Owing to the ubiquity of wireless networks and the popularity of WiFi infrastructures,received signal strength(RSS)-based indoor localization systems have received much attention.The placement of access points(APs)sig...Owing to the ubiquity of wireless networks and the popularity of WiFi infrastructures,received signal strength(RSS)-based indoor localization systems have received much attention.The placement of access points(APs)significantly influences localization accuracy and network access.However,the indoor scenario and network access are not fully considered in previous AP placement optimization methods.This study proposes a practical scenario modelingaided AP placement optimization method for improving localization accuracy and network access.In order to reduce the gap between simulation-based and field measurement-based AP placement optimization methods,we introduce an indoor scenario modeling and Gaussian process-based RSS prediction method.After that,the localization and network access metrics are implemented in the multiple objective particle swarm optimization(MOPSO)solution,Pareto front criterion and virtual repulsion force are applied to determine the optimal AP placement.Finally,field experiments demonstrate the effectiveness of the proposed indoor scenario modeling method and RSS prediction model.A thorough comparison confirms the localization and network access improvement attributed to the proposed anchor placement method.展开更多
Wi Fi and fingerprinting localization method have been a hot topic in indoor positioning because of their universality and location-related features.The basic assumption of fingerprinting localization is that the rece...Wi Fi and fingerprinting localization method have been a hot topic in indoor positioning because of their universality and location-related features.The basic assumption of fingerprinting localization is that the received signal strength indication(RSSI)distance is accord with the location distance.Therefore,how to efficiently match the current RSSI of the user with the RSSI in the fingerprint database is the key to achieve high-accuracy localization.In this paper,a particle swarm optimization-extreme learning machine(PSO-ELM)algorithm is proposed on the basis of the original fingerprinting localization.Firstly,we collect the RSSI of the experimental area to construct the fingerprint database,and the ELM algorithm is applied to the online stages to determine the corresponding relation between the location of the terminal and the RSSI it receives.Secondly,PSO algorithm is used to improve the bias and weight of ELM neural network,and the global optimal results are obtained.Finally,extensive simulation results are presented.It is shown that the proposed algorithm can effectively reduce mean error of localization and improve positioning accuracy when compared with K-Nearest Neighbor(KNN),Kmeans and Back-propagation(BP)algorithms.展开更多
The proper bandgap and exceptional photostability enable CsPbI_(3) as a potential candidate for indoor photovoltaics(IPVs),but indoor power conversion efficiency(PCE) is impeded by serious nonradiative recombination s...The proper bandgap and exceptional photostability enable CsPbI_(3) as a potential candidate for indoor photovoltaics(IPVs),but indoor power conversion efficiency(PCE) is impeded by serious nonradiative recombination stemming from challenges in incomplete DMAPbI_(3) conversion and lattice structure distortion.Here,the coplanar symmetric structu re of hexyl sulfide(HS) is employed to functionalize the CsPbI_(3) layer for fabricating highly efficient IPVs.The hydrogen bond between HS and DMAI promotes the conversion of DMAPbI_(3) to CsPbI_(3),while the copianar symmetric structure enhances crystalline order.Simultaneously,surface sulfidation during HS-induced growth results in the in situ formation of PbS,spontaneously creating a CsPbI_(3) N-P homojunction to enhance band alignment and carrier mobility.As a result,the CsPbI_(3)&HS devices achieve an impressive indoor PCE of 39.90%(P_(in):334.6 μW cm^(-2),P_(out):133.5 μW cm^(-2)) under LED@2968 K,1062 lux,and maintain over 90% initial PCE for 800 h at ^(3)0% air ambient humidity.展开更多
The fingerprinting-based approach using the wireless local area network(WLAN)is widely used for indoor localization.However,the construction of the fingerprint database is quite time-consuming.Especially when the posi...The fingerprinting-based approach using the wireless local area network(WLAN)is widely used for indoor localization.However,the construction of the fingerprint database is quite time-consuming.Especially when the position of the access point(AP)or wall changes,updating the fingerprint database in real-time is difficult.An appropriate indoor localization approach,which has a low implementation cost,excellent real-time performance,and high localization accuracy and fully considers complex indoor environment factors,is preferred in location-based services(LBSs)applications.In this paper,we proposed a fine-grained grid computing(FGGC)model to achieve decimeter-level localization accuracy.Reference points(RPs)are generated in the grid by the FGGC model.Then,the received signal strength(RSS)values at each RP are calculated with the attenuation factors,such as the frequency band,three-dimensional propagation distance,and walls in complex environments.As a result,the fingerprint database can be established automatically without manual measurement,and the efficiency and cost that the FGGC model takes for the fingerprint database are superior to previous methods.The proposed indoor localization approach,which estimates the position step by step from the approximate grid location to the fine-grained location,can achieve higher real-time performance and localization accuracy simultaneously.The mean error of the proposed model is 0.36 m,far lower than that of previous approaches.Thus,the proposed model is feasible to improve the efficiency and accuracy of Wi-Fi indoor localization.It also shows high-accuracy performance with a fast running speed even under a large-size grid.The results indicate that the proposed method can also be suitable for precise marketing,indoor navigation,and emergency rescue.展开更多
