The principle of the inertial navigation system(INS) with rotating inertial measurement unit (IMU) is analyzed. A new IMU is established to rotate round each axis in three directions. Then, the related error model...The principle of the inertial navigation system(INS) with rotating inertial measurement unit (IMU) is analyzed. A new IMU is established to rotate round each axis in three directions. Then, the related error models for the designed system during rotating are deduced and the improved system is built. Finally, the performance simulation of the proposed system is provided. The simulation result indicates that the designed system can improve the accuracy of the roll and the pitch as well as heading by rotating three axes, thus guaranting the heading accuracy. Moreover, based on the principle of rotation at six different positions, such structure can carry out real-time calibration, and improve the system performance.展开更多
Based on error analysis, the influence of error sources on strapdown inertial navigation systems is discussed. And the maximum permissible component tolerances are established. In order to achieve the desired accuracy...Based on error analysis, the influence of error sources on strapdown inertial navigation systems is discussed. And the maximum permissible component tolerances are established. In order to achieve the desired accuracy (defined by circular error probability), the types of appropriate sensors are chosen. The inertial measurement unit (IMU) is composed of those sensors. It is necessary to calibrate the sensors to obtain their error model coefficients of IMU. After calibration tests, the accuracy is calculated by uniform design method and it is proved that the accuracy of IMU is satisfied for the desired goal.展开更多
The strapdown inertial navigation system (SINS)/two-antenna GPS integrated navigation system is discussed. Corresponding error and the measurement models are built, especially the double differenced GPS carrier phas...The strapdown inertial navigation system (SINS)/two-antenna GPS integrated navigation system is discussed. Corresponding error and the measurement models are built, especially the double differenced GPS carrier phase model. The extended Kalman filtering is proposed. And the hardware composition and connection are designed to simulate the SINS/two-antenna GPS integrated navigation system. Results show that the performances of the system, the precision of the navigation and the positioning, the reliability and the practicability are im proved.展开更多
This paper deals with the research of the GPS/INS integrated navigation system applying Extended Kalman Filter, which involves integrated principles, scheme and technology of combining with real INS and GPS receiver d...This paper deals with the research of the GPS/INS integrated navigation system applying Extended Kalman Filter, which involves integrated principles, scheme and technology of combining with real INS and GPS receiver data. Emphases are placed on the modeling of system errors and implementation of the integrated system. Both loose and tightly coupled GPS/INS integrated in schemes are analyzed. On the basis of our experience accumulated in the research of GPS/INS for many years, the GPS/INS integrated navigation developing system is developed. It can be put into efficient and economic use in the study and design of integrated navigation system. It plays an important role in the aeronautical and astronautical fields in China. This system is not only a computer aided design software but also a semi physical simulation system by obtaining real INS and GPS receiver data. So the key software unit of the developing system could be conveniently transferred into practical engineering software in actual hardware integrated system. The application of this system shows that the design ideas and integrated scheme of this development system are successful, and can achieve good navigation result.展开更多
The inertial navigation system(INS),which is frequently used in emergency rescue operations and other situations,has the benefits of not relying on infrastructure,high positioning frequency,and strong real-time perfor...The inertial navigation system(INS),which is frequently used in emergency rescue operations and other situations,has the benefits of not relying on infrastructure,high positioning frequency,and strong real-time performance.However,the intricate and unpredictable pedestrian motion patterns lead the INS localization error to significantly diverge with time.This paper aims to enhance the accuracy of zero-velocity interval(ZVI)detection and reduce the heading and altitude drift of foot-mounted INS via deep learning and equation constraint of dual feet.Aiming at the observational noise problem of low-cost inertial sensors,we utilize a denoising autoencoder to automatically eliminate the inherent noise.Aiming at the problem that inaccurate detection of the ZVI detection results in obvious displacement error,we propose a sample-level ZVI detection algorithm based on the U-Net neural network,which effectively solves the problem of mislabeling caused by sliding windows.Aiming at the problem that Zero-Velocity Update(ZUPT)cannot suppress heading and altitude error,we propose a bipedal INS method based on the equation constraint and ellipsoid constraint,which uses foot-to-foot distance as a new observation to correct heading and altitude error.We conduct extensive and well-designed experiments to evaluate the performance of the proposed method.The experimental results indicate that the position error of our proposed method did not exceed 0.83% of the total traveled distance.展开更多
