期刊文献+
共找到156,280篇文章
< 1 2 250 >
每页显示 20 50 100
Experimental and mechanistic study on iron extraction from high-iron red mud under multiple physical field coupling conditions
1
作者 DONG Hai-pei YANG Jin-lin +3 位作者 ZHOU Wen-tao YU Xu-yang MA Shao-jian WANG Ding-zheng 《Journal of Central South University》 2025年第7期2476-2486,共11页
Red mud is a solid waste discharged in the process of alumina production,and how to realize the efficient recovery of its iron is an urgent problem to be solved.In this study,the iron extraction test and mechanism stu... Red mud is a solid waste discharged in the process of alumina production,and how to realize the efficient recovery of its iron is an urgent problem to be solved.In this study,the iron extraction test and mechanism study of high iron red mud were carried out under the coupling conditions of multiple physical field(microwave field,gas-solid flow field and temperature field)with biomass as the reducing agent.The test results showed that under the optimal conditions,an iron concentrate with a yield of 78.4%,an iron grade of 59.23%,and a recovery rate of 86.65%was obtained.The analyses of XRD,XPS,TEM,and SEM-EDS showed that during the roasting process,the hematite in the high-iron red mud was completely converted to magnetite,and the biomass produced the reductant that provided the magnetization reaction;A large number of cracks and pores appeared in the surface of the hematite reduction product particles,which helped to induce iron minerals to undergo effective mineral phase transformation.The above study provides ideas for the phase transformation and efficient recovery of iron minerals in red mud. 展开更多
关键词 multiple physical field high-iron red mud BIOMASS mineral phase transformation iron extraction
在线阅读 下载PDF
Three-dimensional finite-time optimal cooperative guidance with integrated information fusion observer
2
作者 Yiao Zhan Linwei Wang Di Zhou 《Defence Technology(防务技术)》 2025年第4期12-28,共17页
Intercepting high-maneuverability hypersonic targets in near-space environments poses significant challenges due to their extreme speeds and evasive capabilities.To address these challenges,this study presents an inte... Intercepting high-maneuverability hypersonic targets in near-space environments poses significant challenges due to their extreme speeds and evasive capabilities.To address these challenges,this study presents an integrated approach that combines a Three-Dimensional Finite-Time Optimal Cooperative Guidance Law(FTOC)with an Information Fusion Anti-saturation Predefined-time Observer(IFAPO).The proposed FTOC guidance law employs a nonlinear,non-quadratic finite-time optimal control strategy designed for rapid convergence within the limited timeframes of near-space interceptions,avoiding the need for remaining flight time estimation or linear decoupling inherent in traditional methods.To complement the guidance strategy,the IFAPO leverages multi-source information fusion theory and incorporates anti-saturation mechanisms to enhance target maneuver estimation.This method ensures accurate and real-time prediction of target acceleration while maintaining predefined convergence performance,even under complex interception conditions.By integrating the FTOC guidance law and IFAPO,the approach optimizes cooperative missile positioning,improves interception success rates,and minimizes fuel consumption,addressing practical constraints in military applications.Simulation results and comparative analyses confirm the effectiveness of the integrated approach,demonstrating its capability to achieve cooperative interception of highly maneuvering targets with enhanced efficiency and reduced economic costs,aligning with realistic combat scenarios. 展开更多
