The multipath effect and movements of people in indoor environments lead to inaccurate localization. Through the test, calculation and analysis on the received signal strength indication (RSSI) and the variance of R...The multipath effect and movements of people in indoor environments lead to inaccurate localization. Through the test, calculation and analysis on the received signal strength indication (RSSI) and the variance of RSSI, we propose a novel variance-based fingerprint distance adjustment algorithm (VFDA). Based on the rule that variance decreases with the increase of RSSI mean, VFDA calculates RSSI variance with the mean value of received RSSIs. Then, we can get the correction weight. VFDA adjusts the fingerprint distances with the correction weight based on the variance of RSSI, which is used to correct the fingerprint distance. Besides, a threshold value is applied to VFDA to improve its performance further. VFDA and VFDA with the threshold value are applied in two kinds of real typical indoor environments deployed with several Wi-Fi access points. One is a quadrate lab room, and the other is a long and narrow corridor of a building. Experimental results and performance analysis show that in indoor environments, both VFDA and VFDA with the threshold have better positioning accuracy and environmental adaptability than the current typical positioning methods based on the k-nearest neighbor algorithm and the weighted k-nearest neighbor algorithm with similar computational costs.展开更多
An indoor location system based on multilayer artificial neural network(ANN) with area division is proposed.The characteristics of recorded signal strength(RSS),or signal to noise ratio(SNR) from each available ...An indoor location system based on multilayer artificial neural network(ANN) with area division is proposed.The characteristics of recorded signal strength(RSS),or signal to noise ratio(SNR) from each available access points(APs),are utilized to establish the radio map in the off-line phase.And in the on-line phase,the two or three dimensional coordinates of mobile terminals(MTs) are estimated according to the similarity between the new recorded RSS or SNR and fingerprints pre-stored in radio map.Although the feed-forward ANN with three layers is sufficient to describe any nonlinear mapping relationship between inputs and outputs with finite discontinuous points,the efficient inputs for better training performances are difficult to be determined because of complex and dynamic indoor environment.Then,the discussion of distance relativity for different signal characteristics and optimal strategies for multi-mode phenomenon avoidance is presented.And also,the feasibility and effectiveness of this method are verified based on the experimental comparison with normal ANN without area division,K-nearest neighbor(KNN) and probability methods in typical office environment.展开更多
To explore the thermal responses under the non-thermal equilibrium cold environmental conditions,a laboratory study was conducted in climate chamber.The local skin temperatures and thermal sensation of 20 subjects wer...To explore the thermal responses under the non-thermal equilibrium cold environmental conditions,a laboratory study was conducted in climate chamber.The local skin temperatures and thermal sensation of 20 subjects were recorded at 10 min intervals for 90 min under air temperatures of 7.4,9.1,11 and 15 °C.The results show that both local skin temperatures and mean skin temperature decrease not only with the drop of ambient air temperature but also with the exposure time.Local thermal sensation and overall the thermal sensation have the similar temperature-varying and time-varying characteristics.Predicted mean vote(PMV) model cannot correctly predict the thermal sensation under non-thermal equilibrium cold environment.The correlation between local thermal sensation and local skin temperatures shows that thermal sensation is closely related to skin temperature.Skin temperature is an effective indicator of thermal sensation.A linear relationship model between overall thermal sensation and mean skin temperature,considering both ambient temperature and exposure time,was established in the non-thermal equilibrium cold environment,which makes the evaluation of thermal sensation more objective.展开更多
The path loss analysis model based on 5 rays in vacancy indoor environment is proposed. The relationship between multipath overlapping and the path loss is analyzed mathematically. Time-domain technique is introduced ...The path loss analysis model based on 5 rays in vacancy indoor environment is proposed. The relationship between multipath overlapping and the path loss is analyzed mathematically. Time-domain technique is introduced to compute reflection coefficient in a very short time interval. A 5 rays path loss calculation method, which is satisfactory accurate, is developed. 5 typical environments are involved to analyze and generalize the common path loss characteristics in vacancy indoor environment. The simulation result shows that the path loss can be characterized as 3 zones with different path loss exponent as distance between transmitter and receiver increasing.展开更多
