This paper discusses an optimization of operating a p ermutation circulation-type vehicle routing system (PCVRS, for short), in w hich several stages are located along by a single loop, and a fleet of vehicles travels...This paper discusses an optimization of operating a p ermutation circulation-type vehicle routing system (PCVRS, for short), in w hich several stages are located along by a single loop, and a fleet of vehicles travels on the loop unidirectionally and repeatedly. Traveling on the loop, each vehicle receives an object from the loading stage and then carries it to a cert ain processing stage, or receives an object from a certain processing stage and then carries it to the unloading stage per a turnaround. No passing is allowed f or the vehicles on the loop (from which the system is called permutation, and th is restriction may cause interferences between vehicles). Material handling systems such as PCVRS are actually encountered in flexible man ufacturing systems and in automated storage/retrieval systems. In this paper, we propose a heuristic algorithm for operating the PCVRS, which i ncorporates a new scheduling method for the vehicles with the SPT (shortest proc essing time) numbering of jobs and a round-robin manner of allocating jobs to t he stages, aiming to reduce interferences between the vehicles. We also give num erical results with respect to system performances attained by the heuristic. Description of the system The PCVRS consists of a set of n v vehicles V={V 1,V 2,...,V n v}, a set of n s, processing stages S p={S 1,S 2,...,S n s}, a loading stage S 0 and an unloading stage S n s +1. We denote by S=S p∪{S 0,S n s+l} the set of all the stages. The vehicles travel on a single loop unidirectionany and repeated ly. The system layout is depicted in Fig.1. There is a set of n jobs J={J 1,J 2,...,J n} to be processed b y the vehicles. Each job consists of two tasks: That is, each vehicle receives a n object from S 0 and then carries it to S l with a certain l∈{1,2, ...,n s} (a throw-in job), or receives an object from S l with a certain l∈{1,2,...,n s} and then carries it to S n s+1 (a throw-out job ) per a turnaround. The loop consists of buffer zones BZ(l) and travel zones TZ(l) (see Fig. 1). Each buffer zone BZ(l) is placed in front of stage S l, l=0,1,..., n s, n s+1, in order to avoid a collision between vehicles (i.e., the syste m adopts the so-called zone control strategy). A heuristic algorithm We develop a heuristic algorithm to obtain a good performance for the PCVRS. An operation π={A/B/C} for the PCVRS consists of three decision factors: (A) Numbering jobs Jobs are loaded into S 0 according to an assending order of job numbers. In this paper, we use the following rules to number jobs: SPT: Order jobs in the shortest processing time rule, i.e., P 1≤P 2≤...≤P n for the set of jobs J={J 1,J 2,...,J n}, rather than the FCFS numbering (i.e., number jobs in first-come-first-served order). The SPT rule intends to reduce interferences between two adjacent vehicles at stages. (B) Allocating jobs to stages For the purpose of balancing loads of processing stages, we adopt the following to allocate jobs to the stages: ORDER: Allocate n jobs to n s, processing stages by an in-order manner , i.e., let l(i) be the index of processing stage allocated job J i by ORDER, it holds that l(i)=n s+1-(i-[(i-1)/n s]n s).(1) The ORDER rule intends to process jobs parallel at stages as many as possible. (C) Scheduling vehicles The following method for scheduling vehicles under ORDER rule is already known: Fig.1 The vehicle ro uting system, PCVRS Fig.2 Mean turnaroun d times by heuristics Unchange: Assign n jobs to n v vehicles such that let k(i) be the i ndex of vehicle processing job J i, then k(i)= i-[(i-1)/n v]n v.(2) In csse of n v≥n s, mod (n v,n s)=0 or n v<n s, mod (n s,n v)=0 (mod(x,y) is the remainder of x/y), the number of interferences between vehicles is minimized at stage S 1 under Unchange sche dules, while in the other cases it is not [Lu et al. (2001a)]. Therefore, in t his paper, we develop a new scheduling method of the vehicles, denoted by Ex change, to modify Unchange schedules. Note展开更多
The article describes the possibilities of application of simulation modeling for the analysis of infrastructure and technology of transport services of enterprises. The main technological and possible economic effect...The article describes the possibilities of application of simulation modeling for the analysis of infrastructure and technology of transport services of enterprises. The main technological and possible economic effects for the enterprises arising at performance of modeling of a transport component of their work are resulted.展开更多
Machine picking in cotton is an emerging practice in India,to solve the problems of labour shortages and production costs increasing.Cotton production has been declining in recent years;however,the high density planti...Machine picking in cotton is an emerging practice in India,to solve the problems of labour shortages and production costs increasing.Cotton production has been declining in recent years;however,the high density planting system(HDPS)offers a viable method to enhance productivity by increasing plant populations per unit area,optimizing resource utilization,and facilitating machine picking.Cotton is an indeterminate plant that produce excessive vegeta-tive growth in favorable soil fertility and moisture conditions,which posing challenges for efficient machine picking.To address this issue,the application of plant growth retardants(PGRs)is essential for controlling canopy architecture.PGRs reduce internode elongation,promote regulated branching,and increase plant compactness,making cotton plants better suited for machine picking.PGRs application also optimizes photosynthates distribution between veg-etative and reproductive growth,resulting in higher yields and improved fibre quality.The integration of HDPS and PGRs applications results in an optimal plant architecture for improving machine picking efficiency.However,the success of this integration is determined by some factors,including cotton variety,environmental conditions,and geographical variations.These approaches not only address yield stagnation and labour shortages but also help to establish more effective and sustainable cotton farming practices,resulting in higher cotton productivity.展开更多