To improve the precision of inertial navigation system(INS) during long time operation,the rotation modulated technique(RMT) was employed to modulate the errorr of the inertial sensors into periodically varied sig...To improve the precision of inertial navigation system(INS) during long time operation,the rotation modulated technique(RMT) was employed to modulate the errorr of the inertial sensors into periodically varied signals,and,as a result,to suppress the divergence of INS errors.The principle of the RMT was introduced and the error propagating functions were derived from the rotary navigation equation.Effects of the measurement error for the rotation angle of the platform on the system precision were analyzed.The simulation and experimental results show that the precision of INS was ① dramatically improved with the use of the RMT,and ② hardly reduced when the measurement error for the rotation angle was in arc-second level.The study results offer a theoretical basis for engineering design of rotary INS.展开更多
The error equation of a rotating inertial navigation system was introduced. The effect of the system's main error source (constant drift of gyro and zero bias of accelerometer) under rotating conditions for the sy...The error equation of a rotating inertial navigation system was introduced. The effect of the system's main error source (constant drift of gyro and zero bias of accelerometer) under rotating conditions for the system was analyzed. Validity of theoretical analysis was shown via simulation, and that provides a theoretical foundation for a rotating strap-down inertial navigation system during actual experimentation and application.展开更多
In this paper , the principle of H∞ filtering is discussed and H_∞ filter is constructed, which is used in the initial alignment of the strapdown inertial navigation systems(SINS). The error model of SINS is derived...In this paper , the principle of H∞ filtering is discussed and H_∞ filter is constructed, which is used in the initial alignment of the strapdown inertial navigation systems(SINS). The error model of SINS is derived. By utilizing constructed H∞ filter, the filtering calculation to that system has been conducted. The simulation results of the misalignment angle are given under the condition of unknown noises. The results show that the process of alignment with H∞ filter is much faster and with excellent robustness.展开更多
To investigate the observability of gimbled inertial navigation system when the base moves on the basis of piece-wise constant system's observability theory and singular value decomposition, the variation of the s...To investigate the observability of gimbled inertial navigation system when the base moves on the basis of piece-wise constant system's observability theory and singular value decomposition, the variation of the singular value in the observability matrix with time is discussed. The simulation results reveal that only if orientation angle is 60° and the flight route is S-figure in initial alignment, the optimal observability is obtained, thus a theoretical foundation for fast and accurate alignment of GINS is provided.展开更多
Inertial/gravity matching integrated navigation system can effectively improve the longendurance navigation ability of underwater vehicles.Through the analysis of the matching process,the problem of unequal-interval i...Inertial/gravity matching integrated navigation system can effectively improve the longendurance navigation ability of underwater vehicles.Through the analysis of the matching process,the problem of unequal-interval in matching trajectory is addressed by an unequal-interval data fusion algorithm which is based on the unequal-interval characteristics analysis of the matching trajectory.Compared with previously available methods,the proposed algorithm improves the location precision.In conclusion,simulations of the integrated navigation system demonstrated the effectiveness and superiority of the proposed algorithm.展开更多
The Successive Orthogonalization Decentralized Kalman Filter (SODKF ) is a new method which is used for large system state estimation. It can be applied not only to large system decentralization, but also to precisi...The Successive Orthogonalization Decentralized Kalman Filter (SODKF ) is a new method which is used for large system state estimation. It can be applied not only to large system decentralization, but also to precision realization at approximately the same level of the global filter, thus, making possible the engineering operation as well as shortening the computing time. This paper discusses the principles and features of SODKF when used in GPS/INS integrated navigation system. The system will be firstly divided into three subsystems and then corrected in both open and closed loops. The system simulation results by two integrated patterns show that SODKF is efficient and realizable. While the three subsystems are simulated in series, the computing speed doubles that of the global system. In addition, its optimal estimating precision remains unchanged. It can be concluded from this paper that large integrated navigation systems with GPS, INS, Terrain Match, Loran C, Doppler Radar and Radio Altimeter can be made more efficient by this multi subsystem of navigation.展开更多