This paper introduces the significance of indoor positioning and analyzes the related problems. The latest research on indoor positioning is introduced. Further, the positioning accuracy and the cost of typical local ...This paper introduces the significance of indoor positioning and analyzes the related problems. The latest research on indoor positioning is introduced. Further, the positioning accuracy and the cost of typical local and wide area indoor positioning systems are compared. The results of the comparison show that Time & Code Division-Orthogonal Frequency Division Multiplexing (TC-OFDM) is a system that can achieve real-time meter-accuracy of indoor positioning in a wide area. Finally, in this paper, we indicate that the seamless high-accuracy indoor positioning in a wide area is the development trend of indoor positioning. The seamless Location Based Services (LBS) architecture based on a heterogeneous network, key technologies in indoor positioning for decimeter-accuracy and seamless outdoor and indoor Geographic Information System (GIS) are elaborated as the most important research fields of future indoor positioning.展开更多
Indoor Wi-Fi localization of mobile devices plays a more and more important role along with the rapid growth of location-based services and Wi-Fi mobile devices.In this paper,a new method of constructing the channel s...Indoor Wi-Fi localization of mobile devices plays a more and more important role along with the rapid growth of location-based services and Wi-Fi mobile devices.In this paper,a new method of constructing the channel state information(CSI)image is proposed to improve the localization accuracy.Compared with previous methods of constructing the CSI image,the new kind of CSI image proposed is able to contain more channel information such as the angle of arrival(AoA),the time of arrival(TOA)and the amplitude.We construct three gray images by using phase differences of different antennas and amplitudes of different subcarriers of one antenna,and then merge them to form one RGB image.The localization method has off-line stage and on-line stage.In the off-line stage,the composed three-channel RGB images at training locations are used to train a convolutional neural network(CNN)which has been proved to be efficient in image recognition.In the on-line stage,images at test locations are fed to the well-trained CNN model and the localization result is the weighted mean value with highest output values.The performance of the proposed method is verified with extensive experiments in the representative indoor environment.展开更多
Visible light communications(VLC) have recently attracted a growing interest and can be a potential solution to realize indoor positioning,however,the performance of existing indoor positioning system is limited by mu...Visible light communications(VLC) have recently attracted a growing interest and can be a potential solution to realize indoor positioning,however,the performance of existing indoor positioning system is limited by multipath distortion inside a room.In order to combat the effect of multipath distortion,this paper proposes an LED-based indoor positioning algorithm combined with hybrid OFDM(HOFDM),in which asymmetrically clipped optical OFDM(ACOOFDM) is transmitted on the odd subcarriers while using pulse amplitude modulated discrete multitone(PAM-DMT) to modulate the imaginary part of each even subcarrier.In this scheme,we take a combined approach where a received-signal-strength(RSS) technique is employed to determine the location of the receiver and realize the 3-D positioning by Trust-region-based positioning.Moreover,a particle filter is used to further improve the positioning accuracy.Results confirm that this proposed positioning algorithm can achieve high accuracy even with multipath distortion,and the algorithm has better performance when combined with particle filter.展开更多
In the process of indoor localization,the existence of the non-line of sight(NLOS)error will greatly reduce the localization accuracy.To reduce the impact of this error,a 3 dimensional(3D)indoor localization algorithm...In the process of indoor localization,the existence of the non-line of sight(NLOS)error will greatly reduce the localization accuracy.To reduce the impact of this error,a 3 dimensional(3D)indoor localization algorithm named LMR(LLS-Minimum-Residual)is proposed in this paper.We first estimate the NLOS error and use it to correct the measurement distances,and then calculate the target location with linear least squares(LLS)solution.The final nodes location can be obtained accurately by NLOS error mitigation.Our algorithm can work efficiently in both indoor 2D and 3D environments.The simulation results show that the proposed algorithm has better performance than traditional algorithms and it can significantly improve the localization accuracy.展开更多
A novel radio-map establishment based on fuzzy clustering for hybrid K-Nearest Neighbor (KNN) and Artifi cial Neural Network (ANN) position algorithm in WLAN indoor environment is proposed. First of all, the Principal...A novel radio-map establishment based on fuzzy clustering for hybrid K-Nearest Neighbor (KNN) and Artifi cial Neural Network (ANN) position algorithm in WLAN indoor environment is proposed. First of all, the Principal Component Analysis (PCA) is utilized for the purpose of simplifying input dimensions of position estimation algorithm and saving storage cost for the establishment of radio-map. Then, reference points (RPs) calibrated in the off-line phase are divided into separate clusters by Fuzzy C-means clustering (FCM), and membership degrees (MDs) for different clusters are also allocated to each RPs. However, the singular RPs cased by the multi-path effect signifi cantly decreases the clustering performance. Therefore, a novel radio-map establishment method is presented based on the modifi cation of signal samples recorded at singular RPs by surface fitting. In the on-line phase, the region which the mobile terminal (MT) belongs to is estimated according to the MDs firstly. Then, in estimated small dimensional regions, MT's coordinates are calculated byKNN positioning method for efficiency purpose. However, for the regions including singular RPs, ANN method is utilized because ofits great pattern matching ability. Furthermore, compared with other typical indoor positioning methods, feasibility and effectiveness of this hybrid KNN/ANN method are also verified by the experimental results in static and tracking situations.展开更多
