期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
A hierarchical simulation framework incorporating full-link physical response for short-range infrared detection
1
作者 Mingze Gao Lixin Xu +4 位作者 Shiyuan Hu Xiaolong Shi Jiaming Gao Yanjiang Wu Huimin Chen 《Defence Technology(防务技术)》 2025年第8期351-363,共13页
Missile-borne short-range infrared detection(SIRD)technology is commonly used in military ground target detection.In complex battlefield environments,achieving precise strike on ground target is a challenging task.How... Missile-borne short-range infrared detection(SIRD)technology is commonly used in military ground target detection.In complex battlefield environments,achieving precise strike on ground target is a challenging task.However,real battlefield data is limited,and equivalent experiments are costly.Currently,there is a lack of comprehensive physical modeling and numerical simulation methods for SIRD.To this end,this study proposes a SIRD simulation framework incorporating full-link physical response,which is integrated through the radiative transfer layer,the sensor response layer,and the model-driven layer.In the radiative transfer layer,a coupled dynamic detection model is established to describe the external optical channel response of the SIRD system by combining the infrared radiation model and the geometric measurement model.In the sensor response layer,considering photoelectric conversion and signal processing,the internal signal response model of the SIRD system is established by a hybrid mode of parametric modeling and analog circuit analysis.In the model-driven layer,a cosimulation application based on a three-dimensional virtual environment is proposed to drive the full-link physical model,and a parallel ray tracing method is employed for real-time synchronous simulation.The proposed simulation framework can provide pixel-level signal output and is verified by the measured data.The evaluation results of the root mean square error(RMSE)and the Pearson correlation coefficient(PCC)show that the simulated data and the measured data achieve good consistency,and the evaluation results of the waveform eigenvalues indicate that the simulated signals exhibit low errors compared to the measured signals.The proposed simulation framework has the potential to acquire large sample datasets of SIRD under various complex battlefield environments and can provide an effective data source for SIRD application research. 展开更多
关键词 Short-range infrared detection Full-link physical response Signal level simulation
在线阅读 下载PDF
Fuzzy recognition of missile borne multi-line array infrared detection based on size calculating 被引量:2
2
作者 Bing-shan Lei Jing Li +1 位作者 Wei-na Hao Ke-ding Yan 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第4期1135-1142,共8页
In order to improve the infrared detection and discrimination ability of the smart munition to the dynamic armor target under the complex background,the multi-line array infrared detection system is established based ... In order to improve the infrared detection and discrimination ability of the smart munition to the dynamic armor target under the complex background,the multi-line array infrared detection system is established based on the combination of the single unit infrared detector.The surface dimension features of ground armored targets are identified by size calculating solution algorithm.The signal response value and the value of size calculating are identified by the method of fuzzy recognition to make the fuzzy classification judgment for armored target.According to the characteristics of the target signal,a custom threshold de-noising function is proposed to solve the problem of signal preprocessing.The multi-line array infrared detection can complete the scanning detection in a large area in a short time with the characteristics of smart munition in the steady-state scanning stage.The method solves the disadvantages of wide scanning interval and low detection probability of single unit infrared detection.By reducing the scanning interval,the number of random rendezvous in the infrared feature area of the upper surface is increased,the accuracy of the size calculating is guaranteed.The experiments results show that in the fuzzy recognition method,the size calculating is introduced as the feature operator,which can improve the recognition ability of the ground armor target with different shape size. 展开更多
关键词 Multi-line array infrared detection Size calculating Custom threshold de-noising Fuzzy comprehensive discrimination algorithm
在线阅读 下载PDF
YOLO-Fastest-IR:Ultra-lightweight thermal infrared face detection method for infrared thermal camera
3
作者 LI Xi-Cai ZHU Jia-He +1 位作者 DONG Peng-Xiang WANG Yuan-Qing 《红外与毫米波学报》 北大核心 2025年第5期790-800,共11页
This paper presents a high-speed and robust dual-band infrared thermal camera based on an ARM CPU.The system consists of a low-resolution long-wavelength infrared detector,a digital temperature and humid⁃ity sensor,an... This paper presents a high-speed and robust dual-band infrared thermal camera based on an ARM CPU.The system consists of a low-resolution long-wavelength infrared detector,a digital temperature and humid⁃ity sensor,and a CMOS sensor.In view of the significant contrast between face and background in thermal infra⁃red images,this paper explores a suitable accuracy-latency tradeoff for thermal face detection and proposes a tiny,lightweight detector named YOLO-Fastest-IR.Four YOLO-Fastest-IR models(IR0 to IR3)with different scales are designed based on YOLO-Fastest.To train and evaluate these lightweight models,a multi-user low-resolution thermal face database(RGBT-MLTF)was collected,and the four networks were trained.Experiments demon⁃strate that the lightweight convolutional neural network performs well in thermal infrared face detection tasks.The proposed algorithm outperforms existing face detection methods in both positioning accuracy and speed,making it more suitable for deployment on mobile platforms or embedded devices.After obtaining the region of interest(ROI)in the infrared(IR)image,the RGB camera is guided by the thermal infrared face detection results to achieve fine positioning of the RGB face.Experimental results show that YOLO-Fastest-IR achieves a frame rate of 92.9 FPS on a Raspberry Pi 4B and successfully detects 97.4%of faces in the RGBT-MLTF test set.Ultimate⁃ly,an infrared temperature measurement system with low cost,strong robustness,and high real-time perfor⁃mance was integrated,achieving a temperature measurement accuracy of 0.3℃. 展开更多