关键词 Anti-saturation predefined-time observer Nonlinear finite-time optimal control Three-dimensional guidance information fusion
在线阅读 下载PDF
Tomato Growth Height Prediction Method by Phenotypic Feature Extraction Using Multi-modal Data
3
作者 GONG Yu WANG Ling +3 位作者 ZHAO Rongqiang YOU Haibo ZHOU Mo LIU Jie 《智慧农业(中英文)》 2025年第1期97-110,共14页
[Objective]Accurate prediction of tomato growth height is crucial for optimizing production environments in smart farming.However,current prediction methods predominantly rely on empirical,mechanistic,or learning-base... [Objective]Accurate prediction of tomato growth height is crucial for optimizing production environments in smart farming.However,current prediction methods predominantly rely on empirical,mechanistic,or learning-based models that utilize either images data or environmental data.These methods fail to fully leverage multi-modal data to capture the diverse aspects of plant growth comprehensively.[Methods]To address this limitation,a two-stage phenotypic feature extraction(PFE)model based on deep learning algorithm of recurrent neural network(RNN)and long short-term memory(LSTM)was developed.The model integrated environment and plant information to provide a holistic understanding of the growth process,emploied phenotypic and temporal feature extractors to comprehensively capture both types of features,enabled a deeper understanding of the interaction between tomato plants and their environment,ultimately leading to highly accurate predictions of growth height.[Results and Discussions]The experimental results showed the model's ef‐fectiveness:When predicting the next two days based on the past five days,the PFE-based RNN and LSTM models achieved mean absolute percentage error(MAPE)of 0.81%and 0.40%,respectively,which were significantly lower than the 8.00%MAPE of the large language model(LLM)and 6.72%MAPE of the Transformer-based model.In longer-term predictions,the 10-day prediction for 4 days ahead and the 30-day prediction for 12 days ahead,the PFE-RNN model continued to outperform the other two baseline models,with MAPE of 2.66%and 14.05%,respectively.[Conclusions]The proposed method,which leverages phenotypic-temporal collaboration,shows great potential for intelligent,data-driven management of tomato cultivation,making it a promising approach for enhancing the efficiency and precision of smart tomato planting management. 展开更多
关键词 tomato growth prediction deep learning phenotypic feature extraction multi-modal data recurrent neural net‐work long short-term memory large language model
在线阅读 下载PDF
Bayesian-based information extraction and aggregation approach for multilevel systems with multi-source data 被引量:4
4
作者 Lechang Yang Jianguo Zhang +1 位作者 Yanling Guo Qian Wang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2017年第2期385-400,共16页
