High complexity and uncertainty of air combat pose significant challenges to target intention prediction.Current interpolation methods for data pre-processing and wrangling have limitations in capturing interrelations...High complexity and uncertainty of air combat pose significant challenges to target intention prediction.Current interpolation methods for data pre-processing and wrangling have limitations in capturing interrelationships among intricate variable patterns.Accordingly,this study proposes a Mogrifier gate recurrent unit-D(Mog-GRU-D)model to address the com-bat target intention prediction issue under the incomplete infor-mation condition.The proposed model directly processes miss-ing data while reducing the independence between inputs and output states.A total of 1200 samples from twelve continuous moments are captured through the combat simulation system,each of which consists of seven dimensional features.To bench-mark the experiment,a missing valued dataset has been gener-ated by randomly removing 20%of the original data.Extensive experiments demonstrate that the proposed model obtains the state-of-the-art performance with an accuracy of 73.25%when dealing with incomplete information.This study provides possi-ble interpretations for the principle of target interactive mecha-nism,highlighting the model’s effectiveness in potential air war-fare implementation.展开更多
Cooperative autonomous air combat of multiple unmanned aerial vehicles(UAVs)is one of the main combat modes in future air warfare,which becomes even more complicated with highly changeable situation and uncertain info...Cooperative autonomous air combat of multiple unmanned aerial vehicles(UAVs)is one of the main combat modes in future air warfare,which becomes even more complicated with highly changeable situation and uncertain information of the opponents.As such,this paper presents a cooperative decision-making method based on incomplete information dynamic game to generate maneuver strategies for multiple UAVs in air combat.Firstly,a cooperative situation assessment model is presented to measure the overall combat situation.Secondly,an incomplete information dynamic game model is proposed to model the dynamic process of air combat,and a dynamic Bayesian network is designed to infer the tactical intention of the opponent.Then a reinforcement learning framework based on multiagent deep deterministic policy gradient is established to obtain the perfect Bayes-Nash equilibrium solution of the air combat game model.Finally,a series of simulations are conducted to verify the effectiveness of the proposed method,and the simulation results show effective synergies and cooperative tactics.展开更多
The threat sequencing of multiple unmanned combat air vehicles(UCAVs) is a multi-attribute decision-making(MADM)problem. In the threat sequencing process of multiple UCAVs,due to the strong confrontation and high dyna...The threat sequencing of multiple unmanned combat air vehicles(UCAVs) is a multi-attribute decision-making(MADM)problem. In the threat sequencing process of multiple UCAVs,due to the strong confrontation and high dynamics of the air combat environment, the weight coefficients of the threat indicators are usually time-varying. Moreover, the air combat data is difficult to be obtained accurately. In this study, a threat sequencing method of multiple UCAVs is proposed based on game theory by considering the incomplete information. Firstly, a zero-sum game model of decision maker( D) and nature(N)with fuzzy payoffs is established to obtain the uncertain parameters which are the weight coefficient parameters of the threat indicators and the interval parameters of the threat matrix. Then,the established zero-sum game with fuzzy payoffs is transformed into a zero-sum game with crisp payoffs(matrix game) to solve. Moreover, a decision rule is addressed for the threat sequencing problem of multiple UCAVs based on the obtained uncertain parameters. Finally, numerical simulation results are presented to show the effectiveness of the proposed approach.展开更多
The weights of criteria are incompletely known and the criteria values are incomplete and uncertain or even default in some fuzzy multi-criteria decision-making problems.For those problems,an approach based on evident...The weights of criteria are incompletely known and the criteria values are incomplete and uncertain or even default in some fuzzy multi-criteria decision-making problems.For those problems,an approach based on evidential reasoning is proposed,in which the criteria values are integrated on the basis of analytical algorithm of evidential reasoning,and then nonlinear programming models of each alternative are developed with the incomplete information on weights.The genetic algorithm is employed to solve the models,producing the weights and the utility interval of each alternative,and the ranking of the whole set of alternatives can be attained.Finally,an example shows the effectiveness of the method.展开更多
Based on the rough set theory which is a powerful tool in dealing with vagueness and uncertainty, an algorithm to mine association rules in incomplete information systems was presented and the support and confidence w...Based on the rough set theory which is a powerful tool in dealing with vagueness and uncertainty, an algorithm to mine association rules in incomplete information systems was presented and the support and confidence were redefined. The algorithm can mine the association rules with decision attributes directly without processing missing values. Using the incomplete dataset Mushroom from UCI machine learning repository, the new algorithm was compared with the classical association rules mining algorithm based on Apriori from the number of rules extracted, testing accuracy and execution time. The experiment results show that the new algorithm has advantages of short execution time and high accuracy.展开更多