Based on the inertial navigation system, the influences of the excursion of the inertial navigation system and the measurement error of the wireless pressure altimeter on the rotation and scale of the real image are q...Based on the inertial navigation system, the influences of the excursion of the inertial navigation system and the measurement error of the wireless pressure altimeter on the rotation and scale of the real image are quantitatively analyzed in scene matching. The log-polar transform (LPT) is utilized and an anti-rotation and anti- scale image matching algorithm is proposed based on the image edge feature point extraction. In the algorithm, the center point is combined with its four-neighbor points, and the corresponding computing process is put forward. Simulation results show that in the image rotation and scale variation range resulted from the navigation system error and the measurement error of the wireless pressure altimeter, the proposed image matching algo- rithm can satisfy the accuracy demands of the scene aided navigation system and provide the location error-correcting information of the system.展开更多
In view of the failure of GNSS signals,this paper proposes an INS/GNSS integrated navigation method based on the recurrent neural network(RNN).This proposed method utilizes the calculation principle of INS and the mem...In view of the failure of GNSS signals,this paper proposes an INS/GNSS integrated navigation method based on the recurrent neural network(RNN).This proposed method utilizes the calculation principle of INS and the memory function of the RNN to estimate the errors of the INS,thereby obtaining a continuous,reliable and high-precision navigation solution.The performance of the proposed method is firstly demonstrated using an INS/GNSS simulation environment.Subsequently,an experimental test on boat is also conducted to validate the performance of the method.The results show a promising application prospect for RNN in the field of positioning for INS/GNSS integrated navigation in the absence of GNSS signal,as it outperforms extreme learning machine(ELM)and EKF by approximately 30%and 60%,respectively.展开更多
A method of improving the navigation accuracy of strapdown inertial navigation system (SINS) is studied. The particular technique discussed involves the continuous rotation of gyros and accelerometers cluster about th...A method of improving the navigation accuracy of strapdown inertial navigation system (SINS) is studied. The particular technique discussed involves the continuous rotation of gyros and accelerometers cluster about the vertical axis of the vehicle. Then the errors of these sensors will have periodic variation corresponding to components along the body frame. Under this condition, the modulated sensor errors produce reduced system errors. Theoretical analysis based on a new coordinate system defined as sensing frame and test results are presented, and they indicate the method attenuates the navigation errors brought by the gyros' random constant drift and the accelerometer's bias and their white noise compared to the conventional method.展开更多
In view of the characteristics of underwater navigation, the simulation platform of navigation system for autonomous underwater vehicle has been developed based on Windows platform. The system architecture, net commun...In view of the characteristics of underwater navigation, the simulation platform of navigation system for autonomous underwater vehicle has been developed based on Windows platform. The system architecture, net communication and the information flow are discussed. The methods of software realization and some key techniques of the Vehicle Computer and the Navigation Equipment Computer are introduced in particular. The software design of Terrain Matching Computer is introduced also. The simulation platform is verified and analyzed through simulation. The results show that the architecture of the platform is reasonable and reliable, and the mathematic models and simulation algorithms of sub-systems are also valid and practicable.展开更多
基金Supported by the National Natural Science Foundation of China(60702003)~~
文摘The principle of the inertial navigation system(INS) with rotating inertial measurement unit (IMU) is analyzed. A new IMU is established to rotate round each axis in three directions. Then, the related error models for the designed system during rotating are deduced and the improved system is built. Finally, the performance simulation of the proposed system is provided. The simulation result indicates that the designed system can improve the accuracy of the roll and the pitch as well as heading by rotating three axes, thus guaranting the heading accuracy. Moreover, based on the principle of rotation at six different positions, such structure can carry out real-time calibration, and improve the system performance.
文摘Based on error analysis, the influence of error sources on strapdown inertial navigation systems is discussed. And the maximum permissible component tolerances are established. In order to achieve the desired accuracy (defined by circular error probability), the types of appropriate sensors are chosen. The inertial measurement unit (IMU) is composed of those sensors. It is necessary to calibrate the sensors to obtain their error model coefficients of IMU. After calibration tests, the accuracy is calculated by uniform design method and it is proved that the accuracy of IMU is satisfied for the desired goal.
文摘The strapdown inertial navigation system (SINS)/two-antenna GPS integrated navigation system is discussed. Corresponding error and the measurement models are built, especially the double differenced GPS carrier phase model. The extended Kalman filtering is proposed. And the hardware composition and connection are designed to simulate the SINS/two-antenna GPS integrated navigation system. Results show that the performances of the system, the precision of the navigation and the positioning, the reliability and the practicability are im proved.