The ever-increasing complexity of industry facilities has made the reliability analysis and assessment an imperative yet tough work. Motivated by practical engineering requirement, this paper develops a Bayesian-based... The ever-increasing complexity of industry facilities has made the reliability analysis and assessment an imperative yet tough work. Motivated by practical engineering requirement, this paper develops a Bayesian-based information extraction and aggregation (BIEA) approach for system level reliability estimation of a complex system. It takes both subjective judgments and objective field outputs into consideration. Novel features of this approach is a unique information content based aggregation process, which allows a flexible application of this framework in separated modules on account for purpose. The coherency of which is guaranteed by the objective information content calculation. This work goes beyond the alternatives that deal with solely attributed data under ideal information circumstance, and investigates a more generic tool for real engineering application. Limitations embedded in traditional statistical modeling methods have been eliminated in a nature manner by information transition and integration. In addition, a double axis driving mechanism (DADM) for erecting the antenna of a satellite is demonstrated as case study for benefit illustration and effectiveness verification. © 2017 Beijing Institute of Aerospace Information. 展开更多
关键词 Artificial intelligence Data fusion information analysis information retrieval RELIABILITY Reliability analysis
在线阅读 下载PDF
A hybrid specific index-related process monitoring strategy based on a novel two-step information extraction method
5
作者 ZHAO Bo SONG Bing +1 位作者 TAN Shuai SHI Hong-bo 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第12期2896-2909,共14页
A two-step information extraction method is presented to capture the specific index-related information more accurately.In the first step,the overall process variables are separated into two sets based on Pearson corr... A two-step information extraction method is presented to capture the specific index-related information more accurately.In the first step,the overall process variables are separated into two sets based on Pearson correlation coefficient.One is process variables strongly related to the specific index and the other is process variables weakly related to the specific index.Through performing principal component analysis(PCA)on the two sets,the directions of latent variables have changed.In other words,the correlation between latent variables in the set with strong correlation and the specific index may become weaker.Meanwhile,the correlation between latent variables in the set with weak correlation and the specific index may be enhanced.In the second step,the two sets are further divided into a subset strongly related to the specific index and a subset weakly related to the specific index from the perspective of latent variables using Pearson correlation coefficient,respectively.Two subsets strongly related to the specific index form a new subspace related to the specific index.Then,a hybrid monitoring strategy based on predicted specific index using partial least squares(PLS)and T2statistics-based method is proposed for specific index-related process monitoring using comprehensive information.Predicted specific index reflects real-time information for the specific index.T2statistics are used to monitor specific index-related information.Finally,the proposed method is applied to Tennessee Eastman(TE).The results indicate the effectiveness of the proposed method. 展开更多
关键词 specific index hybrid monitoring strategy two-step information extraction SUBSPACE