When the maneuverability of a pursuer is not significantly higher than that of an evader,it will be difficult to intercept the evader with only one pursuer.Therefore,this article adopts a two-to-one differential game ...When the maneuverability of a pursuer is not significantly higher than that of an evader,it will be difficult to intercept the evader with only one pursuer.Therefore,this article adopts a two-to-one differential game strategy,the game of kind is generally considered to be angle-optimized,which allows unlimited turns,but these practices do not take into account the effect of acceleration,which does not correspond to the actual situation,thus,based on the angle-optimized,the acceleration optimization and the acceleration upper bound constraint are added into the game for consideration.A two-to-one differential game problem is proposed in the three-dimensional space,and an improved multi-objective grey wolf optimization(IMOGWO)algorithm is proposed to solve the optimal game point of this problem.With the equations that describe the relative motions between the pursuers and the evader in the three-dimensional space,a multi-objective function with constraints is given as the performance index to design an optimal strategy for the differential game.Then the optimal game point is solved by using the IMOGWO algorithm.It is proved based on Markov chains that with the IMOGWO,the Pareto solution set is the solution of the differential game.Finally,it is verified through simulations that the pursuers can capture the escapee,and via comparative experiments,it is shown that the IMOGWO algorithm performs well in terms of running time and memory usage.展开更多
Background Cotton is a significant crop for fiber production;however,seed shape-related traits have been less investigated in comparison to fiber quality.Comprehending the genetic foundation of traits associated with ...Background Cotton is a significant crop for fiber production;however,seed shape-related traits have been less investigated in comparison to fiber quality.Comprehending the genetic foundation of traits associated with seed shape is crucial for improving the seed and fiber quality in cotton.Results A total of 238 cotton accessions were evaluated in four different environments over a period of two years.Traits including thousand grain weight(TGW),aspect ratio(AR),seed length,seed width,diameter,and roundness demonstrated high heritability and significant genetic variation,as indicated by phenotypic analysis.The association analysis involved 145 simple sequence repeats(SSR)markers and identified 50 loci significantly associated with six traits related to seed shape.The markers MON_DPL0504aa and BNL2535ba were identified as influencing multiple traits,including aspect ratio and thousand grain weight.Notably,markers such as HAU2588a and MUSS422aa had considerable influence on seed diameter and roundness.The identified markers represented an average phenotypic variance between 3.92%for seed length and 16.54%for TGW.Conclusions The research finds key loci for seed shape-related traits in cotton,providing significant potential for marker-assisted breeding.These findings establish a framework for breeding initiatives focused on enhancing seed quality,hence advancing the cotton production.展开更多
This study proposed a new and more flexible S-shaped rock damage evolution model from a phenomenological perspective based on an improved Logistic function to describe the characteristics of the rock strain softening ...This study proposed a new and more flexible S-shaped rock damage evolution model from a phenomenological perspective based on an improved Logistic function to describe the characteristics of the rock strain softening and damage process.Simultaneously,it established a constitutive model capable of describing the entire process of rock pre-peak compaction and post-peak strain softening deformation,considering the nonlinear effects of the initial compaction stage of rocks,combined with damage mechanics theory and effective medium theory.In addition,this research verified the rationality of the constructed damage constitutive model using results from uniaxial and conventional triaxial compression tests on Miluo granite,yellow sandstone,mudstone,and glutenite.The results indicate that based on the improved Logistic function,the theoretical damage model accurately describes the entire evolution of damage characteristics during rock compression deformation,from maintenance through gradual onset,accelerated development to deceleration and termination,in a simple and unified expression.At the same time,the constructed constitutive model can accurately simulate the stress-strain process of different rock types under uniaxial and conventional triaxial compression,and the theoretical model curve closely aligns with experimental data.Compared to existing constitutive models,the proposed model has significant advantages.The damage model parameters a,r and β have clear physical meanings and interact competitively,where the three parameters collectively determine the shape of the theoretical stress−strain curve.展开更多
Recovery is a crucial supporting process for carrier aircraft,where a reasonable landing scheduling is expected to guide the fleet landing safely and quickly.Currently,there is little research on this topic,and most o...Recovery is a crucial supporting process for carrier aircraft,where a reasonable landing scheduling is expected to guide the fleet landing safely and quickly.Currently,there is little research on this topic,and most of it neglects potential influence factors,leaving the corresponding supporting efficiency questionable.In this paper,we study the landing scheduling problem for carrier aircraft considering the effects of bolting and aerial refueling.Based on the analysis of recovery mode involving the above factors,two types of primary constraints(i.e.,fuel constraint and wake interval constraint)are first described.Then,taking the landing sequencing as decision variables,a combinatorial optimization model with a compound objective function is formulated.Aiming at an efficient solution,an improved firefly algorithm is designed by integrating multiple evolutionary operators.In addition,a dynamic replanning mechanism is introduced to deal with special situations(i.e.,the occurrence of bolting and fuel shortage),where the high efficiency of the designed algorithm facilitates the online scheduling adjustment within seconds.Finally,numerical simulations with sufficient and insufficient fuel cases are both carried out,highlighting the necessity to consider bolting and aerial refueling during the planning procedure.Simulation results reveal that a higher bolting probability,as well as extra aerial refueling operations caused by fuel shortage,will lead to longer recovery complete time.Meanwhile,due to the strong optimum-seeking capability and solution efficiency of the improved algorithm,adaptive scheduling can be generated within milliseconds to deal with special situations,significantly improving the safety and efficiency of the recovery process.An animation is accessible at bilibili.com/video/BV1QprKY2EwD.展开更多
