期刊文献+
共找到207篇文章
< 1 2 11 >
每页显示 20 50 100
基于IWOA-LSTM算法的预应力钢筋混凝土梁损伤识别 被引量:5
1
作者 范旭红 章立栋 +2 位作者 杨帆 李青 郁董凯 《江苏大学学报(自然科学版)》 CAS 北大核心 2025年第1期105-112,119,共9页
为准确识别桥梁结构的损伤程度,制作了桥梁的关键构件——预应力钢筋混凝土梁,进行三点弯曲加载试验.收集了损伤破坏全过程的声发射(AE)信号,通过AE信号参数分析,将梁的损伤破坏过程划分为4个典型阶段.构建了长短时记忆神经网络(LSTM)模... 为准确识别桥梁结构的损伤程度,制作了桥梁的关键构件——预应力钢筋混凝土梁,进行三点弯曲加载试验.收集了损伤破坏全过程的声发射(AE)信号,通过AE信号参数分析,将梁的损伤破坏过程划分为4个典型阶段.构建了长短时记忆神经网络(LSTM)模型,根据经验设置LSTM模型的超参数容易导致网络陷入局部最优而影响了分类结果,提出采用Sine混沌映射和自适应权重来改进鲸鱼优化算法(WOA),对LSTM进行超参数寻优.设计了IWOA-LSTM算法模型,训练识别试验梁各损伤阶段的AE信号特征参数.定型网络结构,并识别同种工况下其他梁的AE信号.结果表明:IWOA-LSTM算法模型识别准确率均超过或接近92%,相较于普通LSTM模型,IWOA-LSTM模型识别准确率提高了约7%. 展开更多
关键词 预应力钢筋混凝土梁 声发射 损伤识别 长短时记忆神经网络 改进的鲸鱼优化算法
在线阅读 下载PDF
基于WOA-BP神经网络的热式流量测量技术研究
2
作者 刘升虎 刘太逸 +3 位作者 冉建立 郭会强 邢亚敏 梁钊睿 《仪表技术与传感器》 北大核心 2025年第4期50-54,共5页
针对热式流量测量方法易受环境因素影响的问题,构建了一种WOA-BP神经网络流量预测模型,以热式传感器采样电压值及含水率测量信号作为模型输入量,以预测流量值作为输出值,进行温度补偿,利用鲸鱼群算法进行网络初值参数优化,得到优化后的... 针对热式流量测量方法易受环境因素影响的问题,构建了一种WOA-BP神经网络流量预测模型,以热式传感器采样电压值及含水率测量信号作为模型输入量,以预测流量值作为输出值,进行温度补偿,利用鲸鱼群算法进行网络初值参数优化,得到优化后的补偿模型,提高了算法的收敛速度。实验结果表明:优化后的神经网络模型在热式流量测量方法中具有较好的流量预测效果,WOA-BP网络模型R~2达到0.989,比传统BP模型的预测精确性和鲁棒性更高,在对油井产液量预测方面具有实用价值。 展开更多
关键词 鲸鱼优化算法(woa) BP神经网络 热式流量测量方法 温度补偿
在线阅读 下载PDF
基于WOA-SA-RBF模型的西北内陆河流域突发水污染安全评价
3
作者 靳春玲 田亮 +2 位作者 贡力 李战江 蔡惠春 《科学技术与工程》 北大核心 2025年第23期10075-10083,共9页
为保障西北内陆河流域生态安全,急需开展西北地区内陆河流域突发水污染安全评价。聚焦于疏勒河流域敦煌区域,通过运用压力-状态-响应(pressure-state-response,PSR)模型框架,基于2017—2022年该流域的历史数据,采用一种融合鲸鱼优化与... 为保障西北内陆河流域生态安全,急需开展西北地区内陆河流域突发水污染安全评价。聚焦于疏勒河流域敦煌区域,通过运用压力-状态-响应(pressure-state-response,PSR)模型框架,基于2017—2022年该流域的历史数据,采用一种融合鲸鱼优化与模拟退火策略的径向基(whale optimization algorithm-simulated annealing-radial basis function,WOA-SA-RBF)神经网络模型,来评估该区域的突发水污染风险等级,并与粒子群优化算法-径向基(particle swarm optimization-radial basis function,PSO-RBF),遗传优化算法-径向基(genetic algorithm-radial basis function,GA-RBF)神经网络模型及传统评价方法优劣解距离法(technique for order preference by similarity to ideal solution,TOPSIS)法的评价结果进行对比分析。