关键词 artificial intelligence infrared face detection ultra-lightweight network infrared thermal camera YOLO-Fastest-IR
在线阅读 下载PDF
Infrared small target detection algorithm via partial sum of the tensor nuclear norm and direction residual weighting
4
作者 SUN Bin XIA Xing-Ling +1 位作者 FU Rong-Guo SHI Liang 《红外与毫米波学报》 北大核心 2025年第2期277-288,共12页
Aiming at the problem that infrared small target detection faces low contrast between the background and the target and insufficient noise suppression ability under the complex cloud background,an infrared small targe... Aiming at the problem that infrared small target detection faces low contrast between the background and the target and insufficient noise suppression ability under the complex cloud background,an infrared small target detection method based on the tensor nuclear norm and direction residual weighting was proposed.Based on converting the infrared image into an infrared patch tensor model,from the perspective of the low-rank nature of the background tensor,and taking advantage of the difference in contrast between the background and the target in different directions,we designed a double-neighborhood local contrast based on direction residual weighting method(DNLCDRW)combined with the partial sum of tensor nuclear norm(PSTNN)to achieve effective background suppression and recovery of infrared small targets.Experiments show that the algorithm is effective in suppressing the background and improving the detection ability of the target. 展开更多
关键词 infrared small target detection infrared patch tensor model partial sum of the tensor nuclear norm direction residual weighting
在线阅读 下载PDF
Novel detection method for infrared small targets using weighted information entropy 被引量:13
5
作者 Xiujie Qu He Chen Guihua Peng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第6期838-842,共5页
This paper presents a method for detecting the small infrared target under complex background. An algorithm, named local mutation weighted information entropy (LMWIE), is proposed to suppress background. Then, the g... This paper presents a method for detecting the small infrared target under complex background. An algorithm, named local mutation weighted information entropy (LMWIE), is proposed to suppress background. Then, the grey value of targets is enhanced by calculating the local energy. Image segmentation based on the adaptive threshold is used to solve the problems that the grey value of noise is enhanced with the grey value improvement of targets. Experimental results show that compared with the adaptive Butterworth high-pass filter method, the proposed algorithm is more effective and faster for the infrared small target detection. 展开更多
关键词 infrared small target detection local mutation weight-ed information entropy (LMWIE) grey value of target adaptivethreshold.
在线阅读 下载PDF
Using deep learning to detect small targets in infrared oversampling images 被引量:15
6
作者 LIN Liangkui WANG Shaoyou TANG Zhongxing 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第5期947-952,共6页
According to the oversampling imaging characteristics, an infrared small target detection method based on deep learning is proposed. A 7-layer deep convolutional neural network(CNN) is designed to automatically extrac... According to the oversampling imaging characteristics, an infrared small target detection method based on deep learning is proposed. A 7-layer deep convolutional neural network(CNN) is designed to automatically extract small target features and suppress clutters in an end-to-end manner. The input of CNN is an original oversampling image while the output is a cluttersuppressed feature map. The CNN contains only convolution and non-linear operations, and the resolution of the output feature map is the same as that of the input image. The L1-norm loss function is used, and a mass of training data is generated to train the network effectively. Results show that compared with several baseline methods, the proposed method improves the signal clutter ratio gain and background suppression factor by 3–4 orders of magnitude, and has more powerful target detection performance. 展开更多
关键词 infrared small target detection OVERSAMPLING deep learning convolutional neural network(CNN)
在线阅读 下载PDF
An Effective Method of Threshold Selection for Small Object Image
7
作者 吴一全 吴加明 占必超 《Defence Technology(防务技术)》 SCIE EI CAS 2011年第4期235-242,共8页
The image segmentation difficulties of small objects which are much smaller than their background often occur in target detection and recognition. The existing threshold segmentation methods almost fail under the circ... The image segmentation difficulties of small objects which are much smaller than their background often occur in target detection and recognition. The existing threshold segmentation methods almost fail under the circumstances. Thus, a threshold selection method is proposed on the basis of area difference between background and object and intra-class variance. The threshold selection formulae based on one-dimensional (1-D) histogram, two-dimensional (2-D) histogram vertical segmentation and 2-D histogram oblique segmentation are given. A fast recursive algorithm of threshold selection in 2-D histogram oblique segmentation is derived. The segmented images and processing time of the proposed method are given in experiments. It is compared with some fast algorithms, such as Otsu, maximum entropy and Fisher threshold selection methods. The experimental results show that the proposed method can effectively segment the small object images and has better anti-noise property. 展开更多
关键词 information processing small infrared target detection image segmentation threshold selection 2-D histogram oblique segmentation fast recursive algorithm
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部