文摘This paper deals with the research of the GPS/INS integrated navigation system applying Extended Kalman Filter, which involves integrated principles, scheme and technology of combining with real INS and GPS receiver data. Emphases are placed on the modeling of system errors and implementation of the integrated system. Both loose and tightly coupled GPS/INS integrated in schemes are analyzed. On the basis of our experience accumulated in the research of GPS/INS for many years, the GPS/INS integrated navigation developing system is developed. It can be put into efficient and economic use in the study and design of integrated navigation system. It plays an important role in the aeronautical and astronautical fields in China. This system is not only a computer aided design software but also a semi physical simulation system by obtaining real INS and GPS receiver data. So the key software unit of the developing system could be conveniently transferred into practical engineering software in actual hardware integrated system. The application of this system shows that the design ideas and integrated scheme of this development system are successful, and can achieve good navigation result.
基金supported in part by National Key Research and Development Program under Grant No.2020YFB1708800China Postdoctoral Science Foundation under Grant No.2021M700385+5 种基金Guang Dong Basic and Applied Basic Research Foundation under Grant No.2021A1515110577Guangdong Key Research and Development Program under Grant No.2020B0101130007Central Guidance on Local Science and Technology Development Fund of Shanxi Province under Grant No.YDZJSX2022B019Fundamental Research Funds for Central Universities under Grant No.FRF-MP-20-37Interdisciplinary Research Project for Young Teachers of USTB(Fundamental Research Funds for the Central Universities)under Grant No.FRF-IDRY-21-005National Natural Science Foundation of China under Grant No.62002026。
文摘The inertial navigation system(INS),which is frequently used in emergency rescue operations and other situations,has the benefits of not relying on infrastructure,high positioning frequency,and strong real-time performance.However,the intricate and unpredictable pedestrian motion patterns lead the INS localization error to significantly diverge with time.This paper aims to enhance the accuracy of zero-velocity interval(ZVI)detection and reduce the heading and altitude drift of foot-mounted INS via deep learning and equation constraint of dual feet.Aiming at the observational noise problem of low-cost inertial sensors,we utilize a denoising autoencoder to automatically eliminate the inherent noise.Aiming at the problem that inaccurate detection of the ZVI detection results in obvious displacement error,we propose a sample-level ZVI detection algorithm based on the U-Net neural network,which effectively solves the problem of mislabeling caused by sliding windows.Aiming at the problem that Zero-Velocity Update(ZUPT)cannot suppress heading and altitude error,we propose a bipedal INS method based on the equation constraint and ellipsoid constraint,which uses foot-to-foot distance as a new observation to correct heading and altitude error.We conduct extensive and well-designed experiments to evaluate the performance of the proposed method.The experimental results indicate that the position error of our proposed method did not exceed 0.83% of the total traveled distance.
基金Sponsored by the National Natural Science Foundation of China(60604011)
文摘To improve the precision of inertial navigation system(INS) during long time operation,the rotation modulated technique(RMT) was employed to modulate the errorr of the inertial sensors into periodically varied signals,and,as a result,to suppress the divergence of INS errors.The principle of the RMT was introduced and the error propagating functions were derived from the rotary navigation equation.Effects of the measurement error for the rotation angle of the platform on the system precision were analyzed.The simulation and experimental results show that the precision of INS was ① dramatically improved with the use of the RMT,and ② hardly reduced when the measurement error for the rotation angle was in arc-second level.The study results offer a theoretical basis for engineering design of rotary INS.
基金the Nature Science Foundation of China under Grant No.60604019 and No.6075001
文摘The error equation of a rotating inertial navigation system was introduced. The effect of the system's main error source (constant drift of gyro and zero bias of accelerometer) under rotating conditions for the system was analyzed. Validity of theoretical analysis was shown via simulation, and that provides a theoretical foundation for a rotating strap-down inertial navigation system during actual experimentation and application.
文摘In this paper , the principle of H∞ filtering is discussed and H_∞ filter is constructed, which is used in the initial alignment of the strapdown inertial navigation systems(SINS). The error model of SINS is derived. By utilizing constructed H∞ filter, the filtering calculation to that system has been conducted. The simulation results of the misalignment angle are given under the condition of unknown noises. The results show that the process of alignment with H∞ filter is much faster and with excellent robustness.