Indoor localization has gained much attention over several decades due to enormous applications. However, the accuracy of indoor localization is hard to improve because the signal propagation has small scale effects w...Indoor localization has gained much attention over several decades due to enormous applications. However, the accuracy of indoor localization is hard to improve because the signal propagation has small scale effects which leads to inaccurate measurements. In this paper, we propose an efficient learning approach that combines grid search based kernel support vector machine and principle component analysis. The proposed approach applies principle component analysis to reduce high dimensional measurements. Then we design a grid search algorithm to optimize the parameters of kernel support vector machine in order to improve the localization accuracy. Experimental results indicate that the proposed approach reduces the localization error and improves the computational efficiency comparing with K-nearest neighbor, Back Propagation Neural Network and Support Vector Machine based methods.展开更多
Indoor positioning systems have been sufficiently researched to provide location information of persons and devices.This paper is focused on the current research and further development of indoor positioning.The stand...Indoor positioning systems have been sufficiently researched to provide location information of persons and devices.This paper is focused on the current research and further development of indoor positioning.The standard evolution and industry development are summarized.There are various positioning systems according to the scenarios,cost and accuracy.However,there is a basic positioning system framework including information extraction,measurement and calculation.In particular,the detailed positioning technologies mainly including cellular positioning and Local Area Network(LAN) positioning are listed and compared to provide a reference for practical applications.Finally,we summarize the challenges of indoor positioning and give a3-phase evolution route.展开更多
The key techniques in indoor positioning based on visible light communication and the state of the art of this research were surveyed. First, the significance of indoor positioning based on visible light communication...The key techniques in indoor positioning based on visible light communication and the state of the art of this research were surveyed. First, the significance of indoor positioning based on visible light communication from two aspects of the limitations of current indoor positioning technology and the advantages of visible light communication was discussed; And then, the main four technology of indoor positioning based on visible light communication were summarized and the triangulation of RSS method and the principle of image positioning were introduced in detail; Next, the performance characteristics of various typical algorithms were compared and analyzed; In the end, several suggestions on future research of indoor positioning based on visible light communication were given.展开更多
The influence factors and process of indoor gas explosion are studied with AutoReaGas explosion simulator. The result shows that venting pressure has great influence on the indoor gas explosion damage. The higher the ...The influence factors and process of indoor gas explosion are studied with AutoReaGas explosion simulator. The result shows that venting pressure has great influence on the indoor gas explosion damage. The higher the venting pressure is, the more serious the hazard consequence will be. The ignition location has also evident effect on the gas explosion damage. The explosion static overpressure would not cause major injury to person and serious damage to structure in the case of low venting pressure (lower than 2 kPa). The high temperature combustion after the explosion is the major factor to person injury in indoor gas explosion accidents.展开更多
To meet the demands for the explosive growth of mobile data rates and scarcity of spectrum resources in the near future,the terahertz(THz)band has widely been regarded as a key enabler for the upcoming beyond fifth-ge...To meet the demands for the explosive growth of mobile data rates and scarcity of spectrum resources in the near future,the terahertz(THz)band has widely been regarded as a key enabler for the upcoming beyond fifth-generation(B5G)wireless communications.An accurate THz channel model is crucial for the design and deployment of the THz wireless communication systems.In this paper,a three-dimensional(3-D)dynamic indoor THz channel model is proposed by means of combining deterministic and stochastic modeling approaches.Clusters are randomly distributed in the indoor environment and each ray is characterized with consideration of molecular absorption and diffuse scattering.Moreover,we present the dynamic generation procedure of the channel impulse responses(CIRs).Statistical properties are investigated to indicate the non-stationarity and feasibility of the proposed model.Finally,by comparing with delay spread and K-factor results from the measurements,the utility of the proposed channel model is verified.展开更多