A site-specific model of UWB pulse propagation in indoor environment is addressed. The simulation utilizes the principles of geometrical optics (GO) for direct and reflected paths' tracing and the time domain techn...A site-specific model of UWB pulse propagation in indoor environment is addressed. The simulation utilizes the principles of geometrical optics (GO) for direct and reflected paths' tracing and the time domain technique for describing the transient electromagnetic field reflected from wall, floor, ceiling, and objects. The polarization of the received waveform is determined by taking into account the radiation pattern of the transmitting and receiving antennas, as well as the polarization changes owing to every reflection. The model provides more intrinsical interpretations for UWB pulse propagation in realistic indoor environment.展开更多
By exploring the deterministic characteristics of the measurement data, a new propagation model with two deterministic clusters and stochastic arriving rays within each cluster is proposed. When considering the cumula...By exploring the deterministic characteristics of the measurement data, a new propagation model with two deterministic clusters and stochastic arriving rays within each cluster is proposed. When considering the cumulative distribution function (CDF) of the three key channel statistics, the proposed model fits the measurement data better than SV/IEEE 802.15.3, a model which is known as a standard model for UWB indoor propagation channel. Therefore, with the additional knowledge of the specific environment geometry, the proposed model generating impulse responses "resemble" the measured channel impulse responses better than IEEE model. Moreover, the proposed model's parameters obtaining procedure is simplified by utilizing simple parameters of the environment.展开更多
In this paper, we integrate inertial navigation system (INS) with wireless sensor network (WSN) to enhance the accuracy of indoor localization. Inertial measurement unit (IMU), the core of the INS, measures the accele...In this paper, we integrate inertial navigation system (INS) with wireless sensor network (WSN) to enhance the accuracy of indoor localization. Inertial measurement unit (IMU), the core of the INS, measures the accelerated and angular rotated speed of moving objects. Meanwhile, the ranges from the object to beacons, which are sensor nodes with known coordinates, are collected by time of arrival (ToA) approach. These messages are simultaneously collected and transmitted to the terminal. At the terminal, we set up the state transition models and observation models. According to them, several recursive Bayesian algorithms are applied to producing position estimations. As shown in the experiments, all of three algorithms do not require constant moving speed and perform better than standalone ToA system or standalone IMU system. And within them, two algorithms can be applied for the tracking on any path which is not restricted by the requirement that the trajectory between the positions at two consecutive time steps is a straight line.展开更多
To analyze the thermal comfort and indoor air quality (IAQ) in a medium-sized mechanically ventilated gymnasium in Beijing,a field study was carried out. PHOENICS,one of the CFD software,was chosen to simulate the dis...To analyze the thermal comfort and indoor air quality (IAQ) in a medium-sized mechanically ventilated gymnasium in Beijing,a field study was carried out. PHOENICS,one of the CFD software,was chosen to simulate the distribution of the indicators of indoor air in the gymnasium to check the air-conditioning parameters reasonable or not. And there was a questionnaire for audiences and staff about the acceptance and satisfaction of the thermal comfort,simultaneously,some environmental parameters were monitored. Then an experiment was carried out in gymnasium with the plate sedimentation to the biological aerosol in the air. Finally,the thermal comfort and IAQ in the gymnasium were assessed based on the results of above questionnaire survey and measurements. The results show that most parameters of the environmental are within the standard limits of thermal comfort and IAQ in the monitored period,and the biological contaminants initially come from human beings. The main species in the gymnasium are streptobacillus,coccus,cladosporium,penicillium and neurospora.展开更多