With the development of high energy solid propellants,it is critical to evaluate the safety and power performance of solid propellants in the face of threats such as unmanned aerial vehicles(UAVs)when transporting and...With the development of high energy solid propellants,it is critical to evaluate the safety and power performance of solid propellants in the face of threats such as unmanned aerial vehicles(UAVs)when transporting and using them in contemporary warfare.An electric probe-type cylinder test measured the displacement-time behavior of NEPE high-energy solid propellant,and the parameters of the Jones-Wilkins-Lee(JWL)equation of state(EOS)were derived using particle swarm optimization(PSO)with the Gurney energy model.Further,the parameters of JWL-Miller EOS,determined through AUTODYN simulations,were validated by comparing airburst process simulations with experimental overpressure data.The study established a method for determining EOS parameters of high-energy propellants,achieving a high degree of accuracy.The derived parameters ensure precise modeling of propellant behavior,offering a reliable foundation for future applications in solid rocket motor performance optimization and safety assessment.展开更多
Nitrogen(N)and phosphorus(P)are mineral nutrients essential for plant growth and development,playing a crucial role throughout the plant life cycle.Cotton,a globally significant textile crop,has a particularly high de...Nitrogen(N)and phosphorus(P)are mineral nutrients essential for plant growth and development,playing a crucial role throughout the plant life cycle.Cotton,a globally significant textile crop,has a particularly high demand for N fertilizer across its developmental stages.This review explores the effects of adequate or deficient N and P levels on cotton growth phases,focusing on their influence on physiological processes and molecular mechanisms.Key topics include the regulation of N-and P-related enzymes,hormones,and genes,as well as the complex interplay of N-and P-related signaling pathways from the aspects of N-P signaling integration to regulate root development,N-P signaling integration to regulate nutrient uptake,and regulation of N-P interactions—a frontier in current research.Strategies for improving N and P use efficiency are also discussed,including developing high-efficiency cotton cultivars and identifying functional genes to enhance productivity.Generally speaking,we take model plants as a reference in the hope of coming up with new strategies for the efficient utilization of N and P in cotton.展开更多
In the field of calculating the attack area of air-to-air missiles in modern air combat scenarios,the limitations of existing research,including real-time calculation,accuracy efficiency trade-off,and the absence of t...In the field of calculating the attack area of air-to-air missiles in modern air combat scenarios,the limitations of existing research,including real-time calculation,accuracy efficiency trade-off,and the absence of the three-dimensional attack area model,restrict their practical applications.To address these issues,an improved backtracking algorithm is proposed to improve calculation efficiency.A significant reduction in solution time and maintenance of accuracy in the three-dimensional attack area are achieved by using the proposed algorithm.Furthermore,the age-layered population structure genetic programming(ALPS-GP)algorithm is introduced to determine an analytical polynomial model of the three-dimensional attack area,considering real-time requirements.The accuracy of the polynomial model is enhanced through the coefficient correction using an improved gradient descent algorithm.The study reveals a remarkable combination of high accuracy and efficient real-time computation,with a mean error of 91.89 m using the analytical polynomial model of the three-dimensional attack area solved in just 10^(-4)s,thus meeting the requirements of real-time combat scenarios.展开更多
Complex multi-area collaborative coverage path planning in dynamic environments poses a significant challenge for multi-fixed-wing UAVs(multi-UAV).This study establishes a comprehensive framework that incorporates UAV...Complex multi-area collaborative coverage path planning in dynamic environments poses a significant challenge for multi-fixed-wing UAVs(multi-UAV).This study establishes a comprehensive framework that incorporates UAV capabilities,terrain,complex areas,and mission dynamics.A novel dynamic collaborative path planning algorithm is introduced,designed to ensure complete coverage of designated areas.This algorithm meticulously optimizes the operation,entry,and transition paths for each UAV,while also establishing evaluation metrics to refine coverage sequences for each area.Additionally,a three-dimensional path is computed utilizing an altitude descent method,effectively integrating twodimensional coverage paths with altitude constraints.The efficacy of the proposed approach is validated through digital simulations and mixed-reality semi-physical experiments across a variety of dynamic scenarios,including both single-area and multi-area coverage by multi-UAV.Results show that the coverage paths generated by this method significantly reduce both computation time and path length,providing a reliable solution for dynamic multi-UAV mission planning in semi-physical environments.展开更多
Offboard active decoys(OADs)can effectively jam monopulse radars.However,for missiles approaching from a particular direction and distance,the OAD should be placed at a specific location,posing high requirements for t...Offboard active decoys(OADs)can effectively jam monopulse radars.However,for missiles approaching from a particular direction and distance,the OAD should be placed at a specific location,posing high requirements for timing and deployment.To improve the response speed and jamming effect,a cluster of OADs based on an unmanned surface vehicle(USV)is proposed.The formation of the cluster determines the effectiveness of jamming.First,based on the mechanism of OAD jamming,critical conditions are identified,and a method for assessing the jamming effect is proposed.Then,for the optimization of the cluster formation,a mathematical model is built,and a multi-tribe adaptive particle swarm optimization algorithm based on mutation strategy and Metropolis criterion(3M-APSO)is designed.Finally,the formation optimization problem is solved and analyzed using the 3M-APSO algorithm under specific scenarios.The results show that the improved algorithm has a faster convergence rate and superior performance as compared to the standard Adaptive-PSO algorithm.Compared with a single OAD,the optimal formation of USV-OAD cluster effectively fills the blind area and maximizes the use of jamming resources.展开更多