We propose a method to improve positioning accuracy while reducing energy consumption in an indoor Wireless Local Area Network(WLAN) environment.First,we intelligently and jointly select the subset of Access Points(AP...We propose a method to improve positioning accuracy while reducing energy consumption in an indoor Wireless Local Area Network(WLAN) environment.First,we intelligently and jointly select the subset of Access Points(APs) used in positioning via Maximum Mutual Information(MMI) criterion.Second,we propose Orthogonal Locality Preserving Projection(OLPP) to reduce the redundancy among selected APs.OLPP effectively extracts the intrinsic location features in situations where previous linear signal projection techniques failed to do,while maintaining computational efficiency.Third,we show that the combination of AP selection and OLPP simultaneously exploits their complementary advantages while avoiding the drawbacks.Experimental results indicate that,compared with the widely used weighted K-nearest neighbor and maximum likelihood estimation method,the proposed method leads to 21.8%(0.49 m) positioning accuracy improvement,while decreasing the computation cost by 65.4%.展开更多
This paper proposes a novel indoor positioning scheme based on visible light communication(VLC).A new indoor VLC positioning scheme using fingerprint database with multi-parameters have been raised.We conduct simulati...This paper proposes a novel indoor positioning scheme based on visible light communication(VLC).A new indoor VLC positioning scheme using fingerprint database with multi-parameters have been raised.We conduct simulation and experimental research on the illumination intensity distribution of several direction parameters.In the experiment,four LED matrixes are identified by LED-ID with room dimensions of 3.75×4.00×2.7 m^3.The results show that the mean of the location error is 0.22 m in the receiving plane,verifying the correctness and feasibility of the positioning scheme.展开更多
With the rapid growth of the demand for indoor location-based services(LBS), Wi-Fi received signal strength(RSS) fingerprints database has attracted significant attention because it is easy to obtain. The fingerprints...With the rapid growth of the demand for indoor location-based services(LBS), Wi-Fi received signal strength(RSS) fingerprints database has attracted significant attention because it is easy to obtain. The fingerprints algorithm based on convolution neural network(CNN) is often used to improve indoor localization accuracy. However, the number of reference points used for position estimation has significant effects on the positioning accuracy. Meanwhile, it is always selected arbitraily without any guiding standards. As a result, a novel location estimation method based on Jenks natural breaks algorithm(JNBA), which can adaptively choose more reasonable reference points, is proposed in this paper. The output of CNN is processed by JNBA, which can select the number of reference points according to different environments. Then, the location is estimated by weighted K-nearest neighbors(WKNN). Experimental results show that the proposed method has higher positioning accuracy without sacrificing more time cost than the existing indoor localization methods based on CNN.展开更多
Experiments on the behavior of airborne microparticle sediments and their adhesion on glass slides were conducted in a laboratory located on the first floor of a teaching building. Clean tiles and glass slides were pl...Experiments on the behavior of airborne microparticle sediments and their adhesion on glass slides were conducted in a laboratory located on the first floor of a teaching building. Clean tiles and glass slides were placed at different angles (0°, 45° and 90°) with respect to the horizontal plane in the laboratory. The sedimentation of microparticles was investigated at certain time intervals (1 d, 3 d, l0 d and 30 d). The results of testing, at day 30, show that the diameters of particles on the horizontal tiles varied from 20 to 80 μm; few particles with diameter less than 0.5 μm or greater than 100 μm were found. The amount of particle sediment on all the slides increased along over time, while the average diameter of particles was not correlated with time, nor with the angle of placement. The maximum particle size, the total particle surface area, the total perimeter of all particles and the cover ratio of light (the proportion of total area of particles to the observed area of the slides surfaces) did not change significantly within the first 10 days. Inspection of all the samples for the last 20 days, however, showed that these variables increased substantially with the passage of time and were in reverse proportion to the placement angles, which indicates a concentration of particles, as well as physical and chemical changes.展开更多
文摘Owing to the ubiquity of wireless networks and the popularity of WiFi infrastructures,received signal strength(RSS)-based indoor localization systems have received much attention.The placement of access points(APs)significantly influences localization accuracy and network access.However,the indoor scenario and network access are not fully considered in previous AP placement optimization methods.This study proposes a practical scenario modelingaided AP placement optimization method for improving localization accuracy and network access.In order to reduce the gap between simulation-based and field measurement-based AP placement optimization methods,we introduce an indoor scenario modeling and Gaussian process-based RSS prediction method.After that,the localization and network access metrics are implemented in the multiple objective particle swarm optimization(MOPSO)solution,Pareto front criterion and virtual repulsion force are applied to determine the optimal AP placement.Finally,field experiments demonstrate the effectiveness of the proposed indoor scenario modeling method and RSS prediction model.A thorough comparison confirms the localization and network access improvement attributed to the proposed anchor placement method.