在线阅读 下载PDF
基于融合劣化指标和VMD-Informer的水电机组劣化趋势预测
6
作者 宋阿妮 陈亦真 +2 位作者 詹云峰 李超顺 付波 《中国农村水利水电》 北大核心 2025年第5期90-96,共7页
水电机组长期运行在恶劣环境下,异常振动更加频繁,逐渐出现疲劳、磨损,导致机组性能劣化。为保障机组的安全稳定运行,需要准确直观地反映水电机组运行并预测机组未来劣化状况,为机组状态检修提供重要依据。提出了一种基于融合劣化指标和... 水电机组长期运行在恶劣环境下,异常振动更加频繁,逐渐出现疲劳、磨损,导致机组性能劣化。为保障机组的安全稳定运行,需要准确直观地反映水电机组运行并预测机组未来劣化状况,为机组状态检修提供重要依据。提出了一种基于融合劣化指标和VMD-Informer的机组劣化趋势预测方法。首先构建KAN健康模型拟合工况参数与振摆值之间的映射关系,然后通过对比模型输出值与实测振摆值在不同指标下的差异得到多个劣化序列,运用遗传算法对多个劣化序列进行寻优获取融合劣化指标,兼顾多个指标的优势,更为准确地反映机组劣化趋势。之后用变分模态分解(VMD)将融合劣化序列分解为多个分量,最后利用Informer预测模型对分解后的各个分量进行多步预测并重构得到最终的预测结果,从而实现对机组运行状况的准确评估和预测。实例分析表明,所提方法能够生成可靠的劣化趋势,同时在预测上能学习劣化趋势序列的长期趋势和局部特征,预测精度更高。 展开更多
关键词 水电机组 劣化评估 退化预测 Kolmogorov-Arnold Network 遗传算法 informER
在线阅读 下载PDF
基于RF-Informer模型的月径流遥相关预报
7
作者 李继清 谢宇韬 +1 位作者 徐学军 吴亮 《水资源保护》 北大核心 2025年第3期39-45,共7页
为延长中长期径流预报的预见期,提高预报精度,从物理成因上考虑径流的影响因素,在前期降水径流的基础上增加遥相关因子,通过随机森林(RF)模型进行因子选择,引入长时间序列预报中表现良好的Informer模型,构建了月径流预报的RF-Informer模... 为延长中长期径流预报的预见期,提高预报精度,从物理成因上考虑径流的影响因素,在前期降水径流的基础上增加遥相关因子,通过随机森林(RF)模型进行因子选择,引入长时间序列预报中表现良好的Informer模型,构建了月径流预报的RF-Informer模型,并利用该模型对雅砻江流域两河口、锦西、二滩3个水库的入库月径流进行了预报。结果表明:将遥相关因子引入流域月径流预报可以延长预见期,提高预报精度;相较于线性相关法,基于RF模型选择预报因子可以挖掘因子间非线性关系,提升预报效果;与RF-LSTM、RF-SVM、RF-BP神经网络模型相比,RF-Informer模型的误差最小,预报精度最高。 展开更多
关键词 月径流预报 遥相关因子 随机森林模型 informer模型 雅砻江流域
在线阅读 下载PDF
基于Informer模型的航班延误预测
8
作者 杨新湦 游超 朱承元 《科学技术与工程》 北大核心 2025年第19期8282-8288,共7页
为能更加精准预测不同时段的航班延误态势,选用美国亚特兰大机场2023年全年的运行数据与相关气象数据进行实验,提出基于相关系分析(correlation analysis,CA),主成分分析(principal components analysis,PCA)和Informer模型的CA-PCA-Inf... 为能更加精准预测不同时段的航班延误态势,选用美国亚特兰大机场2023年全年的运行数据与相关气象数据进行实验,提出基于相关系分析(correlation analysis,CA),主成分分析(principal components analysis,PCA)和Informer模型的CA-PCA-Informer航班延误预测模型,采用MAE(mean absolute error)和RMSE(root mean square error)作为模型的评价指标进行预测误差分析。结果表明,CA-PCA-Informer模型比简单的组合模型预测效果更好,与CA-PCA-LSTM和CA-PCA-GRU模型相比模型误差最低,MAE和RMSE分别降低了20.2%~20.7%和12.7%~14.1%;CA-PCA-Informer模型对预测步长为1 h时预测更为精准,该模型可以为决策者提供更加准确的航班延误态势以保证航班的高效运行。 展开更多
关键词 民航交通运输 航班延误预测 informer模型 主成分分析 神经网络
在线阅读 下载PDF
融合改进Informer与迁移学习的风电功率预测
9
作者 郭利进 孙淼 衡安阳 《太阳能学报》 北大核心 2025年第7期371-377,共7页
为克服风电功率序列的不稳定性导致预测精度低以及一些风电场历史数据有限的问题,提出一种特征交互Informer与迁移学习(FIITL)的风电功率预测模型。首先提出特征交互(FI)机制用双通道输入进一步提取信息,并将迁移学习(TL)引入到预测模型... 为克服风电功率序列的不稳定性导致预测精度低以及一些风电场历史数据有限的问题,提出一种特征交互Informer与迁移学习(FIITL)的风电功率预测模型。首先提出特征交互(FI)机制用双通道输入进一步提取信息,并将迁移学习(TL)引入到预测模型中,提出循环微调迁移学习,将模型从源监测站迁移到目标站,实现在有限历史数据情况下预测性能的提升。最后,通过与传统Informer模型及其他基线预测方法比较,FIITL模型展现了在有限数据情况下的性能优势。 展开更多
关键词 迁移学习 风电功率 预测 informER 特征交互
在线阅读 下载PDF
LSTM与Informer融合预测冠层区域温度
10
作者 黄铝文 刘宇航 +1 位作者 屈昆仪 朱玉颖 《农业工程学报》 北大核心 2025年第8期222-232,共11页
针对传统温度预测方法难以充分捕捉多尺度信息,导致模型预测性能不佳等问题,该研究提出了一种基于Informer架构和长短时记忆网络(long short-term memory,LSTM)与多源数据融合的冠层区域温度预测模型。在编码层中,采用稀疏注意力机制提... 针对传统温度预测方法难以充分捕捉多尺度信息,导致模型预测性能不佳等问题,该研究提出了一种基于Informer架构和长短时记忆网络(long short-term memory,LSTM)与多源数据融合的冠层区域温度预测模型。在编码层中,采用稀疏注意力机制提取输入因子的多尺度信息及其与长时序数据之间的耦合关系;在解码层中,利用LSTM提取短期时序依赖,以增强时间序列的连贯性,同时引入改进的反向残差前馈网络(improved residual feedforward network,IRFFN)以优化模型结构。首先采用孤立森林法对数据进行异常值清理,并进行了归一化处理;然后使用斯皮尔曼相关系数法对冠层区域温度进行相关性分析,并选择相关程度较高的环境因子作为模型的输入特征;最终通过网格搜索法对超参数进行优化,并通过迭代训练实现模型的最优配置。通过与其他4种主流算法进行对比分析,提出的InformerLSTM在冠层区域温度预测方面表现出更高的精度,其平均绝对误差(mean absolute error,MAE)、均方根误差(root mean square error,RMSE)和决定系数(R^(2))分别达到了0.166、0.224℃和0.978,与基础模型Informer相比,冠层区域温度的均方根误差降低了0.448℃。该模型在时间序列预测方面具有较高的精度,为区域气象温度的中短期精准预测提供了一种新的技术方法。 展开更多
关键词 冠层 温度 非线性时间序列 长短期记忆神经网络 informER
在线阅读 下载PDF
基于DWT-CNN-Informer模型的液压支架压力多步长预测
11
作者 张传伟 张刚强 +1 位作者 路正雄 李林岳 《中国安全生产科学技术》 北大核心 2025年第4期57-63,共7页