Boron is an ambitious fuel in energetic materials since its high heat release values,but its application is prohibited by low combustion efficiency and oxidization during storage.The polydopamine(PDA)was introduced in...Boron is an ambitious fuel in energetic materials since its high heat release values,but its application is prohibited by low combustion efficiency and oxidization during storage.The polydopamine(PDA)was introduced into boron particles,investigating the impact of PDA content on the energetic behavior of boron.The results indicated that the PDA coating formed a fishing net structure on the surface of boron particles.The heat release results showed that the combustion calorific value of B@PDA was higher than that of the raw boron.Specifically,the actual combustion heat of boron powder in B@10%PDA increased by 38.08%.Meanwhile,the DSC peak temperature decreased by 100.65℃under similar oxidation rate compared to raw boron.Simultaneously,the B@PDA@AP and B@AP composites were prepared,and their combustion properties were evaluated.It was demonstrated that B@10%PDA@AP exhibited superior performance in terms of peak pressure and burning time,respectively.The peak pressure is 12.43 kPa more than B@AP and burning time is 2.22 times higher than B@AP.Therefore,the coating of PDA effectively inhibits the oxidization of boron during storage and enhances the energetic behavior of boron and corresponding composites.展开更多
Background Cotton is an economically important crop.It is crucial to find an effective method to improve cotton yield,and one approach is to decrease the abscission of cotton bolls and buds.However,the lack of knowled...Background Cotton is an economically important crop.It is crucial to find an effective method to improve cotton yield,and one approach is to decrease the abscission of cotton bolls and buds.However,the lack of knowledge of the genetic and molecular mechanisms underlying cotton boll abscission traits has hindered genetic improvements.Results Pearson’s correlation analysis revealed a significant positive correlation between boll abscission rates 1(AR1)and boll abscission rates 2(AR2).A genome-wide association study was conducted on 145 loci that exhibited high polymorphism and were uniformly distributed across 26 chromosomes(pair).The study revealed 18,46,and 62 markers that were significantly associated with boll abscission,fiber quality,and yield traits(P<0.05),explaining 1.75%–7.13%,1.16%–9.58%,and 1.40%–5.44%of the phenotypic variation,respectively.Notably,the marker MON_SHIN-1584b was associated with the cotton boll abscission trait,whereas MON_CGR5732a was associated with cotton boll abscission and fiber quality traits.Thirteen of the marker loci identified in this study had been previously reported.Based on phenotypic effects,six typical cultivars with elite alleles related to cotton boll abscission,fiber quality,and yield traits were identified.These cultivars hold great promise for widespread utilization in breeding programs.Conclusions These results lay the foundation for understanding the molecular regulatory mechanism of cotton boll abscission and provide data for the future improvement of cotton breeding.展开更多
With the increasing complexity of production processes,there has been a growing focus on online algorithms within the domain of multivariate statistical process control(SPC).Nonetheless,conventional methods,based on t...With the increasing complexity of production processes,there has been a growing focus on online algorithms within the domain of multivariate statistical process control(SPC).Nonetheless,conventional methods,based on the assumption of complete data obtained at uniform time intervals,exhibit suboptimal performance in the presence of missing data.In our pursuit of maximizing available information,we propose an adaptive exponentially weighted moving average(EWMA)control chart employing a weighted imputation approach that leverages the relationships between complete and incomplete data.Specifically,we introduce two recovery methods:an improved K-Nearest Neighbors imputing value and the conventional univariate EWMA statistic.We then formulate an adaptive weighting function to amalgamate these methods,assigning a diminished weight to the EWMA statistic when the sample information suggests an increased likelihood of the process being out of control,and vice versa.The robustness and sensitivity of the proposed scheme are shown through simulation results and an illustrative example.展开更多
Accurate positioning is one of the essential requirements for numerous applications of remote sensing data,especially in the event of a noisy or unreliable satellite signal.Toward this end,we present a novel framework...Accurate positioning is one of the essential requirements for numerous applications of remote sensing data,especially in the event of a noisy or unreliable satellite signal.Toward this end,we present a novel framework for aircraft geo-localization in a large range that only requires a downward-facing monocular camera,an altimeter,a compass,and an open-source Vector Map(VMAP).The algorithm combines the matching and particle filter methods.Shape vector and correlation between two building contour vectors are defined,and a coarse-to-fine building vector matching(CFBVM)method is proposed in the matching stage,for which the original matching results are described by the Gaussian mixture model(GMM).Subsequently,an improved resampling strategy is designed to reduce computing expenses with a huge number of initial particles,and a credibility indicator is designed to avoid location mistakes in the particle filter stage.An experimental evaluation of the approach based on flight data is provided.On a flight at a height of 0.2 km over a flight distance of 2 km,the aircraft is geo-localized in a reference map of 11,025 km~2using 0.09 km~2aerial images without any prior information.The absolute localization error is less than 10 m.展开更多