基金supported in part by the National Natural Science Foundation of China(U2001213 and 61971191)in part by the Beijing Natural Science Foundation under Grant L182018 and L201011+2 种基金in part by National Key Research and Development Project(2020YFB1807204)in part by the Key project of Natural Science Foundation of Jiangxi Province(20202ACBL202006)in part by the Innovation Fund Designated for Graduate Students of Jiangxi Province(YC2020-S321)。
文摘Wi Fi and fingerprinting localization method have been a hot topic in indoor positioning because of their universality and location-related features.The basic assumption of fingerprinting localization is that the received signal strength indication(RSSI)distance is accord with the location distance.Therefore,how to efficiently match the current RSSI of the user with the RSSI in the fingerprint database is the key to achieve high-accuracy localization.In this paper,a particle swarm optimization-extreme learning machine(PSO-ELM)algorithm is proposed on the basis of the original fingerprinting localization.Firstly,we collect the RSSI of the experimental area to construct the fingerprint database,and the ELM algorithm is applied to the online stages to determine the corresponding relation between the location of the terminal and the RSSI it receives.Secondly,PSO algorithm is used to improve the bias and weight of ELM neural network,and the global optimal results are obtained.Finally,extensive simulation results are presented.It is shown that the proposed algorithm can effectively reduce mean error of localization and improve positioning accuracy when compared with K-Nearest Neighbor(KNN),Kmeans and Back-propagation(BP)algorithms.
基金financial support from the Natural Science Foundation of Guizhou Province (Grant No. ZK 2024-087)Natural Science Foundation of China (no. 22005071)。
文摘The proper bandgap and exceptional photostability enable CsPbI_(3) as a potential candidate for indoor photovoltaics(IPVs),but indoor power conversion efficiency(PCE) is impeded by serious nonradiative recombination stemming from challenges in incomplete DMAPbI_(3) conversion and lattice structure distortion.Here,the coplanar symmetric structu re of hexyl sulfide(HS) is employed to functionalize the CsPbI_(3) layer for fabricating highly efficient IPVs.The hydrogen bond between HS and DMAI promotes the conversion of DMAPbI_(3) to CsPbI_(3),while the copianar symmetric structure enhances crystalline order.Simultaneously,surface sulfidation during HS-induced growth results in the in situ formation of PbS,spontaneously creating a CsPbI_(3) N-P homojunction to enhance band alignment and carrier mobility.As a result,the CsPbI_(3)&HS devices achieve an impressive indoor PCE of 39.90%(P_(in):334.6 μW cm^(-2),P_(out):133.5 μW cm^(-2)) under LED@2968 K,1062 lux,and maintain over 90% initial PCE for 800 h at ^(3)0% air ambient humidity.
基金the Open Project of Sichuan Provincial Key Laboratory of Philosophy and Social Science for Language Intelligence in Special Education under Grant No.YYZN-2023-4the Ph.D.Fund of Chengdu Technological University under Grant No.2020RC002.