分析结果显示:疏勒河敦煌段在2017—2018年突发水污染风险水平被评定为Ⅱ级,而2019—2022年则降为Ⅲ级,显示出风险逐渐下降并趋向稳定的趋势;结果与TOPSIS法分析结果一致,与流域治理情况相符,从而有效验证本文评估模型的精度。研究成果有助于提高疏勒河流域针对突发水污染事件的预防控制能力与紧急应对效率,对西北内陆河流域的水资源管理以及祁连山区域的生态保护工作具有不可忽视的重要意义。 展开更多
关键词 鲸鱼优化算法(woa) 模拟退火算法(SA) 径向基神经网络模型(RBF) 突发水污染 安全评价 内陆河
在线阅读 下载PDF
基于WOA-IC优化神经网络的隧道爆破振动预测研究 被引量:1
4
作者 高宇璠 傅洪贤 《振动与冲击》 北大核心 2025年第4期229-237,共9页
为了提高爆破振动预测精度,提出了一种鲸鱼优化算法(whale optimization algorithm,WOA)和信息准则(information criterion,IC)优化的人工神经网络(artificial neural network,ANN)爆破振动预测模型。根据二维指标变量法将地质参数定量... 为了提高爆破振动预测精度,提出了一种鲸鱼优化算法(whale optimization algorithm,WOA)和信息准则(information criterion,IC)优化的人工神经网络(artificial neural network,ANN)爆破振动预测模型。根据二维指标变量法将地质参数定量化,建立了包括3个定量参数和10个定性参数的更完整的数据集。利用信息准则对模型复杂度的反馈,构建了一个提高模型泛化能力的双层优化结构,分析改进ANN模型的激活函数和训练算法最优组合,并引入鲸鱼算法优化模型初始权值和阈值的选取,降低模型输出结果的偏差和波动。对比分析WOA-IC-ANN模型与传统经验公式、ANN模型、IC-ANN模型、WOA-ANN模型预测结果的差异。研究表明,WOA-IC-ANN模型的预测结果与实际吻合更好,误差显著降低,具有较好的泛化能力。研究成果可用于隧道爆破工程的振动预测,并为类似工作提供借鉴和参考。 展开更多
关键词 爆破振动 预测模型 信息准则(IC) 鲸鱼优化算法(woa) 人工神经网络(ANN)
在线阅读 下载PDF
基于WOA-LQR的智能车辆路径跟踪控制
5
作者 张闯 赵奉奎 +1 位作者 张涌 张伟 《南京信息工程大学学报》 北大核心 2025年第3期352-362,共11页
针对无人驾驶车辆在特殊行驶工况(冰雪路面、雨天路面、高速换道)下路径跟踪控制精度差的问题,本文设计了一种基于鲸鱼优化算法(Whale Optimization Algorithm,WOA)的LQR控制器(WOA-LQR).首先,基于二自由度车辆动力学模型建立跟踪误差模... 针对无人驾驶车辆在特殊行驶工况(冰雪路面、雨天路面、高速换道)下路径跟踪控制精度差的问题,本文设计了一种基于鲸鱼优化算法(Whale Optimization Algorithm,WOA)的LQR控制器(WOA-LQR).首先,基于二自由度车辆动力学模型建立跟踪误差模型,以此为基础设计离散LQR控制器,并采用前馈控制消除由于系统简化带来的误差.同时,为解决固定权重系数下的LQR控制器对特殊行驶工况适应性差导致跟踪精度低、车辆失稳的问题,在以横向误差、航向角误差作为评价指标的基础上,考虑车辆侧向加速度和前轮转角对车辆维持稳定的影响,并对评价指标设定相应的权重系数,设计了目标值最小的适应度函数,提出一种基于鲸鱼算法优化的LQR自适应权重系数调节策略.最后,通过Carsim/Simulink联合仿真对WOA-LQR控制器在不同工况下进行路径跟踪仿真实验.结果表明:本文提出的控制策略在复杂行驶工况下有着良好的跟踪效果,显著提升了车辆在路径跟踪过程中的控制精度,具有较强的鲁棒性. 展开更多