The observation error model of the underwater acous-tic positioning system is an important factor to influence the positioning accuracy of the underwater target.For the position inconsistency error caused by consideri...The observation error model of the underwater acous-tic positioning system is an important factor to influence the positioning accuracy of the underwater target.For the position inconsistency error caused by considering the underwater tar-get as a mass point,as well as the observation system error,the traditional error model best estimation trajectory(EMBET)with little observed data and too many parameters can lead to the ill-condition of the parameter model.In this paper,a multi-station fusion system error model based on the optimal polynomial con-straint is constructed,and the corresponding observation sys-tem error identification based on improved spectral clustering is designed.Firstly,the reduced parameter unified modeling for the underwater target position parameters and the system error is achieved through the polynomial optimization.Then a multi-sta-tion non-oriented graph network is established,which can address the problem of the inaccurate identification for the sys-tem errors.Moreover,the similarity matrix of the spectral cluster-ing is improved,and the iterative identification for the system errors based on the improved spectral clustering is proposed.Finally,the comprehensive measured data of long baseline lake test and sea test show that the proposed method can accu-rately identify the system errors,and moreover can improve the positioning accuracy for the underwater target positioning.展开更多
文摘This paper discusses an optimization of operating a p ermutation circulation-type vehicle routing system (PCVRS, for short), in w hich several stages are located along by a single loop, and a fleet of vehicles travels on the loop unidirectionally and repeatedly. Traveling on the loop, each vehicle receives an object from the loading stage and then carries it to a cert ain processing stage, or receives an object from a certain processing stage and then carries it to the unloading stage per a turnaround. No passing is allowed f or the vehicles on the loop (from which the system is called permutation, and th is restriction may cause interferences between vehicles). Material handling systems such as PCVRS are actually encountered in flexible man ufacturing systems and in automated storage/retrieval systems. In this paper, we propose a heuristic algorithm for operating the PCVRS, which i ncorporates a new scheduling method for the vehicles with the SPT (shortest proc essing time) numbering of jobs and a round-robin manner of allocating jobs to t he stages, aiming to reduce interferences between the vehicles. We also give num erical results with respect to system performances attained by the heuristic. Description of the system The PCVRS consists of a set of n v vehicles V={V 1,V 2,...,V n v}, a set of n s, processing stages S p={S 1,S 2,...,S n s}, a loading stage S 0 and an unloading stage S n s +1. We denote by S=S p∪{S 0,S n s+l} the set of all the stages. The vehicles travel on a single loop unidirectionany and repeated ly. The system layout is depicted in Fig.1. There is a set of n jobs J={J 1,J 2,...,J n} to be processed b y the vehicles. Each job consists of two tasks: That is, each vehicle receives a n object from S 0 and then carries it to S l with a certain l∈{1,2, ...,n s} (a throw-in job), or receives an object from S l with a certain l∈{1,2,...,n s} and then carries it to S n s+1 (a throw-out job ) per a turnaround. The loop consists of buffer zones BZ(l) and travel zones TZ(l) (see Fig. 1). Each buffer zone BZ(l) is placed in front of stage S l, l=0,1,..., n s, n s+1, in order to avoid a collision between vehicles (i.e., the syste m adopts the so-called zone control strategy). A heuristic algorithm We develop a heuristic algorithm to obtain a good performance for the PCVRS. An operation π={A/B/C} for the PCVRS consists of three decision factors: (A) Numbering jobs Jobs are loaded into S 0 according to an assending order of job numbers. In this paper, we use the following rules to number jobs: SPT: Order jobs in the shortest processing time rule, i.e., P 1≤P 2≤...≤P n for the set of jobs J={J 1,J 2,...,J n}, rather than the FCFS numbering (i.e., number jobs in first-come-first-served order). The SPT rule intends to reduce interferences between two adjacent vehicles at stages. (B) Allocating jobs to stages For the purpose of balancing loads of processing stages, we adopt the following to allocate jobs to the stages: ORDER: Allocate n jobs to n s, processing stages by an in-order manner , i.e., let l(i) be the index of processing stage allocated job J i by ORDER, it holds that l(i)=n s+1-(i-[(i-1)/n s]n s).(1) The ORDER rule intends to process jobs parallel at stages as many as possible. (C) Scheduling vehicles The following method for scheduling vehicles under ORDER rule is already known: Fig.1 The vehicle ro uting system, PCVRS Fig.2 Mean turnaroun d times by heuristics Unchange: Assign n jobs to n v vehicles such that let k(i) be the i ndex of vehicle processing job J i, then k(i)= i-[(i-1)/n v]n v.(2) In csse of n v≥n s, mod (n v,n s)=0 or n v<n s, mod (n s,n v)=0 (mod(x,y) is the remainder of x/y), the number of interferences between vehicles is minimized at stage S 1 under Unchange sche dules, while in the other cases it is not [Lu et al. (2001a)]. Therefore, in t his paper, we develop a new scheduling method of the vehicles, denoted by Ex change, to modify Unchange schedules. Note
文摘The article describes the possibilities of application of simulation modeling for the analysis of infrastructure and technology of transport services of enterprises. The main technological and possible economic effects for the enterprises arising at performance of modeling of a transport component of their work are resulted.
文摘Machine picking in cotton is an emerging practice in India,to solve the problems of labour shortages and production costs increasing.Cotton production has been declining in recent years;however,the high density planting system(HDPS)offers a viable method to enhance productivity by increasing plant populations per unit area,optimizing resource utilization,and facilitating machine picking.Cotton is an indeterminate plant that produce excessive vegeta-tive growth in favorable soil fertility and moisture conditions,which posing challenges for efficient machine picking.To address this issue,the application of plant growth retardants(PGRs)is essential for controlling canopy architecture.PGRs reduce internode elongation,promote regulated branching,and increase plant compactness,making cotton plants better suited for machine picking.PGRs application also optimizes photosynthates distribution between veg-etative and reproductive growth,resulting in higher yields and improved fibre quality.The integration of HDPS and PGRs applications results in an optimal plant architecture for improving machine picking efficiency.However,the success of this integration is determined by some factors,including cotton variety,environmental conditions,and geographical variations.These approaches not only address yield stagnation and labour shortages but also help to establish more effective and sustainable cotton farming practices,resulting in higher cotton productivity.
