From the view of information flow, a super-network equilibrium optimization model is proposed to compute the solution of the operation architecture which is made up of a perceptive level, a command level and a firepow...From the view of information flow, a super-network equilibrium optimization model is proposed to compute the solution of the operation architecture which is made up of a perceptive level, a command level and a firepower level. Firstly, the optimized conditions of the perceptive level, command level and firepower level are analyzed respectively based on the demand of information relation,and then the information supply-and-demand equilibrium model of the operation architecture super-network is established. Secondly,a variational inequality transformation(VIT) model for equilibrium optimization of the operation architecture is given. Thirdly, the contraction projection algorithm for solving the operation architecture super-network equilibrium optimization model with fuzzy demands is designed. Finally, numerical examples are given to prove the validity and rationality of the proposed method, and the influence of fuzzy demands on the super-network equilibrium solution of operation architecture is discussed.展开更多
基金supported by the National Natural Science Foundation of China (71771216,71701209)Shaanxi Natural Science Foundation (2019 JQ-250)。
文摘From the view of information flow, a super-network equilibrium optimization model is proposed to compute the solution of the operation architecture which is made up of a perceptive level, a command level and a firepower level. Firstly, the optimized conditions of the perceptive level, command level and firepower level are analyzed respectively based on the demand of information relation,and then the information supply-and-demand equilibrium model of the operation architecture super-network is established. Secondly,a variational inequality transformation(VIT) model for equilibrium optimization of the operation architecture is given. Thirdly, the contraction projection algorithm for solving the operation architecture super-network equilibrium optimization model with fuzzy demands is designed. Finally, numerical examples are given to prove the validity and rationality of the proposed method, and the influence of fuzzy demands on the super-network equilibrium solution of operation architecture is discussed.