文摘The fingerprinting-based approach using the wireless local area network(WLAN)is widely used for indoor localization.However,the construction of the fingerprint database is quite time-consuming.Especially when the position of the access point(AP)or wall changes,updating the fingerprint database in real-time is difficult.An appropriate indoor localization approach,which has a low implementation cost,excellent real-time performance,and high localization accuracy and fully considers complex indoor environment factors,is preferred in location-based services(LBSs)applications.In this paper,we proposed a fine-grained grid computing(FGGC)model to achieve decimeter-level localization accuracy.Reference points(RPs)are generated in the grid by the FGGC model.Then,the received signal strength(RSS)values at each RP are calculated with the attenuation factors,such as the frequency band,three-dimensional propagation distance,and walls in complex environments.As a result,the fingerprint database can be established automatically without manual measurement,and the efficiency and cost that the FGGC model takes for the fingerprint database are superior to previous methods.The proposed indoor localization approach,which estimates the position step by step from the approximate grid location to the fine-grained location,can achieve higher real-time performance and localization accuracy simultaneously.The mean error of the proposed model is 0.36 m,far lower than that of previous approaches.Thus,the proposed model is feasible to improve the efficiency and accuracy of Wi-Fi indoor localization.It also shows high-accuracy performance with a fast running speed even under a large-size grid.The results indicate that the proposed method can also be suitable for precise marketing,indoor navigation,and emergency rescue.
基金This work was supported by the National High Technology Research and Development Program (863 Program) of China under Grant No.2012AA120801the National High Technology Research and Development Program (863 Program) of China under Grant No.2012AA120802
文摘This paper introduces the significance of indoor positioning and analyzes the related problems. The latest research on indoor positioning is introduced. Further, the positioning accuracy and the cost of typical local and wide area indoor positioning systems are compared. The results of the comparison show that Time & Code Division-Orthogonal Frequency Division Multiplexing (TC-OFDM) is a system that can achieve real-time meter-accuracy of indoor positioning in a wide area. Finally, in this paper, we indicate that the seamless high-accuracy indoor positioning in a wide area is the development trend of indoor positioning. The seamless Location Based Services (LBS) architecture based on a heterogeneous network, key technologies in indoor positioning for decimeter-accuracy and seamless outdoor and indoor Geographic Information System (GIS) are elaborated as the most important research fields of future indoor positioning.
基金supported by the National Natural Science Foundation of China (No.61631013)National Key Basic Research Program of China (973 Program) (No. 2013CB329002)National Major Project (NO. 2018ZX03001006003)
文摘Indoor Wi-Fi localization of mobile devices plays a more and more important role along with the rapid growth of location-based services and Wi-Fi mobile devices.In this paper,a new method of constructing the channel state information(CSI)image is proposed to improve the localization accuracy.Compared with previous methods of constructing the CSI image,the new kind of CSI image proposed is able to contain more channel information such as the angle of arrival(AoA),the time of arrival(TOA)and the amplitude.We construct three gray images by using phase differences of different antennas and amplitudes of different subcarriers of one antenna,and then merge them to form one RGB image.The localization method has off-line stage and on-line stage.In the off-line stage,the composed three-channel RGB images at training locations are used to train a convolutional neural network(CNN)which has been proved to be efficient in image recognition.In the on-line stage,images at test locations are fed to the well-trained CNN model and the localization result is the weighted mean value with highest output values.The performance of the proposed method is verified with extensive experiments in the representative indoor environment.
基金supported by the Doctoral Scientific Fund of the Ministry of Education of the People’s Republic of China(20120145120011)
文摘Visible light communications(VLC) have recently attracted a growing interest and can be a potential solution to realize indoor positioning,however,the performance of existing indoor positioning system is limited by multipath distortion inside a room.In order to combat the effect of multipath distortion,this paper proposes an LED-based indoor positioning algorithm combined with hybrid OFDM(HOFDM),in which asymmetrically clipped optical OFDM(ACOOFDM) is transmitted on the odd subcarriers while using pulse amplitude modulated discrete multitone(PAM-DMT) to modulate the imaginary part of each even subcarrier.In this scheme,we take a combined approach where a received-signal-strength(RSS) technique is employed to determine the location of the receiver and realize the 3-D positioning by Trust-region-based positioning.Moreover,a particle filter is used to further improve the positioning accuracy.Results confirm that this proposed positioning algorithm can achieve high accuracy even with multipath distortion,and the algorithm has better performance when combined with particle filter.