关键词 无人驾驶车辆 路径跟踪控制 线性二次型调节器 前馈控制 鲸鱼优化算法
在线阅读 下载PDF
基于XGBoost-MSIWOA-LSTM的车辆油耗优化预测模型
6
作者 师国东 胡明茂 +3 位作者 宫爱红 龚青山 郭庆贺 谭浩 《计算机集成制造系统》 北大核心 2025年第9期3467-3484,共18页
为有效预测车辆油耗,提高燃油经济性,促进节能减排,提出一种基于XGBoost-MSIWOA-LSTM的车辆油耗优化预测模型。该模型首先采用极端梯度提升树(XGBoost)算法提取车辆油耗特征,以优化模型的输入变量,提高模型的泛化性和鲁棒性。然后,利用... 为有效预测车辆油耗,提高燃油经济性,促进节能减排,提出一种基于XGBoost-MSIWOA-LSTM的车辆油耗优化预测模型。该模型首先采用极端梯度提升树(XGBoost)算法提取车辆油耗特征,以优化模型的输入变量,提高模型的泛化性和鲁棒性。然后,利用多策略改进的鲸鱼优化算法(MSIWOA)对长短期记忆神经网络(LSTM)中的超参数进行自适应寻优,并将优化后的超参数代入LSTM中对车辆油耗进行建模预测。结合实际车辆油耗算例进行对比实验,结果表明,相对于其他对比模型,XGBoost-MSIWOA-LSTM预测模型预测精度更高,对降低车辆油耗具有一定的指导意义。 展开更多
关键词 油耗预测 极端梯度提升树 多策略改进的鲸鱼优化算法 长短期记忆神经网络 自适应寻优
在线阅读 下载PDF
基于WOA-Elman神经网络的城市固废焚烧炉主蒸汽流量软测量 被引量:2
7
作者 梁伟平 薛文雅 +2 位作者 马靖宁 陈联宏 许洪滨 《控制工程》 北大核心 2025年第2期201-207,共7页
主蒸汽流量对于垃圾焚烧炉平稳运行起着重要的作用。目前,主蒸汽流量机理计算模型复杂,且准确度不高。针对这一问题,应用一种基于鲸鱼优化算法(Whale optimization algorithm,WOA)和Elman神经网络的焚烧炉主蒸汽流量软测量模型。首先,... 主蒸汽流量对于垃圾焚烧炉平稳运行起着重要的作用。目前,主蒸汽流量机理计算模型复杂,且准确度不高。针对这一问题,应用一种基于鲸鱼优化算法(Whale optimization algorithm,WOA)和Elman神经网络的焚烧炉主蒸汽流量软测量模型。首先,根据相关性分析筛选相关变量;再通过WOA优化Elman神经网络参数;最后,建立WOA-Elman神经网络主蒸汽流量软测量模型。结果表明,与其他经典软测量模型相比,建立的WOA-Elman神经网络软测量模型准确度更高,误差更小,能够有效地应用于主蒸汽流量软测量中。 展开更多
关键词 垃圾焚烧炉 主蒸汽流量 软测量 ELMAN神经网络 鲸鱼优化算法
在线阅读 下载PDF
基于WOA-IGWO-LSTM的作业车间实时调度
8
作者 郑华丽 魏光艳 +2 位作者 孙东 王明君 叶春明 《机床与液压》 北大核心 2025年第2期54-63,共10页
针对作业车间实时调度问题,基于长短期记忆(LSTM)神经网络,提出WOA-IGWO-LSTM算法。根据调度问题和算法设计三元样本数据结构,以性能指标和生产系统状态属性作为输入特征,输出当前决策点的最佳调度规则。利用鲸鱼优化算法(WOA)对输入特... 针对作业车间实时调度问题,基于长短期记忆(LSTM)神经网络,提出WOA-IGWO-LSTM算法。根据调度问题和算法设计三元样本数据结构,以性能指标和生产系统状态属性作为输入特征,输出当前决策点的最佳调度规则。利用鲸鱼优化算法(WOA)对输入特征进行降维,以提高模型泛化能力和准确性。引入非线性收敛因子设计一种改进灰狼算法(IGWO)用于调节LSTM参数,提高算法实用性。最后,通过对比试验验证了WOA、IGWO以及WOA-IGWO-LSTM的有效性,并利用工业案例数据验证了WOA-IGWO-LSTM对于解决作业车间实时调度问题的有效性和可行性。 展开更多