为了实现液压支架压力多步长精准预测,提出1种基于DWT-CNN-Informer模型的压力多步长预测方法,该方法利用离散小波变换(discrete wavelet transform, DWT)将预处理后的压力时序数据分解为趋势项和周期项频率分量;各频率分量输入卷积神... 为了实现液压支架压力多步长精准预测,提出1种基于DWT-CNN-Informer模型的压力多步长预测方法,该方法利用离散小波变换(discrete wavelet transform, DWT)将预处理后的压力时序数据分解为趋势项和周期项频率分量;各频率分量输入卷积神经网络(CNN)模型提取频率特征;提取的频率特征输入Informer编码器,经位置编码和多头概率稀疏自注意力机制捕捉时序变化特征,并结合自注意力蒸馏减少特征冗余;将Informer解码器改为全连接层,直接输出各分量多步长预测结果;重构叠加各分量多步长预测结果得到液压支架压力多步长预测结果。研究结果表明:在预测步长分别为6,12,24时,DWT-CNN-Informer模型相比LSTM、Informer、CNN-Informer模型在平均绝对误差(MAE)、均方根误差(RMSE)、对称平均绝对百分比误差(SMAPE)指标上均表现出更高预测精度。研究结果为液压支架压力精准预测提供有效方法。 展开更多
关键词 液压支架压力 多步长预测 离散小波变换 CNN模型 informer模型
在线阅读 下载PDF
改进Informed RRT^(*)算法移动机器人路径规划
12
作者 鲁宇明 周羽逵 +2 位作者 郭鑫 池吕庭 戴骏 《计算机工程与应用》 北大核心 2025年第8期283-293,共11页
Informed RRT^(*)算法对初始解不敏感,规划出的路径太接近障碍物,导致路径不平滑。提出一种改进的Informed RRT^(*)路径规划算法,该算法改进了约束采样空间和引导策略。在采样初期,将采样区域限制在一个圆形区域,加快初始解收敛,在算法... Informed RRT^(*)算法对初始解不敏感,规划出的路径太接近障碍物,导致路径不平滑。提出一种改进的Informed RRT^(*)路径规划算法,该算法改进了约束采样空间和引导策略。在采样初期,将采样区域限制在一个圆形区域,加快初始解收敛,在算法规划的过程中引入人工势场中引力场和斥力场的思想,使机器人与障碍物保持安全距离,并向目标位置行进。对Informed RRT^(*)算法和基于目标偏置的Informed RRT^(*)算法(Goal-bias-Informed RRT^(*))以及改进后的Informed RRT^(*)算法进行比较实验,实验结果验证了改进后Informed RRT^(*)算法的有效性和优越性及稳定性。该算法较Informed RRT^(*)算法和Goal-bias-Informed RRT^(*)效率更高、更容易得到初始解、更安全、更平滑、更稳定。 展开更多
关键词 移动机器人 路径规划 随机采样 informed RRT^(*)算法 目标偏置 约束采样空间
在线阅读 下载PDF
Real-time Extraction of Target Position Information Based on Bi-orthogonal Wavelets
13
作者 石虎山 赵升吨 裘雪红 《Defence Technology(防务技术)》 SCIE EI CAS 2008年第2期152-156,共5页
Extraction of flying target position information is the prerequisite for passive infrared guided missiles to track the target. The existing missile detection system senses the target's infrared radiation, and then... Extraction of flying target position information is the prerequisite for passive infrared guided missiles to track the target. The existing missile detection system senses the target's infrared radiation, and then the generated signal is sent to signal processing circuits for extracting the target position information. In order to improve anti-interference capacity of the detection system, an algorithm of module maximum edge detection based on the bi-orthogonal wavelets is proposed to replace its hardware. The signal can be decomposed in one layer, only its high frequency detail is reconstructed. After some calculations, the average target position can be obtained. The algorithm's real-time implementation with DSP is also discussed. To reduce the execution time, the program structure can be optimized with double buffers in memory. This implementation is verified by simulations. The results show that the method has only a small amount of calculations, can meet the requirements for finding out the target position in real-time and needs not the traditional processing circuit. 展开更多
关键词 信息加工 检测系统 模数极大值 红外导弹
在线阅读 下载PDF
A guidance and control design with reduced information for a dual-spin stabilized projectile 被引量:2
14
作者 Yu Wang Jiyan Yu +1 位作者 Xiaoming Wang Jia Fangxiu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期494-505,共12页