With the living standards gradually improved,the buildings with safe,comfortable,healthy indoor thermal environment would be the ideal pursuit. But to create the preferable indoor thermal environment,it is necessary t...With the living standards gradually improved,the buildings with safe,comfortable,healthy indoor thermal environment would be the ideal pursuit. But to create the preferable indoor thermal environment,it is necessary to research physiological influence of indoor thermal environment on human body. So a typical region of hot-humid climate in Chongqing,China,was considered as the object to study physiological indexes of human body. And the indoor thermal environment parameters and physiological indexes of human body were the main measurements. 20 volunteer students were organized to take part in the experiments in the laboratory during this summer. And two methods,physical measuring and questionnaire investigation,were used in the experiments. The results show that the increase in indoor air temperature reduces the uncomfortable feeling of air draft. Indoor air temperature has visible effects on MCS (motor nerve conduction speed),SCS (sensory nerve conduction speed),HR (heart rate),the ECG (electrocardiogram)-QT segment and SSEP (short somatosensory evoked potential)-latent period of N9. Therefore,a safe,comfortable and healthful indoor environment can be created by considering these factors.展开更多
From the view of both objective and subjective factors,the indoor air quality(IAQ)evaluation was considered.Carbon dioxide(CO2)and formaldehyde(HCHO)were selected as the typical contaminants of indoor air,and the eval...From the view of both objective and subjective factors,the indoor air quality(IAQ)evaluation was considered.Carbon dioxide(CO2)and formaldehyde(HCHO)were selected as the typical contaminants of indoor air,and the evaluation method of logarithmic index was adopted as the evaluation means of IAQ.Then the recommended limits(RL)of typical contaminants CO2 and HCHO were given through analysis and calculation.The limits of CO2 and HCHO in Indoor Air Quality Standard of China or other existing standards probably correspond to the level of PD=25(%).The result shows that the existing standards fail to meet the requirement of the definition of "acceptable indoor air quality",that is to say,less than 20% of the people express dissatisfaction.When PD=20%,RL of CO2 and HCHO are 728×10-6 and 0.068×10-6 respectively,which are stricter than the limits in the existing standards.The method proposed in this paper is applicable to 13.1%≤PD≤86.7%.展开更多
With rapid economy growth,building energy consumption in China has been gradually increased.The energy consumption and indoor environmental quality of 51 office buildings in Hainan Province,a hot and humid area,were s...With rapid economy growth,building energy consumption in China has been gradually increased.The energy consumption and indoor environmental quality of 51 office buildings in Hainan Province,a hot and humid area,were studied through collection of verified data in site visits and field tests.The result revealed that,electricity accounted for 99.79% of the total energy consumption,natural gas 0.17%,and diesel 0.04%.The air conditioning dominated the energy use with a share of 43.18%,equipment in the particular areas 26.90%,equipment in the office rooms 11.95%,lighting system 8.67%,general service system 7.57%,and miscellaneous items 1.73%.Statistical method including six indicators obtained the energy consumption benchmark with upper limit of 98.31 kW-h/m2 and lower limit of 55.26 kW-h/m2.According to ASHRAE standard(comfortable standard) and GB/T 18883-2002(acceptable standard),the indoor environmental quality of 51 sampled office buildings was classified into three ranks:good,normal and bad.With benchmark of building energy consumption combined with indoor environmental quality,it was found that only 3.92% of sampled buildings can be identified as the best performance buildings with low energy consumption and advanced indoor environmental quality,and the buildings classified into normal level accounted for the maximum ratio.展开更多