关键词 长短期记忆(LSTM)神经网络 鲸鱼优化算法(woa) 改进灰狼算法 作业车间实时调度
在线阅读 下载PDF
基于H-WOA-GWO和区段修正策略的配电网故障定位研究
9
作者 宋铭楷 朱成杰 《广西师范大学学报(自然科学版)》 北大核心 2025年第4期24-37,共14页
分布式电源的并网和逐渐扩大的配电网规模使得传统故障定位方法难度增大。针对这一问题,本文提出一种多策略改进的混合鲸鱼灰狼优化算法(H-WOA-GWO)结合区段修正的故障定位方法。首先将WOA包围收缩和螺旋更新机制融入GWO,构建混合算法... 分布式电源的并网和逐渐扩大的配电网规模使得传统故障定位方法难度增大。针对这一问题,本文提出一种多策略改进的混合鲸鱼灰狼优化算法(H-WOA-GWO)结合区段修正的故障定位方法。首先将WOA包围收缩和螺旋更新机制融入GWO,构建混合算法来有效改善收敛速度;然后运用非线性收敛因子、改进领导狼位置和自适应狩猎权重来增强搜索自适应性、全局开发能力和缩短迭代时间。建立不同定位模型选择基于评价函数值法构建目标函数,通过分析伪最优解潜在信息提出区段修正策略。经仿真验证,三重故障下:混合算法正确率高于单一算法11个百分点,迭代时间可节约0.3267 s;结合区段修正策略后正确率和求解时间较单纯混合算法分别提高17个百分点和74.88%,表明改进混合算法和修正策略可准确识别多重和多畸变节点故障,具备高效的求解速度和稳定性。 展开更多
关键词 灰狼优化算法 鲸鱼优化算法 容错性 分布式电源 故障定位
在线阅读 下载PDF
基于WOA-RF算法的船舶柴发配电系统故障诊断
10
作者 李维波 高峰 +3 位作者 肖朋 黄康政 阮道杰 高俊卓 《中国舰船研究》 北大核心 2025年第2期77-88,共12页
[目的]船舶柴发配电系统对航行稳定性至关重要,海洋工作环境的严苛性致使其故障频发,为此提出一种基于鲸鱼优化算法的优化随机森林(WOA-RF)算法,用以开展船舶柴发配电系统故障诊断。[方法]首先,基于Matlab/Simulink仿真软件搭建船舶柴... [目的]船舶柴发配电系统对航行稳定性至关重要,海洋工作环境的严苛性致使其故障频发,为此提出一种基于鲸鱼优化算法的优化随机森林(WOA-RF)算法,用以开展船舶柴发配电系统故障诊断。[方法]首先,基于Matlab/Simulink仿真软件搭建船舶柴发配电系统模型,采集其故障工况和正常工况的数据;然后,对收集的数据进行预处理以提取时域特征,并使用随机森林算法提取重要特征,从而减少数据维度;最后,使用WOA优化后的随机森林模型对船舶柴发配电系统运行数据进行故障识别、诊断和分类。[结果]仿真模拟试验表明:采用WOA-RF算法识别故障状态和正常状态的准确率为100%,区分12种故障类型的诊断准确率为98.26%;在原始数据集中,与9种不同算法对比,WOA-RF算法的准确率最低提升了4.86%,最高提升了34.37%;在添加10dB噪声数据后,与6种不同算法对比,WOA-RF算法的准确率最低提升了2.43%,最高提升了18.40%。[结论]基于WOA-RF算法的故障诊断方法在复杂海洋环境下展示了优异的准确性和鲁棒性,结果可为船舶电力系统故障的可靠识别提供参考。 展开更多
关键词 船舶柴发配电系统 故障分析 故障诊断 鲸鱼优化算法 随机森林算法 SIMULINK模型 特征提取
在线阅读 下载PDF
基于WOA-GRU模型的煤泥浮选智能控制研究
11
作者 窦治衡 王然风 +3 位作者 秦新凯 柴宇青 李品钰 刘舒通 《工矿自动化》 北大核心 2025年第4期153-159,168,共8页