基金National Natural Science Foundation of China(NSFC61773142,NSFC62303136)。
文摘When the maneuverability of a pursuer is not significantly higher than that of an evader,it will be difficult to intercept the evader with only one pursuer.Therefore,this article adopts a two-to-one differential game strategy,the game of kind is generally considered to be angle-optimized,which allows unlimited turns,but these practices do not take into account the effect of acceleration,which does not correspond to the actual situation,thus,based on the angle-optimized,the acceleration optimization and the acceleration upper bound constraint are added into the game for consideration.A two-to-one differential game problem is proposed in the three-dimensional space,and an improved multi-objective grey wolf optimization(IMOGWO)algorithm is proposed to solve the optimal game point of this problem.With the equations that describe the relative motions between the pursuers and the evader in the three-dimensional space,a multi-objective function with constraints is given as the performance index to design an optimal strategy for the differential game.Then the optimal game point is solved by using the IMOGWO algorithm.It is proved based on Markov chains that with the IMOGWO,the Pareto solution set is the solution of the differential game.Finally,it is verified through simulations that the pursuers can capture the escapee,and via comparative experiments,it is shown that the IMOGWO algorithm performs well in terms of running time and memory usage.
基金supported by the Fund for BTNYGG(NYHXGG,2023AA102)the National Natural Science Foundation of China(32260510)+3 种基金the Key Project for Science,Technology Development of Shihezi city,Xinjiang Production and Construction Crops(2022NY01)Shihezi University high-level talent research project(RCZK202337)Science and Technology Major Project of the Department of Science and Technology of Xinjiang Uygur Autonomous region(2022A03004-1)the Key Programs for Science and Technology Development in Agricultural Field of Xinjiang Production and Construction Corps。
文摘Background Cotton is a significant crop for fiber production;however,seed shape-related traits have been less investigated in comparison to fiber quality.Comprehending the genetic foundation of traits associated with seed shape is crucial for improving the seed and fiber quality in cotton.Results A total of 238 cotton accessions were evaluated in four different environments over a period of two years.Traits including thousand grain weight(TGW),aspect ratio(AR),seed length,seed width,diameter,and roundness demonstrated high heritability and significant genetic variation,as indicated by phenotypic analysis.The association analysis involved 145 simple sequence repeats(SSR)markers and identified 50 loci significantly associated with six traits related to seed shape.The markers MON_DPL0504aa and BNL2535ba were identified as influencing multiple traits,including aspect ratio and thousand grain weight.Notably,markers such as HAU2588a and MUSS422aa had considerable influence on seed diameter and roundness.The identified markers represented an average phenotypic variance between 3.92%for seed length and 16.54%for TGW.Conclusions The research finds key loci for seed shape-related traits in cotton,providing significant potential for marker-assisted breeding.These findings establish a framework for breeding initiatives focused on enhancing seed quality,hence advancing the cotton production.
基金Project(52074299)supported by the National Natural Science Foundation of ChinaProjects(2023JCCXSB02,BBJ2024083)supported by the Fundamental Research Funds for the Central Universities,China。
文摘This study proposed a new and more flexible S-shaped rock damage evolution model from a phenomenological perspective based on an improved Logistic function to describe the characteristics of the rock strain softening and damage process.Simultaneously,it established a constitutive model capable of describing the entire process of rock pre-peak compaction and post-peak strain softening deformation,considering the nonlinear effects of the initial compaction stage of rocks,combined with damage mechanics theory and effective medium theory.In addition,this research verified the rationality of the constructed damage constitutive model using results from uniaxial and conventional triaxial compression tests on Miluo granite,yellow sandstone,mudstone,and glutenite.The results indicate that based on the improved Logistic function,the theoretical damage model accurately describes the entire evolution of damage characteristics during rock compression deformation,from maintenance through gradual onset,accelerated development to deceleration and termination,in a simple and unified expression.At the same time,the constructed constitutive model can accurately simulate the stress-strain process of different rock types under uniaxial and conventional triaxial compression,and the theoretical model curve closely aligns with experimental data.Compared to existing constitutive models,the proposed model has significant advantages.The damage model parameters a,r and β have clear physical meanings and interact competitively,where the three parameters collectively determine the shape of the theoretical stress−strain curve.
基金the financial support of the National Natural Science Foundation of China(12102077,12161076)the Natural Science and Technology Program of Liaoning Province(2023-BS-061).
文摘Recovery is a crucial supporting process for carrier aircraft,where a reasonable landing scheduling is expected to guide the fleet landing safely and quickly.Currently,there is little research on this topic,and most of it neglects potential influence factors,leaving the corresponding supporting efficiency questionable.In this paper,we study the landing scheduling problem for carrier aircraft considering the effects of bolting and aerial refueling.Based on the analysis of recovery mode involving the above factors,two types of primary constraints(i.e.,fuel constraint and wake interval constraint)are first described.Then,taking the landing sequencing as decision variables,a combinatorial optimization model with a compound objective function is formulated.Aiming at an efficient solution,an improved firefly algorithm is designed by integrating multiple evolutionary operators.In addition,a dynamic replanning mechanism is introduced to deal with special situations(i.e.,the occurrence of bolting and fuel shortage),where the high efficiency of the designed algorithm facilitates the online scheduling adjustment within seconds.Finally,numerical simulations with sufficient and insufficient fuel cases are both carried out,highlighting the necessity to consider bolting and aerial refueling during the planning procedure.Simulation results reveal that a higher bolting probability,as well as extra aerial refueling operations caused by fuel shortage,will lead to longer recovery complete time.Meanwhile,due to the strong optimum-seeking capability and solution efficiency of the improved algorithm,adaptive scheduling can be generated within milliseconds to deal with special situations,significantly improving the safety and efficiency of the recovery process.An animation is accessible at bilibili.com/video/BV1QprKY2EwD.
基金supported by"the Fundamental Research Funds for the Central Universities",No.30924010503.