In this paper,an integrated guidance and control method based on an adaptive path-following controller is proposed to control a spin-stabilized projectile with only translational motion information under the constrain... In this paper,an integrated guidance and control method based on an adaptive path-following controller is proposed to control a spin-stabilized projectile with only translational motion information under the constraint of an actuator,uncertainties in aerodynamic parameters and measurements,and control system complexity.Owing to the fairly high rotation speed,the dynamic model of this missile is strongly nonlinear,uncertain and coupled in pitch,yaw and roll channels.A theoretical equivalent resultant force and uncertainty compensation method are comprehensively used to realize decoupling of pitch and yaw.In response to the strong nonlinear and time-varying characteristics of the dynamic system,the quasi-linear model whose parameters are obtained by interpolation of points selected as the segmentation points in the trajectory envelope,is used for calculation in each step.To cope with the system uncertainty caused by model approximation,parameter uncertainty and ballistic interference,an extended state estimator is used to compensate the output feedback according to the test ballistic angle.In order to improve the tracking efficiency and ensure the tracking error convergence with only translational motion information,the virtual guide point,whose derivative is deduced according to the Lyapunov principle,is calculated in real time according to the projection relationship between the real-time position and the reference trajectory,and a virtual line-of-sight angle and the backstepping method are used for the design of the guidance and control system.In order to avoid the influence of control input saturation on the guidance and control performance due to the actuator limitation and improve the robustness of the system,an anti-saturation compensator is designed according to the two-step method.The feasibility and effectiveness of the path-following controller is verified through closed-loop flight simulations with measurement,control,and condition uncertainties.The results indicate that the designed controller can converge to the reference path and evidently decrease the distance between the impact point and target under different uncertainties. 展开更多
关键词 Spin-stabilized projectile Reduced information Path-following control Extended state observer Coupled nonlinear system Input saturation
在线阅读 下载PDF
A two-stage CO-PSO minimum structure inversion using CUDA for extracting IP information from MT data 被引量:1
15
作者 董莉 李帝铨 江沸菠 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第5期1195-1212,共18页
The study of induced polarization (IP) information extraction from magnetotelluric (MT) sounding data is of great and practical significance to the exploitation of deep mineral, oil and gas resources. The linear i... The study of induced polarization (IP) information extraction from magnetotelluric (MT) sounding data is of great and practical significance to the exploitation of deep mineral, oil and gas resources. The linear inversion method, which has been given priority in previous research on the IP information extraction method, has three main problems as follows: 1) dependency on the initial model, 2) easily falling into the local minimum, and 3) serious non-uniqueness of solutions. Taking the nonlinearity and nonconvexity of IP information extraction into consideration, a two-stage CO-PSO minimum structure inversion method using compute unified distributed architecture (CUDA) is proposed. On one hand, a novel Cauchy oscillation particle swarm optimization (CO-PSO) algorithm is applied to extract nonlinear IP information from MT sounding data, which is implemented as a parallel algorithm