOv7算法对比,准确率提升了3%,模型减小了10%,满足高效快速识别变电设备的要求,为后续变电设备故障诊断提供了基础。 展开更多
关键词 变电站设备 红外图像识别 YOLOv7 PSA模块 轻量化网络 Dyhead
在线阅读 下载PDF
上一页 1 2 246 下一页 到第
使用帮助 返回顶部