文摘With the development of high energy solid propellants,it is critical to evaluate the safety and power performance of solid propellants in the face of threats such as unmanned aerial vehicles(UAVs)when transporting and using them in contemporary warfare.An electric probe-type cylinder test measured the displacement-time behavior of NEPE high-energy solid propellant,and the parameters of the Jones-Wilkins-Lee(JWL)equation of state(EOS)were derived using particle swarm optimization(PSO)with the Gurney energy model.Further,the parameters of JWL-Miller EOS,determined through AUTODYN simulations,were validated by comparing airburst process simulations with experimental overpressure data.The study established a method for determining EOS parameters of high-energy propellants,achieving a high degree of accuracy.The derived parameters ensure precise modeling of propellant behavior,offering a reliable foundation for future applications in solid rocket motor performance optimization and safety assessment.
基金supported by Supported by National Key Laboratory of Cotton Bio-breeding and Integrated Utilization(CB2023C07)Xinjiang Autonomous Region"Three Agricultural"Backbone Talent Training Program(2022SNGGNT024)Xinjiang Huyanghe City Science and Technology Program(2023C08).
文摘Nitrogen(N)and phosphorus(P)are mineral nutrients essential for plant growth and development,playing a crucial role throughout the plant life cycle.Cotton,a globally significant textile crop,has a particularly high demand for N fertilizer across its developmental stages.This review explores the effects of adequate or deficient N and P levels on cotton growth phases,focusing on their influence on physiological processes and molecular mechanisms.Key topics include the regulation of N-and P-related enzymes,hormones,and genes,as well as the complex interplay of N-and P-related signaling pathways from the aspects of N-P signaling integration to regulate root development,N-P signaling integration to regulate nutrient uptake,and regulation of N-P interactions—a frontier in current research.Strategies for improving N and P use efficiency are also discussed,including developing high-efficiency cotton cultivars and identifying functional genes to enhance productivity.Generally speaking,we take model plants as a reference in the hope of coming up with new strategies for the efficient utilization of N and P in cotton.
基金National Natural Science Foundation of China(62373187)Forward-looking Layout Special Projects(ILA220591A22)。
文摘In the field of calculating the attack area of air-to-air missiles in modern air combat scenarios,the limitations of existing research,including real-time calculation,accuracy efficiency trade-off,and the absence of the three-dimensional attack area model,restrict their practical applications.To address these issues,an improved backtracking algorithm is proposed to improve calculation efficiency.A significant reduction in solution time and maintenance of accuracy in the three-dimensional attack area are achieved by using the proposed algorithm.Furthermore,the age-layered population structure genetic programming(ALPS-GP)algorithm is introduced to determine an analytical polynomial model of the three-dimensional attack area,considering real-time requirements.The accuracy of the polynomial model is enhanced through the coefficient correction using an improved gradient descent algorithm.The study reveals a remarkable combination of high accuracy and efficient real-time computation,with a mean error of 91.89 m using the analytical polynomial model of the three-dimensional attack area solved in just 10^(-4)s,thus meeting the requirements of real-time combat scenarios.
基金National Natural Science Foundation of China(Grant No.52472417)to provide fund for conducting experiments.
文摘Complex multi-area collaborative coverage path planning in dynamic environments poses a significant challenge for multi-fixed-wing UAVs(multi-UAV).This study establishes a comprehensive framework that incorporates UAV capabilities,terrain,complex areas,and mission dynamics.A novel dynamic collaborative path planning algorithm is introduced,designed to ensure complete coverage of designated areas.This algorithm meticulously optimizes the operation,entry,and transition paths for each UAV,while also establishing evaluation metrics to refine coverage sequences for each area.Additionally,a three-dimensional path is computed utilizing an altitude descent method,effectively integrating twodimensional coverage paths with altitude constraints.The efficacy of the proposed approach is validated through digital simulations and mixed-reality semi-physical experiments across a variety of dynamic scenarios,including both single-area and multi-area coverage by multi-UAV.Results show that the coverage paths generated by this method significantly reduce both computation time and path length,providing a reliable solution for dynamic multi-UAV mission planning in semi-physical environments.
基金the National Natural Science Foundation of China(Grant No.62101579).
文摘Offboard active decoys(OADs)can effectively jam monopulse radars.However,for missiles approaching from a particular direction and distance,the OAD should be placed at a specific location,posing high requirements for timing and deployment.To improve the response speed and jamming effect,a cluster of OADs based on an unmanned surface vehicle(USV)is proposed.The formation of the cluster determines the effectiveness of jamming.First,based on the mechanism of OAD jamming,critical conditions are identified,and a method for assessing the jamming effect is proposed.Then,for the optimization of the cluster formation,a mathematical model is built,and a multi-tribe adaptive particle swarm optimization algorithm based on mutation strategy and Metropolis criterion(3M-APSO)is designed.Finally,the formation optimization problem is solved and analyzed using the 3M-APSO algorithm under specific scenarios.The results show that the improved algorithm has a faster convergence rate and superior performance as compared to the standard Adaptive-PSO algorithm.Compared with a single OAD,the optimal formation of USV-OAD cluster effectively fills the blind area and maximizes the use of jamming resources.