Based on the high positioning accuracy,low cost and low-power consumption,the ultra-wide-band(UWB)is an ideal solution for indoor unmanned aerial vehicle(UAV)localization and navigation.However,the UWB signals are eas...Based on the high positioning accuracy,low cost and low-power consumption,the ultra-wide-band(UWB)is an ideal solution for indoor unmanned aerial vehicle(UAV)localization and navigation.However,the UWB signals are easy to be blocked or reflected by obstacles such as walls and furniture.A resilient tightly-coupled inertial navigation system(INS)/UWB integration is proposed and implemented for indoor UAV navigation in this paper.A factor graph optimization(FGO)method enhanced by resilient stochastic model is established to cope with the indoor challenging scenarios.To deal with the impact of UWB non-line-of-sight(NLOS)signals and noise uncertainty,the conventional neural net-works(CNNs)are introduced into the stochastic modelling to improve the resilience and reliability of the integration.Based on the status that the UWB features are limited,a‘two-phase'CNNs structure was designed and implemented:one for signal classification and the other one for measurement noise prediction.The proposed resilient FGO method is tested on flighting UAV platform under actual indoor challenging scenario.Compared to classical FGO method,the overall positioning errors can be decreased from about 0.60 m to centimeter-level under signal block and reflection scenarios.The superiority of resilient FGO which effectively verified in constrained environment is pretty important for positioning accuracy and integrity for indoor navigation task.展开更多
For the rural housing in Yanbian region in winter,the indoor thermal environment is bad but the energy consumption is high.And in order to solve the problem,the life particularities of the local residents,such as the ...For the rural housing in Yanbian region in winter,the indoor thermal environment is bad but the energy consumption is high.And in order to solve the problem,the life particularities of the local residents,such as the inhabitation custom and the different living ways,were analyzed.The comfortable temperature felt by the local residents was surveyed and summarized according to different age's stage.The subjective comfortable temperature was calculated by using the thermal comfort formula set up by D.A.Mcintyre.The result shows that the comfortable temperature between the survey and the calculation is different.After analyzing the survey and the result calculations,the range of local indoor comfortable temperature was given,which provides a reference basis for calculating the thermal comfort and energy efficiency as well as designing green rural houses.展开更多
Indoor biological contamination and HVAC system secondary contamination problems caused wide public concerns. Biological contamination control will be the next step to achieve better IAQ. The most efficient and safe w...Indoor biological contamination and HVAC system secondary contamination problems caused wide public concerns. Biological contamination control will be the next step to achieve better IAQ. The most efficient and safe way to control biological contamination was to limit relative humidity in HVAC system and conditioned environment in the range that is more unsuitable for microorganism to survive. In this paper,by referring to bio-clean project experiences,a system-based humidity priority control manner came into being by lowering outdoor air humidity ratio to eliminate all indoor latent load and using self recirculation units to bear indoor sensible load. Based on the whole-course residue humidity contaminant control concept,dynamic step models for coil and conditioned zone were developed to describe mass and energy conservation and transformation processes. Then,HVAC system and conditioned zone dynamic models were established on LabVIEW+Matlab platform to investigate optimized regulation types,input signatures and control logics. Decoupling between cooling and dehumidification processes can be achieved and a more simplified and stable control system can be acquired by the system-based humidity priority control strategy. Therefore,it was a promising way for controlling biological pollution in buildings in order to achieve better IAQ.展开更多
Good indoor environmental quality enhances occupant health,comfort and productivity. In order to know the status of indoor environmental quality of underground shopping malls,five large underground shopping malls in f...Good indoor environmental quality enhances occupant health,comfort and productivity. In order to know the status of indoor environmental quality of underground shopping malls,five large underground shopping malls in five central districts of Chongqing,China,were surveyed. 2 411 questionnaires were distributed,and 98.5% of them were returned. From the results of questionnaire survey,the following conclusions were obtained:(1) in the five underground shopping malls surveyed,only shopping mall D in Nan'an district accords with the ASHRAE standard for good indoor air quality; (2) odors and sick building syndrome (SBS) symptoms are widespread in the underground shopping malls. The SBS occurrence rates for women and salespersons are higher than those of men and customers,respectively; (3) in the evaluation of the indoor environment,the indoor air quality dissatisfaction rate is the highest,followed by the thermal environment; and (4) women and salespersons generally have higher rates of dissatisfaction with the indoor environmental quality of underground shopping malls than men and customers,respectively.展开更多