within CUDA computing architecture; on the other hand, the impact of the polarizability on the observation data is strengthened by introducing a second stage inversion process, and the regularization parameter is applied in the fitness function of PSO algorithm to solve the problem of multi-solution in inversion. The inversion simulation results of polarization layers in different strata of various geoelectric models show that the smooth models of resistivity and IP parameters can be obtained by the proposed algorithm, the results of which are relatively stable and accurate. The experiment results added with noise indicate that this method is robust to Gaussian white noise. Compared with the traditional PSO and GA algorithm, the proposed algorithm has more efficiency and better inversion results. 展开更多
关键词 Cauchy oscillation particle swarm optimization magnetotelluric sounding nonlinear inversion induced polarization (IP) information extraction compute unified distributed architecture (CUDA)
在线阅读 下载PDF
Heterogeneous information fusion recognition method based on belief rule structure 被引量:1
16
作者 WANG Haibin GUAN Xin +1 位作者 YI Xiao SUN Guidong 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第4期955-964,共10页
To solve the problem that the existing situation awareness research focuses on multi-sensor data fusion,but the expert knowledge is not fully utilized,a heterogeneous informa-tion fusion recognition method based on be... To solve the problem that the existing situation awareness research focuses on multi-sensor data fusion,but the expert knowledge is not fully utilized,a heterogeneous informa-tion fusion recognition method based on belief rule structure is proposed.By defining the continuous probabilistic hesitation fuzzy linguistic term sets(CPHFLTS)and establishing CPHFLTS distance measure,the belief rule base of the relationship between feature space and category space is constructed through information integration,and the evidence reasoning of the input samples is carried out.The experimental results show that the proposed method can make full use of sensor data and expert knowledge for recognition.Compared with the other methods,the proposed method has a higher correct recognition rate under different noise levels. 展开更多
关键词 belief rule heterogeneous information intention recognition hesitation fuzzy linguistic
在线阅读 下载PDF
基于EKF-HInformer模型估计汽车动力电池的SOC&SOH 被引量:1
17
作者 彭自然 杨肖阳 肖伸平 《电子测量与仪器学报》 北大核心 2025年第3期21-33,共13页
针对传统模型荷电状态(SOC)和健康状态(SOH)估计精度低、鲁棒性差的问题,提出一种基于扩展卡尔曼滤波(EKF)和深度学习模型Informer改进优化的估计模型EKF-HInformer,实现电动汽车动力电池SOC与SOH的实时精准估计。首先,运用EKF算法归一... 针对传统模型荷电状态(SOC)和健康状态(SOH)估计精度低、鲁棒性差的问题,提出一种基于扩展卡尔曼滤波(EKF)和深度学习模型Informer改进优化的估计模型EKF-HInformer,实现电动汽车动力电池SOC与SOH的实时精准估计。首先,运用EKF算法归一化整理电池实时数据,并通过调整自适应增益因子减少噪声波动,提高EKF数据滤波处理的性能。然后,运用Informer网络模型对归一化后的电池数据进行智能估计。为减少Informer模型离群点或异常值所导致的注意力权重偏差问题,采用Hampel算法对Informer进行优化,提高多头概率稀疏自注意力机制特征学习的能力。最后,把滤波整理后的数据输入到HInformer网络中估算实时的SOC和SOH。采用牛津大学与马里兰大学的电池数据集进行实验验证,结果显示SOC与SOH估计精度均超99.5%,均方根误差(RMSE)小于1%,最大绝对误差(MAXE)小于0.5%。相比传统Informer、Transformer和长短期记忆(LSTM)模型,该模型估计SOC和SOH的速度更快、准确度更高,展现出优越的鲁棒性和泛化能力。 展开更多
关键词 动力电池 荷电状态 健康状态 自适应增益因子 扩展卡尔曼滤波 Hampel优化算法 informER
在线阅读 下载PDF
基于ICEEMDAN-PE和IDBO-Informer组合模型的短期负荷预测
18
作者 于多 曹燚 +2 位作者 王海荣 赵翱东 曹倩 《中国电力》 北大核心 2025年第6期19-32,共14页