基金supported in part by the foundation of Nanjing University of Posts and Telecommunications (No. NY215164)by the National Experimental Teaching Demonstration Centre Reform Project: Virtual 201106+2 种基金supported by the Key University Science Research Project of Jiangsu Province under Grant (No. 14KJA510003)supported by the Postgraduate Research & Practice Innovation Program of Jiangsu Province under Grant No. SJCX19_0275supported by the National Natural Science Foundation under grant No. 61771257, No. 61605085 and No.61571233, No.61871232
文摘In the process of indoor localization,the existence of the non-line of sight(NLOS)error will greatly reduce the localization accuracy.To reduce the impact of this error,a 3 dimensional(3D)indoor localization algorithm named LMR(LLS-Minimum-Residual)is proposed in this paper.We first estimate the NLOS error and use it to correct the measurement distances,and then calculate the target location with linear least squares(LLS)solution.The final nodes location can be obtained accurately by NLOS error mitigation.Our algorithm can work efficiently in both indoor 2D and 3D environments.The simulation results show that the proposed algorithm has better performance than traditional algorithms and it can significantly improve the localization accuracy.
基金supported by National High-Tech Research & Development Program of China (Grant No. 2008AA12Z305)
文摘A novel radio-map establishment based on fuzzy clustering for hybrid K-Nearest Neighbor (KNN) and Artifi cial Neural Network (ANN) position algorithm in WLAN indoor environment is proposed. First of all, the Principal Component Analysis (PCA) is utilized for the purpose of simplifying input dimensions of position estimation algorithm and saving storage cost for the establishment of radio-map. Then, reference points (RPs) calibrated in the off-line phase are divided into separate clusters by Fuzzy C-means clustering (FCM), and membership degrees (MDs) for different clusters are also allocated to each RPs. However, the singular RPs cased by the multi-path effect signifi cantly decreases the clustering performance. Therefore, a novel radio-map establishment method is presented based on the modifi cation of signal samples recorded at singular RPs by surface fitting. In the on-line phase, the region which the mobile terminal (MT) belongs to is estimated according to the MDs firstly. Then, in estimated small dimensional regions, MT's coordinates are calculated byKNN positioning method for efficiency purpose. However, for the regions including singular RPs, ANN method is utilized because ofits great pattern matching ability. Furthermore, compared with other typical indoor positioning methods, feasibility and effectiveness of this hybrid KNN/ANN method are also verified by the experimental results in static and tracking situations.
基金supported by“the Fundamental Research Funds for the Central Universities No. 2017JBM016”
文摘Indoor localization has gained much attention over several decades due to enormous applications. However, the accuracy of indoor localization is hard to improve because the signal propagation has small scale effects which leads to inaccurate measurements. In this paper, we propose an efficient learning approach that combines grid search based kernel support vector machine and principle component analysis. The proposed approach applies principle component analysis to reduce high dimensional measurements. Then we design a grid search algorithm to optimize the parameters of kernel support vector machine in order to improve the localization accuracy. Experimental results indicate that the proposed approach reduces the localization error and improves the computational efficiency comparing with K-nearest neighbor, Back Propagation Neural Network and Support Vector Machine based methods.
基金supported by the National Key Research and Development Plan under grant No. 2016YFB0502000
文摘Indoor positioning systems have been sufficiently researched to provide location information of persons and devices.This paper is focused on the current research and further development of indoor positioning.The standard evolution and industry development are summarized.There are various positioning systems according to the scenarios,cost and accuracy.However,there is a basic positioning system framework including information extraction,measurement and calculation.In particular,the detailed positioning technologies mainly including cellular positioning and Local Area Network(LAN) positioning are listed and compared to provide a reference for practical applications.Finally,we summarize the challenges of indoor positioning and give a3-phase evolution route.
基金supported by National Nature Science Foundation of China (No. 61373124)supported by China Scholarship Funds (2014CB3033)
文摘The key techniques in indoor positioning based on visible light communication and the state of the art of this research were surveyed. First, the significance of indoor positioning based on visible light communication from two aspects of the limitations of current indoor positioning technology and the advantages of visible light communication was discussed; And then, the main four technology of indoor positioning based on visible light communication were summarized and the triangulation of RSS method and the principle of image positioning were introduced in detail; Next, the performance characteristics of various typical algorithms were compared and analyzed; In the end, several suggestions on future research of indoor positioning based on visible light communication were given.
文摘The influence factors and process of indoor gas explosion are studied with AutoReaGas explosion simulator. The result shows that venting pressure has great influence on the indoor gas explosion damage. The higher the venting pressure is, the more serious the hazard consequence will be. The ignition location has also evident effect on the gas explosion damage. The explosion static overpressure would not cause major injury to person and serious damage to structure in the case of low venting pressure (lower than 2 kPa). The high temperature combustion after the explosion is the major factor to person injury in indoor gas explosion accidents.
基金the National Key R&D Program of China under Grant 2020YFB1804901the National Natural Science Foundation of China under Grant 61871035the National Defense Science and Technology Innovation Zone.