【目的】针对极限学习机(ELM)神经网络在室内可见光定位(VLP)中收敛不稳定,易陷入局部最优状态,导致定位精度降低的问题,文章引入了麻雀搜索算法(SSA)确定ELM神经网络的初始权值和阈值,提出了SSA-ELM神经网络算法。【方法】首先,采集定...【目的】针对极限学习机(ELM)神经网络在室内可见光定位(VLP)中收敛不稳定,易陷入局部最优状态,导致定位精度降低的问题,文章引入了麻雀搜索算法(SSA)确定ELM神经网络的初始权值和阈值,提出了SSA-ELM神经网络算法。【方法】首先,采集定位区域内接收信号强度(RSS)与位置信息作为指纹数据;然后,训练SSA-ELM神经网络并得到预测模型,将测试集数据输入预测模型得到待测位置的定位结果;最后,设计了仿真实验和测试平台。【结果】仿真表明,在立体空间模型中0、0.3、0.6和0.9 m 4个接收高度,平均误差分别为1.73、1.86、2.18和3.47 cm,与反向传播(BP)、SSA-BP和ELM定位算法相比,SSA-ELM神经网络算法定位精度分别提高了83.55%、45.71%和26.26%,定位时间分别降低了36.48%、17.69%和6.61%。实验测试表明,文章所提SSA-ELM神经网络算法的平均定位误差为3.75 cm,比未优化的ELM神经网络定位精度提高了16.38%。【结论】SSA对ELM神经网络具有明显的优化作用,能够显著降低定位误差,减少定位时间。展开更多
基金supported by the National Natural Science Foundation of China(6120200461472192)+1 种基金the Special Fund for Fast Sharing of Science Paper in Net Era by CSTD(2013116)the Natural Science Fund of Higher Education of Jiangsu Province(14KJB520014)
文摘The multipath effect and movements of people in indoor environments lead to inaccurate localization. Through the test, calculation and analysis on the received signal strength indication (RSSI) and the variance of RSSI, we propose a novel variance-based fingerprint distance adjustment algorithm (VFDA). Based on the rule that variance decreases with the increase of RSSI mean, VFDA calculates RSSI variance with the mean value of received RSSIs. Then, we can get the correction weight. VFDA adjusts the fingerprint distances with the correction weight based on the variance of RSSI, which is used to correct the fingerprint distance. Besides, a threshold value is applied to VFDA to improve its performance further. VFDA and VFDA with the threshold value are applied in two kinds of real typical indoor environments deployed with several Wi-Fi access points. One is a quadrate lab room, and the other is a long and narrow corridor of a building. Experimental results and performance analysis show that in indoor environments, both VFDA and VFDA with the threshold have better positioning accuracy and environmental adaptability than the current typical positioning methods based on the k-nearest neighbor algorithm and the weighted k-nearest neighbor algorithm with similar computational costs.
基金supported by the National High Technology Research and Development Program of China (863 Program)(2008AA12Z305)
文摘An indoor location system based on multilayer artificial neural network(ANN) with area division is proposed.The characteristics of recorded signal strength(RSS),or signal to noise ratio(SNR) from each available access points(APs),are utilized to establish the radio map in the off-line phase.And in the on-line phase,the two or three dimensional coordinates of mobile terminals(MTs) are estimated according to the similarity between the new recorded RSS or SNR and fingerprints pre-stored in radio map.Although the feed-forward ANN with three layers is sufficient to describe any nonlinear mapping relationship between inputs and outputs with finite discontinuous points,the efficient inputs for better training performances are difficult to be determined because of complex and dynamic indoor environment.Then,the discussion of distance relativity for different signal characteristics and optimal strategies for multi-mode phenomenon avoidance is presented.And also,the feasibility and effectiveness of this method are verified based on the experimental comparison with normal ANN without area division,K-nearest neighbor(KNN) and probability methods in typical office environment.
基金Project(50838009) supported by the National Natural Science Foundation of China
文摘To explore the thermal responses under the non-thermal equilibrium cold environmental conditions,a laboratory study was conducted in climate chamber.The local skin temperatures and thermal sensation of 20 subjects were recorded at 10 min intervals for 90 min under air temperatures of 7.4,9.1,11 and 15 °C.The results show that both local skin temperatures and mean skin temperature decrease not only with the drop of ambient air temperature but also with the exposure time.Local thermal sensation and overall the thermal sensation have the similar temperature-varying and time-varying characteristics.Predicted mean vote(PMV) model cannot correctly predict the thermal sensation under non-thermal equilibrium cold environment.The correlation between local thermal sensation and local skin temperatures shows that thermal sensation is closely related to skin temperature.Skin temperature is an effective indicator of thermal sensation.A linear relationship model between overall thermal sensation and mean skin temperature,considering both ambient temperature and exposure time,was established in the non-thermal equilibrium cold environment,which makes the evaluation of thermal sensation more objective.