文摘To investigate the observability of gimbled inertial navigation system when the base moves on the basis of piece-wise constant system's observability theory and singular value decomposition, the variation of the singular value in the observability matrix with time is discussed. The simulation results reveal that only if orientation angle is 60° and the flight route is S-figure in initial alignment, the optimal observability is obtained, thus a theoretical foundation for fast and accurate alignment of GINS is provided.
基金Supported by the National Natural Science Foundation for Outstanding Youth(61422102)Special Fund for Basic Research on Scientific Instruments of the National Natural Science Foundation of China(61127004)
文摘Inertial/gravity matching integrated navigation system can effectively improve the longendurance navigation ability of underwater vehicles.Through the analysis of the matching process,the problem of unequal-interval in matching trajectory is addressed by an unequal-interval data fusion algorithm which is based on the unequal-interval characteristics analysis of the matching trajectory.Compared with previously available methods,the proposed algorithm improves the location precision.In conclusion,simulations of the integrated navigation system demonstrated the effectiveness and superiority of the proposed algorithm.
文摘The Successive Orthogonalization Decentralized Kalman Filter (SODKF ) is a new method which is used for large system state estimation. It can be applied not only to large system decentralization, but also to precision realization at approximately the same level of the global filter, thus, making possible the engineering operation as well as shortening the computing time. This paper discusses the principles and features of SODKF when used in GPS/INS integrated navigation system. The system will be firstly divided into three subsystems and then corrected in both open and closed loops. The system simulation results by two integrated patterns show that SODKF is efficient and realizable. While the three subsystems are simulated in series, the computing speed doubles that of the global system. In addition, its optimal estimating precision remains unchanged. It can be concluded from this paper that large integrated navigation systems with GPS, INS, Terrain Match, Loran C, Doppler Radar and Radio Altimeter can be made more efficient by this multi subsystem of navigation.
文摘Based on the inertial navigation system, the influences of the excursion of the inertial navigation system and the measurement error of the wireless pressure altimeter on the rotation and scale of the real image are quantitatively analyzed in scene matching. The log-polar transform (LPT) is utilized and an anti-rotation and anti- scale image matching algorithm is proposed based on the image edge feature point extraction. In the algorithm, the center point is combined with its four-neighbor points, and the corresponding computing process is put forward. Simulation results show that in the image rotation and scale variation range resulted from the navigation system error and the measurement error of the wireless pressure altimeter, the proposed image matching algo- rithm can satisfy the accuracy demands of the scene aided navigation system and provide the location error-correcting information of the system.
基金supported in part by the National Natural Science Foundation of China(No.41876222)。
文摘In view of the failure of GNSS signals,this paper proposes an INS/GNSS integrated navigation method based on the recurrent neural network(RNN).This proposed method utilizes the calculation principle of INS and the memory function of the RNN to estimate the errors of the INS,thereby obtaining a continuous,reliable and high-precision navigation solution.The performance of the proposed method is firstly demonstrated using an INS/GNSS simulation environment.Subsequently,an experimental test on boat is also conducted to validate the performance of the method.The results show a promising application prospect for RNN in the field of positioning for INS/GNSS integrated navigation in the absence of GNSS signal,as it outperforms extreme learning machine(ELM)and EKF by approximately 30%and 60%,respectively.
文摘A method of improving the navigation accuracy of strapdown inertial navigation system (SINS) is studied. The particular technique discussed involves the continuous rotation of gyros and accelerometers cluster about the vertical axis of the vehicle. Then the errors of these sensors will have periodic variation corresponding to components along the body frame. Under this condition, the modulated sensor errors produce reduced system errors. Theoretical analysis based on a new coordinate system defined as sensing frame and test results are presented, and they indicate the method attenuates the navigation errors brought by the gyros' random constant drift and the accelerometer's bias and their white noise compared to the conventional method.
文摘In view of the characteristics of underwater navigation, the simulation platform of navigation system for autonomous underwater vehicle has been developed based on Windows platform. The system architecture, net communication and the information flow are discussed. The methods of software realization and some key techniques of the Vehicle Computer and the Navigation Equipment Computer are introduced in particular. The software design of Terrain Matching Computer is introduced also. The simulation platform is verified and analyzed through simulation. The results show that the architecture of the platform is reasonable and reliable, and the mathematic models and simulation algorithms of sub-systems are also valid and practicable.