针对传统方法在处理复杂负荷数据时存在的噪声处理不足、特征提取能力有限及模型训练复杂等问题,提出了一种基于改进完全集合经验模态分解(improved complete ensemble empirical mode decomposition with adaptive noise,ICEEMDAN)-置... 针对传统方法在处理复杂负荷数据时存在的噪声处理不足、特征提取能力有限及模型训练复杂等问题,提出了一种基于改进完全集合经验模态分解(improved complete ensemble empirical mode decomposition with adaptive noise,ICEEMDAN)-置换熵(permutation entropy,PE)和改进蜣螂优化算法(improved dung beetle optimizer,IDBO)-Informer的创新组合预测模型。首先,该模型通过小波软阈值去噪算法预处理原始负荷数据,减少噪声干扰。其次,利用ICEEMDAN多尺度分解负荷数据,精准捕捉负荷特征,并采用置换熵评估分量复杂度。最后,对蜣螂优化算法进行改进,通过融合混沌与逆向学习策略进行种群初始化,引入自适应步长与凸透镜逆成像策略及随机差异变异策略,优化Informer预测模型参数,显著提升预测效率与准确性。实验结果表明,该模型在短期负荷预测中表现出色,平均绝对误差为81.3 MW(原始负荷数据范围约为500 MW至1 500 MW),均方根误差为109.2 MW,拟合系数评分为0.991,远优于传统方法,充分验证了模型的创新性和优越性。 展开更多
关键词 负荷预测 ICEEMDAN 改进蜣螂优化算法 informER
在线阅读 下载PDF
基于改进Informed RRT^(*)算法的大棚采摘机械臂路径规划
19
作者 郑泽斌 郑书河 +2 位作者 翁武雄 林添良 郭雷 《福建农林大学学报(自然科学版)》 北大核心 2025年第2期279-288,共10页
【目的】提出一种机械臂路径规划算法,以解决多自由度机械臂在大棚采摘作业中路径规划速度慢、路径成本高等问题,为采摘机械臂高效作业提供依据。【方法】基于Informed RRT^(*)机械臂路径规划算法,引入自适应目标偏置策略,结合贪婪思想... 【目的】提出一种机械臂路径规划算法,以解决多自由度机械臂在大棚采摘作业中路径规划速度慢、路径成本高等问题,为采摘机械臂高效作业提供依据。【方法】基于Informed RRT^(*)机械臂路径规划算法,引入自适应目标偏置策略,结合贪婪思想的双向非优化路径搜索方式,增加动态概率节点拒绝策略。提出一种动态拒绝的知情RRT^(*)贪婪连接算法(dynamic rejection informed RRT^(*) greedy connect algorithm, DR-IRRT^(*)-GC),并通过Matlab多障碍物场景、ROS(机器人操作系统,robot operating system)机械臂场景的仿真对比试验进行验证。【结果】DR-IRRT^(*)-GC算法在路径规划的过程中具有运行速度快、路径成本低、路径规划成功率高等优势。与Informed RRT^(*)算法相比,DR-IRRT^(*)-GC算法在首次路径搜索用时上缩短了97.36%,路径规划成功率提高了283.33%。【结论】DR-IRRT^(*)-GC算法具有较强的实用性。 展开更多
关键词 采摘机械臂 路径规划 改进informed RRT^(*)算法 贪婪思想 动态概率
在线阅读 下载PDF
A framework of force of information influence and application for C4KISR system
20
作者 MAO Shaojie DIAO Lianwang +6 位作者 SUN Yu WANG Heng YI Kan XU Xin MAO Xiaobin ZHANG Kecheng SHENG Long 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第2期430-443,共14页
The subversive nature of information war lies not only in the information itself, but also in the circulation and application of information. It has always been a challenge to quantitatively analyze the function and e... The subversive nature of information war lies not only in the information itself, but also in the circulation and application of information. It has always been a challenge to quantitatively analyze the function and effect of information flow through command, control, communications, computer, kill, intelligence,surveillance, reconnaissance (C4KISR) system. In this work, we propose a framework of force of information influence and the methods for calculating the force of information influence between C4KISR nodes of sensing, intelligence processing,decision making and fire attack. Specifically, the basic concept of force of information influence between nodes in C4KISR system is formally proposed and its mathematical definition is provided. Then, based on the information entropy theory, the model of force of information influence between C4KISR system nodes is constructed. Finally, the simulation experiments have been performed under an air defense and attack scenario. The experimental results show that, with the proposed force of information influence framework, we can effectively evaluate the contribution of information circulation through different C4KISR system nodes to the corresponding tasks. Our framework of force of information influence can also serve as an effective tool for the design and dynamic reconfiguration of C4KISR system architecture. 展开更多
关键词 information warfare command control communications computer KILL intelligence surveillance reconnaissance(C4KISR)system information circulation force of information influence information entropy
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部