基金This project was supported by the key programof the Nationed Natural Science Foundation of China (60432040)
文摘The path loss analysis model based on 5 rays in vacancy indoor environment is proposed. The relationship between multipath overlapping and the path loss is analyzed mathematically. Time-domain technique is introduced to compute reflection coefficient in a very short time interval. A 5 rays path loss calculation method, which is satisfactory accurate, is developed. 5 typical environments are involved to analyze and generalize the common path loss characteristics in vacancy indoor environment. The simulation result shows that the path loss can be characterized as 3 zones with different path loss exponent as distance between transmitter and receiver increasing.
基金the Key Program of National Natural Science Foundation of China (60432040)ChinaPostdoctors Science Foundation (20060390792).
文摘A site-specific model of UWB pulse propagation in indoor environment is addressed. The simulation utilizes the principles of geometrical optics (GO) for direct and reflected paths' tracing and the time domain technique for describing the transient electromagnetic field reflected from wall, floor, ceiling, and objects. The polarization of the received waveform is determined by taking into account the radiation pattern of the transmitting and receiving antennas, as well as the polarization changes owing to every reflection. The model provides more intrinsical interpretations for UWB pulse propagation in realistic indoor environment.
基金This project was supported by the key program of the National Natural Science Foundation of China (60432040).
文摘By exploring the deterministic characteristics of the measurement data, a new propagation model with two deterministic clusters and stochastic arriving rays within each cluster is proposed. When considering the cumulative distribution function (CDF) of the three key channel statistics, the proposed model fits the measurement data better than SV/IEEE 802.15.3, a model which is known as a standard model for UWB indoor propagation channel. Therefore, with the additional knowledge of the specific environment geometry, the proposed model generating impulse responses "resemble" the measured channel impulse responses better than IEEE model. Moreover, the proposed model's parameters obtaining procedure is simplified by utilizing simple parameters of the environment.
基金Project(61301181) supported by the National Natural Science Foundation of China
文摘In this paper, we integrate inertial navigation system (INS) with wireless sensor network (WSN) to enhance the accuracy of indoor localization. Inertial measurement unit (IMU), the core of the INS, measures the accelerated and angular rotated speed of moving objects. Meanwhile, the ranges from the object to beacons, which are sensor nodes with known coordinates, are collected by time of arrival (ToA) approach. These messages are simultaneously collected and transmitted to the terminal. At the terminal, we set up the state transition models and observation models. According to them, several recursive Bayesian algorithms are applied to producing position estimations. As shown in the experiments, all of three algorithms do not require constant moving speed and perform better than standalone ToA system or standalone IMU system. And within them, two algorithms can be applied for the tracking on any path which is not restricted by the requirement that the trajectory between the positions at two consecutive time steps is a straight line.
基金Project(2006BAJ02A10) supported by the National Key Technologies R & D Program of China
文摘To analyze the thermal comfort and indoor air quality (IAQ) in a medium-sized mechanically ventilated gymnasium in Beijing,a field study was carried out. PHOENICS,one of the CFD software,was chosen to simulate the distribution of the indicators of indoor air in the gymnasium to check the air-conditioning parameters reasonable or not. And there was a questionnaire for audiences and staff about the acceptance and satisfaction of the thermal comfort,simultaneously,some environmental parameters were monitored. Then an experiment was carried out in gymnasium with the plate sedimentation to the biological aerosol in the air. Finally,the thermal comfort and IAQ in the gymnasium were assessed based on the results of above questionnaire survey and measurements. The results show that most parameters of the environmental are within the standard limits of thermal comfort and IAQ in the monitored period,and the biological contaminants initially come from human beings. The main species in the gymnasium are streptobacillus,coccus,cladosporium,penicillium and neurospora.
基金Projects(50838009, 50678179) supported by the National Natural Science Foundation of ChinaProject(2006BAJ02A09) supported by the National Key Technologies R & D Program of China
文摘With the living standards gradually improved,the buildings with safe,comfortable,healthy indoor thermal environment would be the ideal pursuit. But to create the preferable indoor thermal environment,it is necessary to research physiological influence of indoor thermal environment on human body. So a typical region of hot-humid climate in Chongqing,China,was considered as the object to study physiological indexes of human body. And the indoor thermal environment parameters and physiological indexes of human body were the main measurements. 20 volunteer students were organized to take part in the experiments in the laboratory during this summer. And two methods,physical measuring and questionnaire investigation,were used in the experiments. The results show that the increase in indoor air temperature reduces the uncomfortable feeling of air draft. Indoor air temperature has visible effects on MCS (motor nerve conduction speed),SCS (sensory nerve conduction speed),HR (heart rate),the ECG (electrocardiogram)-QT segment and SSEP (short somatosensory evoked potential)-latent period of N9. Therefore,a safe,comfortable and healthful indoor environment can be created by considering these factors.