It is not uncommon in multiple criteria decision-making that the numerical values of alternatives of some criteria are subject to imprecision, uncertainty and indetermination and the information on weights of criteria...It is not uncommon in multiple criteria decision-making that the numerical values of alternatives of some criteria are subject to imprecision, uncertainty and indetermination and the information on weights of criteria is incomplete certain. A new multiple criteria decision- making method with incomplete certain information based on ternary AHP is proposed. This improves on Takeda's method. In this method, the ternary comparison matrix of the alternatives under each pseudo-criteria is constructed, the eigenvector associated with the maximum eigenvalue of the ternary comparison matrix is attained as to normalize priority vector of the alternatives, then the order of alternatives is obtained by solving two kinds of linear programming problems. Finally, an example is given to show the feasibility and effectiveness of the method.展开更多
The relationship between the importance of criterion and the criterion aggregation function is discussed, criterion's weight and combinational weights between some criteria are defined, and a multi-criteria classific...The relationship between the importance of criterion and the criterion aggregation function is discussed, criterion's weight and combinational weights between some criteria are defined, and a multi-criteria classification method with incomplete certain information and polynomial aggregation function is proposed. First, linear programming is constructed by classification to reference alternative set (assignment examples) and incomplete certain information on criterion's weights. Then the coefficient of the polynomial aggregation function and thresholds of categories are gained by solving the linear programming. And the consistency index of alternatives is obtained, the classification of the alternatives is achieved. The certain criteria's values of categories and uncertain criteria's values of categories are discussed in the method. Finally, an example shows the feasibility and availability of this method.展开更多
The problem of fusing multiagent preference orderings, with information on agent's importance being incomplete certain with respect to a set of possible courses of action, is described. The approach is developed for ...The problem of fusing multiagent preference orderings, with information on agent's importance being incomplete certain with respect to a set of possible courses of action, is described. The approach is developed for dealing with the fusion problem described in the following sections and requires that each agent provides a preference ordering over the different alternatives completely independent of the other agents, and the information on agent's importance is incomplete certain. In this approach, the ternary comparison matrix of the alternatives is constructed, the eigenvector associated with the maximum eigenvalue of the ternary comparison matrix is attained so as to normalize priority vector of the alternatives. The interval number of the alternatives is then obtained by solving two sorts of linear programming problems. By comparing the interval numbers of the alternatives, the ranking of alternatives can be generated. Finally, some examples are given to show the feasibility and effectiveness of the method.展开更多
The missile-tracked priority assessment for the early warning system monitoring multi-missile very well, is the first task to defend them and useful to perform optimally the sensor-to-missile assignment. The problem o...The missile-tracked priority assessment for the early warning system monitoring multi-missile very well, is the first task to defend them and useful to perform optimally the sensor-to-missile assignment. The problem of the missile-tracked priority assessment is of incomplete information, of multi-attribute and dynamic. To solve the dificult problem, the index system, which includes six classification indices, is established by means of reducing the target's primary information which the early warning system focuses on. The lack of some attributes values, which is caused by the incomplete information, is handled by the approach: first classifying each attribute as unknown one or known one, and then subdividing the latter, last using the expectation and the information entropy if the attribute is known but uncertain. With a view of reality, nine qualitative evaluation criteria are given. Based on them each index is quantified by the eigenvector method. And then based on the improved technique for order preference by similarity to ideal solution (TOPSIS), the targets-tracked priorities are assessed and sorted by an evaluation function from three aspects: 1) the quantity of the available information, 2) the affirmative or accurate degree of the available information, 3) the classification or trait of the available information.展开更多
Multi-attribute group decision-making problems are considered where information on both attribute weights and value scores of consequences is incomplete.In group decision analysis,if preference information about alter...Multi-attribute group decision-making problems are considered where information on both attribute weights and value scores of consequences is incomplete.In group decision analysis,if preference information about alternatives is provided by participants,it should be verified whether there exist compromise weights that can support all the preference relations.The different compromise weight vectors may differ for the ranking of the alternatives.In the case that compromise weights exist,the method is proposed to find out all the compromise weight vectors in order to rank the alternatives.Based on the new feasible domain of attribute weights determined by all the compromise weight vectors and the incomplete information on value scores of consequences,dominance relations between alternatives are checked by a nonlinear goal programming model which can be transformed into a linear one by adopting a transformation.The checked dominance relations uniformly hold for all compromise weight vectors and the incomplete information on value scores of consequences.A final ranking of the alternatives can be obtained by aggregating these dominance relations.展开更多
基金supported by the Aeronautical Science Foundation of China(2020Z023053002).