文摘To meet the demands for the explosive growth of mobile data rates and scarcity of spectrum resources in the near future,the terahertz(THz)band has widely been regarded as a key enabler for the upcoming beyond fifth-generation(B5G)wireless communications.An accurate THz channel model is crucial for the design and deployment of the THz wireless communication systems.In this paper,a three-dimensional(3-D)dynamic indoor THz channel model is proposed by means of combining deterministic and stochastic modeling approaches.Clusters are randomly distributed in the indoor environment and each ray is characterized with consideration of molecular absorption and diffuse scattering.Moreover,we present the dynamic generation procedure of the channel impulse responses(CIRs).Statistical properties are investigated to indicate the non-stationarity and feasibility of the proposed model.Finally,by comparing with delay spread and K-factor results from the measurements,the utility of the proposed channel model is verified.
基金the High-Tech Research and Development Program of China,the National Seience Foundation for Young Scientists of China,the China Postdoctoral Science Foundation funded project
文摘We propose a method to improve positioning accuracy while reducing energy consumption in an indoor Wireless Local Area Network(WLAN) environment.First,we intelligently and jointly select the subset of Access Points(APs) used in positioning via Maximum Mutual Information(MMI) criterion.Second,we propose Orthogonal Locality Preserving Projection(OLPP) to reduce the redundancy among selected APs.OLPP effectively extracts the intrinsic location features in situations where previous linear signal projection techniques failed to do,while maintaining computational efficiency.Third,we show that the combination of AP selection and OLPP simultaneously exploits their complementary advantages while avoiding the drawbacks.Experimental results indicate that,compared with the widely used weighted K-nearest neighbor and maximum likelihood estimation method,the proposed method leads to 21.8%(0.49 m) positioning accuracy improvement,while decreasing the computation cost by 65.4%.
基金supported by ZTE Industry-Academia-Research Cooperation Funds under Grant No.2014ZTE02-12
文摘This paper proposes a novel indoor positioning scheme based on visible light communication(VLC).A new indoor VLC positioning scheme using fingerprint database with multi-parameters have been raised.We conduct simulation and experimental research on the illumination intensity distribution of several direction parameters.In the experiment,four LED matrixes are identified by LED-ID with room dimensions of 3.75×4.00×2.7 m^3.The results show that the mean of the location error is 0.22 m in the receiving plane,verifying the correctness and feasibility of the positioning scheme.
基金supported by the National Natural Science Foundation of China (NSFC) under Grants 62001238 and 61901075。
文摘With the rapid growth of the demand for indoor location-based services(LBS), Wi-Fi received signal strength(RSS) fingerprints database has attracted significant attention because it is easy to obtain. The fingerprints algorithm based on convolution neural network(CNN) is often used to improve indoor localization accuracy. However, the number of reference points used for position estimation has significant effects on the positioning accuracy. Meanwhile, it is always selected arbitraily without any guiding standards. As a result, a novel location estimation method based on Jenks natural breaks algorithm(JNBA), which can adaptively choose more reasonable reference points, is proposed in this paper. The output of CNN is processed by JNBA, which can select the number of reference points according to different environments. Then, the location is estimated by weighted K-nearest neighbors(WKNN). Experimental results show that the proposed method has higher positioning accuracy without sacrificing more time cost than the existing indoor localization methods based on CNN.
基金Projects 50474050 supported by the National Natural Science Foundation of China 20040533011 by the Doctoral Fund of Ministry of Education of China
文摘Experiments on the behavior of airborne microparticle sediments and their adhesion on glass slides were conducted in a laboratory located on the first floor of a teaching building. Clean tiles and glass slides were placed at different angles (0°, 45° and 90°) with respect to the horizontal plane in the laboratory. The sedimentation of microparticles was investigated at certain time intervals (1 d, 3 d, l0 d and 30 d). The results of testing, at day 30, show that the diameters of particles on the horizontal tiles varied from 20 to 80 μm; few particles with diameter less than 0.5 μm or greater than 100 μm were found. The amount of particle sediment on all the slides increased along over time, while the average diameter of particles was not correlated with time, nor with the angle of placement. The maximum particle size, the total particle surface area, the total perimeter of all particles and the cover ratio of light (the proportion of total area of particles to the observed area of the slides surfaces) did not change significantly within the first 10 days. Inspection of all the samples for the last 20 days, however, showed that these variables increased substantially with the passage of time and were in reverse proportion to the placement angles, which indicates a concentration of particles, as well as physical and chemical changes.