文摘From the view of both objective and subjective factors,the indoor air quality(IAQ)evaluation was considered.Carbon dioxide(CO2)and formaldehyde(HCHO)were selected as the typical contaminants of indoor air,and the evaluation method of logarithmic index was adopted as the evaluation means of IAQ.Then the recommended limits(RL)of typical contaminants CO2 and HCHO were given through analysis and calculation.The limits of CO2 and HCHO in Indoor Air Quality Standard of China or other existing standards probably correspond to the level of PD=25(%).The result shows that the existing standards fail to meet the requirement of the definition of "acceptable indoor air quality",that is to say,less than 20% of the people express dissatisfaction.When PD=20%,RL of CO2 and HCHO are 728×10-6 and 0.068×10-6 respectively,which are stricter than the limits in the existing standards.The method proposed in this paper is applicable to 13.1%≤PD≤86.7%.
基金Project(2011BAJ01B05) supported by the National Science and Technology Pillar Program during the Twelfth Five-year Plan Period of China
文摘With rapid economy growth,building energy consumption in China has been gradually increased.The energy consumption and indoor environmental quality of 51 office buildings in Hainan Province,a hot and humid area,were studied through collection of verified data in site visits and field tests.The result revealed that,electricity accounted for 99.79% of the total energy consumption,natural gas 0.17%,and diesel 0.04%.The air conditioning dominated the energy use with a share of 43.18%,equipment in the particular areas 26.90%,equipment in the office rooms 11.95%,lighting system 8.67%,general service system 7.57%,and miscellaneous items 1.73%.Statistical method including six indicators obtained the energy consumption benchmark with upper limit of 98.31 kW-h/m2 and lower limit of 55.26 kW-h/m2.According to ASHRAE standard(comfortable standard) and GB/T 18883-2002(acceptable standard),the indoor environmental quality of 51 sampled office buildings was classified into three ranks:good,normal and bad.With benchmark of building energy consumption combined with indoor environmental quality,it was found that only 3.92% of sampled buildings can be identified as the best performance buildings with low energy consumption and advanced indoor environmental quality,and the buildings classified into normal level accounted for the maximum ratio.
基金National Natural Science Foundation of China(Grant No.62203111)the Open Research Fund of State Key Laboratory of Information Engineering in Surveying,Mapping and Remote Sensing,Wuhan University(Grant No.21P01)the Foundation of Key Laboratory of Micro-Inertial Instrument and Advanced Navigation Technology,Ministry of Education,China(Grant No.SEU-MIAN-202101)to provide fund for conducting experiments。
文摘Based on the high positioning accuracy,low cost and low-power consumption,the ultra-wide-band(UWB)is an ideal solution for indoor unmanned aerial vehicle(UAV)localization and navigation.However,the UWB signals are easy to be blocked or reflected by obstacles such as walls and furniture.A resilient tightly-coupled inertial navigation system(INS)/UWB integration is proposed and implemented for indoor UAV navigation in this paper.A factor graph optimization(FGO)method enhanced by resilient stochastic model is established to cope with the indoor challenging scenarios.To deal with the impact of UWB non-line-of-sight(NLOS)signals and noise uncertainty,the conventional neural net-works(CNNs)are introduced into the stochastic modelling to improve the resilience and reliability of the integration.Based on the status that the UWB features are limited,a‘two-phase'CNNs structure was designed and implemented:one for signal classification and the other one for measurement noise prediction.The proposed resilient FGO method is tested on flighting UAV platform under actual indoor challenging scenario.Compared to classical FGO method,the overall positioning errors can be decreased from about 0.60 m to centimeter-level under signal block and reflection scenarios.The superiority of resilient FGO which effectively verified in constrained environment is pretty important for positioning accuracy and integrity for indoor navigation task.