文摘High complexity and uncertainty of air combat pose significant challenges to target intention prediction.Current interpolation methods for data pre-processing and wrangling have limitations in capturing interrelationships among intricate variable patterns.Accordingly,this study proposes a Mogrifier gate recurrent unit-D(Mog-GRU-D)model to address the com-bat target intention prediction issue under the incomplete infor-mation condition.The proposed model directly processes miss-ing data while reducing the independence between inputs and output states.A total of 1200 samples from twelve continuous moments are captured through the combat simulation system,each of which consists of seven dimensional features.To bench-mark the experiment,a missing valued dataset has been gener-ated by randomly removing 20%of the original data.Extensive experiments demonstrate that the proposed model obtains the state-of-the-art performance with an accuracy of 73.25%when dealing with incomplete information.This study provides possi-ble interpretations for the principle of target interactive mecha-nism,highlighting the model’s effectiveness in potential air war-fare implementation.
基金supported by the National Natural Science Foundation of China(Grant No.61933010 and 61903301)Shaanxi Aerospace Flight Vehicle Design Key Laboratory。
文摘Cooperative autonomous air combat of multiple unmanned aerial vehicles(UAVs)is one of the main combat modes in future air warfare,which becomes even more complicated with highly changeable situation and uncertain information of the opponents.As such,this paper presents a cooperative decision-making method based on incomplete information dynamic game to generate maneuver strategies for multiple UAVs in air combat.Firstly,a cooperative situation assessment model is presented to measure the overall combat situation.Secondly,an incomplete information dynamic game model is proposed to model the dynamic process of air combat,and a dynamic Bayesian network is designed to infer the tactical intention of the opponent.Then a reinforcement learning framework based on multiagent deep deterministic policy gradient is established to obtain the perfect Bayes-Nash equilibrium solution of the air combat game model.Finally,a series of simulations are conducted to verify the effectiveness of the proposed method,and the simulation results show effective synergies and cooperative tactics.
基金supported by the Major Projects for Science and Technology Innovation 2030 (2018AAA0100805)。
文摘The threat sequencing of multiple unmanned combat air vehicles(UCAVs) is a multi-attribute decision-making(MADM)problem. In the threat sequencing process of multiple UCAVs,due to the strong confrontation and high dynamics of the air combat environment, the weight coefficients of the threat indicators are usually time-varying. Moreover, the air combat data is difficult to be obtained accurately. In this study, a threat sequencing method of multiple UCAVs is proposed based on game theory by considering the incomplete information. Firstly, a zero-sum game model of decision maker( D) and nature(N)with fuzzy payoffs is established to obtain the uncertain parameters which are the weight coefficient parameters of the threat indicators and the interval parameters of the threat matrix. Then,the established zero-sum game with fuzzy payoffs is transformed into a zero-sum game with crisp payoffs(matrix game) to solve. Moreover, a decision rule is addressed for the threat sequencing problem of multiple UCAVs based on the obtained uncertain parameters. Finally, numerical simulation results are presented to show the effectiveness of the proposed approach.
基金supported by the National Natural Science Foundation of China(7077111570921001)and Key Project of National Natural Science Foundation of China(70631004)
文摘The weights of criteria are incompletely known and the criteria values are incomplete and uncertain or even default in some fuzzy multi-criteria decision-making problems.For those problems,an approach based on evidential reasoning is proposed,in which the criteria values are integrated on the basis of analytical algorithm of evidential reasoning,and then nonlinear programming models of each alternative are developed with the incomplete information on weights.The genetic algorithm is employed to solve the models,producing the weights and the utility interval of each alternative,and the ranking of the whole set of alternatives can be attained.Finally,an example shows the effectiveness of the method.
基金Projects(10871031, 60474070) supported by the National Natural Science Foundation of ChinaProject(07A001) supported by the Scientific Research Fund of Hunan Provincial Education Department, China
文摘Based on the rough set theory which is a powerful tool in dealing with vagueness and uncertainty, an algorithm to mine association rules in incomplete information systems was presented and the support and confidence were redefined. The algorithm can mine the association rules with decision attributes directly without processing missing values. Using the incomplete dataset Mushroom from UCI machine learning repository, the new algorithm was compared with the classical association rules mining algorithm based on Apriori from the number of rules extracted, testing accuracy and execution time. The experiment results show that the new algorithm has advantages of short execution time and high accuracy.