文摘Boron is an ambitious fuel in energetic materials since its high heat release values,but its application is prohibited by low combustion efficiency and oxidization during storage.The polydopamine(PDA)was introduced into boron particles,investigating the impact of PDA content on the energetic behavior of boron.The results indicated that the PDA coating formed a fishing net structure on the surface of boron particles.The heat release results showed that the combustion calorific value of B@PDA was higher than that of the raw boron.Specifically,the actual combustion heat of boron powder in B@10%PDA increased by 38.08%.Meanwhile,the DSC peak temperature decreased by 100.65℃under similar oxidation rate compared to raw boron.Simultaneously,the B@PDA@AP and B@AP composites were prepared,and their combustion properties were evaluated.It was demonstrated that B@10%PDA@AP exhibited superior performance in terms of peak pressure and burning time,respectively.The peak pressure is 12.43 kPa more than B@AP and burning time is 2.22 times higher than B@AP.Therefore,the coating of PDA effectively inhibits the oxidization of boron during storage and enhances the energetic behavior of boron and corresponding composites.
基金Key Laboratory of Cotton Biology Open Fund(CB2022A11)National Natural Science Foundation of China(32260510)+3 种基金Innovation talent Program in Sciences and Technologies of Xinjiang Production and Construction Corps,China(2021CB028)Key Programs for Science and Technology Development of Shihezi city,Xinjiang Production and Construction Crops,China(2022NY01)Science and Technology Planning of Shuanghe city,Xinjiang Production and Construction Crops,China(2021NY02)key programs for science and technology development in agricultural field of Xinjiang Production and Construction Corps,China.
文摘Background Cotton is an economically important crop.It is crucial to find an effective method to improve cotton yield,and one approach is to decrease the abscission of cotton bolls and buds.However,the lack of knowledge of the genetic and molecular mechanisms underlying cotton boll abscission traits has hindered genetic improvements.Results Pearson’s correlation analysis revealed a significant positive correlation between boll abscission rates 1(AR1)and boll abscission rates 2(AR2).A genome-wide association study was conducted on 145 loci that exhibited high polymorphism and were uniformly distributed across 26 chromosomes(pair).The study revealed 18,46,and 62 markers that were significantly associated with boll abscission,fiber quality,and yield traits(P<0.05),explaining 1.75%–7.13%,1.16%–9.58%,and 1.40%–5.44%of the phenotypic variation,respectively.Notably,the marker MON_SHIN-1584b was associated with the cotton boll abscission trait,whereas MON_CGR5732a was associated with cotton boll abscission and fiber quality traits.Thirteen of the marker loci identified in this study had been previously reported.Based on phenotypic effects,six typical cultivars with elite alleles related to cotton boll abscission,fiber quality,and yield traits were identified.These cultivars hold great promise for widespread utilization in breeding programs.Conclusions These results lay the foundation for understanding the molecular regulatory mechanism of cotton boll abscission and provide data for the future improvement of cotton breeding.
文摘With the increasing complexity of production processes,there has been a growing focus on online algorithms within the domain of multivariate statistical process control(SPC).Nonetheless,conventional methods,based on the assumption of complete data obtained at uniform time intervals,exhibit suboptimal performance in the presence of missing data.In our pursuit of maximizing available information,we propose an adaptive exponentially weighted moving average(EWMA)control chart employing a weighted imputation approach that leverages the relationships between complete and incomplete data.Specifically,we introduce two recovery methods:an improved K-Nearest Neighbors imputing value and the conventional univariate EWMA statistic.We then formulate an adaptive weighting function to amalgamate these methods,assigning a diminished weight to the EWMA statistic when the sample information suggests an increased likelihood of the process being out of control,and vice versa.The robustness and sensitivity of the proposed scheme are shown through simulation results and an illustrative example.
文摘Accurate positioning is one of the essential requirements for numerous applications of remote sensing data,especially in the event of a noisy or unreliable satellite signal.Toward this end,we present a novel framework for aircraft geo-localization in a large range that only requires a downward-facing monocular camera,an altimeter,a compass,and an open-source Vector Map(VMAP).The algorithm combines the matching and particle filter methods.Shape vector and correlation between two building contour vectors are defined,and a coarse-to-fine building vector matching(CFBVM)method is proposed in the matching stage,for which the original matching results are described by the Gaussian mixture model(GMM).Subsequently,an improved resampling strategy is designed to reduce computing expenses with a huge number of initial particles,and a credibility indicator is designed to avoid location mistakes in the particle filter stage.An experimental evaluation of the approach based on flight data is provided.On a flight at a height of 0.2 km over a flight distance of 2 km,the aircraft is geo-localized in a reference map of 11,025 km~2using 0.09 km~2aerial images without any prior information.The absolute localization error is less than 10 m.
基金This work was supported by the National Natural Science Foundation of China(61903086,61903366,62001115)the Natural Science Foundation of Hunan Province(2019JJ50745,2020JJ4280,2021JJ40133)the Fundamentals and Basic of Applications Research Foundation of Guangdong Province(2019A1515110136).
文摘The observation error model of the underwater acous-tic positioning system is an important factor to influence the positioning accuracy of the underwater target.For the position inconsistency error caused by considering the underwater tar-get as a mass point,as well as the observation system error,the traditional error model best estimation trajectory(EMBET)with little observed data and too many parameters can lead to the ill-condition of the parameter model.In this paper,a multi-station fusion system error model based on the optimal polynomial con-straint is constructed,and the corresponding observation sys-tem error identification based on improved spectral clustering is designed.Firstly,the reduced parameter unified modeling for the underwater target position parameters and the system error is achieved through the polynomial optimization.Then a multi-sta-tion non-oriented graph network is established,which can address the problem of the inaccurate identification for the sys-tem errors.Moreover,the similarity matrix of the spectral cluster-ing is improved,and the iterative identification for the system errors based on the improved spectral clustering is proposed.Finally,the comprehensive measured data of long baseline lake test and sea test show that the proposed method can accu-rately identify the system errors,and moreover can improve the positioning accuracy for the underwater target positioning.