基金Supported by National Natural Science Foundation of China(50378023)
文摘For the rural housing in Yanbian region in winter,the indoor thermal environment is bad but the energy consumption is high.And in order to solve the problem,the life particularities of the local residents,such as the inhabitation custom and the different living ways,were analyzed.The comfortable temperature felt by the local residents was surveyed and summarized according to different age's stage.The subjective comfortable temperature was calculated by using the thermal comfort formula set up by D.A.Mcintyre.The result shows that the comfortable temperature between the survey and the calculation is different.After analyzing the survey and the result calculations,the range of local indoor comfortable temperature was given,which provides a reference basis for calculating the thermal comfort and energy efficiency as well as designing green rural houses.
基金Project(2006BAJ02A10) supported by the National Key Technologies R & D Program of China
文摘Indoor biological contamination and HVAC system secondary contamination problems caused wide public concerns. Biological contamination control will be the next step to achieve better IAQ. The most efficient and safe way to control biological contamination was to limit relative humidity in HVAC system and conditioned environment in the range that is more unsuitable for microorganism to survive. In this paper,by referring to bio-clean project experiences,a system-based humidity priority control manner came into being by lowering outdoor air humidity ratio to eliminate all indoor latent load and using self recirculation units to bear indoor sensible load. Based on the whole-course residue humidity contaminant control concept,dynamic step models for coil and conditioned zone were developed to describe mass and energy conservation and transformation processes. Then,HVAC system and conditioned zone dynamic models were established on LabVIEW+Matlab platform to investigate optimized regulation types,input signatures and control logics. Decoupling between cooling and dehumidification processes can be achieved and a more simplified and stable control system can be acquired by the system-based humidity priority control strategy. Therefore,it was a promising way for controlling biological pollution in buildings in order to achieve better IAQ.
基金Project(2007BB7351) supported by Natural Science Foundation Project of CQ CSTC and Visiting Scholar Foundation of Key Laboratory of Education Ministry
文摘Good indoor environmental quality enhances occupant health,comfort and productivity. In order to know the status of indoor environmental quality of underground shopping malls,five large underground shopping malls in five central districts of Chongqing,China,were surveyed. 2 411 questionnaires were distributed,and 98.5% of them were returned. From the results of questionnaire survey,the following conclusions were obtained:(1) in the five underground shopping malls surveyed,only shopping mall D in Nan'an district accords with the ASHRAE standard for good indoor air quality; (2) odors and sick building syndrome (SBS) symptoms are widespread in the underground shopping malls. The SBS occurrence rates for women and salespersons are higher than those of men and customers,respectively; (3) in the evaluation of the indoor environment,the indoor air quality dissatisfaction rate is the highest,followed by the thermal environment; and (4) women and salespersons generally have higher rates of dissatisfaction with the indoor environmental quality of underground shopping malls than men and customers,respectively.
文摘【目的】针对极限学习机(ELM)神经网络在室内可见光定位(VLP)中收敛不稳定,易陷入局部最优状态,导致定位精度降低的问题,文章引入了麻雀搜索算法(SSA)确定ELM神经网络的初始权值和阈值,提出了SSA-ELM神经网络算法。【方法】首先,采集定位区域内接收信号强度(RSS)与位置信息作为指纹数据;然后,训练SSA-ELM神经网络并得到预测模型,将测试集数据输入预测模型得到待测位置的定位结果;最后,设计了仿真实验和测试平台。【结果】仿真表明,在立体空间模型中0、0.3、0.6和0.9 m 4个接收高度,平均误差分别为1.73、1.86、2.18和3.47 cm,与反向传播(BP)、SSA-BP和ELM定位算法相比,SSA-ELM神经网络算法定位精度分别提高了83.55%、45.71%和26.26%,定位时间分别降低了36.48%、17.69%和6.61%。实验测试表明,文章所提SSA-ELM神经网络算法的平均定位误差为3.75 cm,比未优化的ELM神经网络定位精度提高了16.38%。【结论】SSA对ELM神经网络具有明显的优化作用,能够显著降低定位误差,减少定位时间。