文摘It is not uncommon in multiple criteria decision-making that the numerical values of alternatives of some criteria are subject to imprecision, uncertainty and indetermination and the information on weights of criteria is incomplete certain. A new multiple criteria decision- making method with incomplete certain information based on ternary AHP is proposed. This improves on Takeda's method. In this method, the ternary comparison matrix of the alternatives under each pseudo-criteria is constructed, the eigenvector associated with the maximum eigenvalue of the ternary comparison matrix is attained as to normalize priority vector of the alternatives, then the order of alternatives is obtained by solving two kinds of linear programming problems. Finally, an example is given to show the feasibility and effectiveness of the method.
基金This project was supported by the Social Science Foundation of Hunan(05YB74)
文摘The relationship between the importance of criterion and the criterion aggregation function is discussed, criterion's weight and combinational weights between some criteria are defined, and a multi-criteria classification method with incomplete certain information and polynomial aggregation function is proposed. First, linear programming is constructed by classification to reference alternative set (assignment examples) and incomplete certain information on criterion's weights. Then the coefficient of the polynomial aggregation function and thresholds of categories are gained by solving the linear programming. And the consistency index of alternatives is obtained, the classification of the alternatives is achieved. The certain criteria's values of categories and uncertain criteria's values of categories are discussed in the method. Finally, an example shows the feasibility and availability of this method.
基金This project was supported by the National Natural Science Foundation of China(70631004).
文摘The problem of fusing multiagent preference orderings, with information on agent's importance being incomplete certain with respect to a set of possible courses of action, is described. The approach is developed for dealing with the fusion problem described in the following sections and requires that each agent provides a preference ordering over the different alternatives completely independent of the other agents, and the information on agent's importance is incomplete certain. In this approach, the ternary comparison matrix of the alternatives is constructed, the eigenvector associated with the maximum eigenvalue of the ternary comparison matrix is attained so as to normalize priority vector of the alternatives. The interval number of the alternatives is then obtained by solving two sorts of linear programming problems. By comparing the interval numbers of the alternatives, the ranking of alternatives can be generated. Finally, some examples are given to show the feasibility and effectiveness of the method.
基金supported by the National Ministry Foundation for the Pre-research
文摘The missile-tracked priority assessment for the early warning system monitoring multi-missile very well, is the first task to defend them and useful to perform optimally the sensor-to-missile assignment. The problem of the missile-tracked priority assessment is of incomplete information, of multi-attribute and dynamic. To solve the dificult problem, the index system, which includes six classification indices, is established by means of reducing the target's primary information which the early warning system focuses on. The lack of some attributes values, which is caused by the incomplete information, is handled by the approach: first classifying each attribute as unknown one or known one, and then subdividing the latter, last using the expectation and the information entropy if the attribute is known but uncertain. With a view of reality, nine qualitative evaluation criteria are given. Based on them each index is quantified by the eigenvector method. And then based on the improved technique for order preference by similarity to ideal solution (TOPSIS), the targets-tracked priorities are assessed and sorted by an evaluation function from three aspects: 1) the quantity of the available information, 2) the affirmative or accurate degree of the available information, 3) the classification or trait of the available information.
基金supported by the Humanities and Social Sciences Foundation of Ministry of Education of China(09YJC630229)Scientific Research Foundation of Guangxi University for Nationalities for Talent Introduction(200702YZ01)Science and Technology Project of State Ethnic Affairs Commission(09GX03)
文摘Multi-attribute group decision-making problems are considered where information on both attribute weights and value scores of consequences is incomplete.In group decision analysis,if preference information about alternatives is provided by participants,it should be verified whether there exist compromise weights that can support all the preference relations.The different compromise weight vectors may differ for the ranking of the alternatives.In the case that compromise weights exist,the method is proposed to find out all the compromise weight vectors in order to rank the alternatives.Based on the new feasible domain of attribute weights determined by all the compromise weight vectors and the incomplete information on value scores of consequences,dominance relations between alternatives are checked by a nonlinear goal programming model which can be transformed into a linear one by adopting a transformation.The checked dominance relations uniformly hold for all compromise weight vectors and the incomplete information on value scores of consequences.A final ranking of the alternatives can be obtained by aggregating these dominance relations.