由于浮选过程机理复杂,难以满足先进过程控制的需求,基于系统辨识方法进行建模,并针对传统辨识方法拟合度较低的问题,提出了一种基于鲸鱼优化算法(WOA)与门控循环单元(GRU)(WOA-GRU)的系统辨识模型。该模型利用GRU有效应对浮选过程中存... 由于浮选过程机理复杂,难以满足先进过程控制的需求,基于系统辨识方法进行建模,并针对传统辨识方法拟合度较低的问题,提出了一种基于鲸鱼优化算法(WOA)与门控循环单元(GRU)(WOA-GRU)的系统辨识模型。该模型利用GRU有效应对浮选过程中存在的时滞特性,通过WOA对GRU网络参数进行优化,进一步提高了模型的辨识精度。考虑到现有选煤厂普遍使用单输入单输出的PID控制器,难以应对多输入多输出系统,将模型预测控制(MPC)引入实际生产现场,以更好地解决浮选过程中多变量耦合问题。基于代池坝选煤厂的生产数据,分别对WOA-GRU和NARX 2种辨识模型进行了MPC仿真,结果表明,WOA-GRU模型的拟合精度较NARX模型高51.84%,引入MPC后,WOA-GRU模型可将灰分波动控制在设定值的±4%内,优于NARX模型。现场试运行结果表明,灰分波动幅度位于5%~10%的数据较引入MPC前占比减少了10.8%,大于10%的数据占比则减少了3.9%,说明WAO-GRU模型不仅具备更高的精度与稳定性,而且能够减小灰分的波动,为煤泥浮选过程的智能化控制与应用提供了参考。 展开更多
关键词 煤泥浮选 系统辨识 模型预测控制 鲸鱼优化算法 门控循环单元 煤泥灰分
在线阅读 下载PDF
基于IWOA-SVR的锂离子电池健康状态在线快速检测 被引量:1
12
作者 陈洋 黄江东 +2 位作者 余春雷 谢基 姜伟 《分析测试学报》 北大核心 2025年第3期402-410,共9页
该文提出了一种融合改进鲸鱼优化算法与支持向量回归(IWOA-SVR)的锂离子电池健康状态(SOH)检测评估方法。首先收集不同充放电策略下的充放电数据,并提取关键电池老化特征参数;然后运用皮尔逊相关性分析验证了特征参数与SOH间的强相关性... 该文提出了一种融合改进鲸鱼优化算法与支持向量回归(IWOA-SVR)的锂离子电池健康状态(SOH)检测评估方法。首先收集不同充放电策略下的充放电数据,并提取关键电池老化特征参数;然后运用皮尔逊相关性分析验证了特征参数与SOH间的强相关性,算法在传统鲸鱼优化算法中融入自适应权重调整机制与Levy飞行策略,有效克服了传统方法在线评估SOH时误差偏大的问题。最后,采用恒流恒压充电与恒流充电两种典型工况下的实验测试数据进行验证,结果表明IWOA-SVR检测方法具有更高的稳定性和准确性,最大误差可控制在1.4%以内。同时,在平均绝对百分比误差(MAPE)和均方根误差(RMSE)两项关键评估指标上,IWOA-SVR均显著优于对比算法,充分证明了其在锂离子电池SOH在线检测中的高精度与强鲁棒性。 展开更多
关键词 锂离子电池 改进鲸鱼优化算法 支持向量回归 电池健康状态检测
在线阅读 下载PDF
基于WOA优化FNN-PID的单晶硅加热炉炉温控制
13
作者 周佳凯 张洪 《半导体技术》 CAS 北大核心 2025年第1期86-94,共9页
针对单晶硅加热炉炉温控制的大惯性、强耦合、长调节时间等问题,提出了基于鲸鱼优化算法(WOA)的优化模糊神经网络(FNN)比例-积分-微分(PID)算法。通过测试实验装置的温度推算出模型表达式,采用WOA进行选代寻优,得到合适的PID参数,利用FN... 针对单晶硅加热炉炉温控制的大惯性、强耦合、长调节时间等问题,提出了基于鲸鱼优化算法(WOA)的优化模糊神经网络(FNN)比例-积分-微分(PID)算法。通过测试实验装置的温度推算出模型表达式,采用WOA进行选代寻优,得到合适的PID参数,利用FNN对PID参数进行实时调整,以实现动态解耦。通过仿真软件进行仿真验证,并在搭建的模型上分别进行阶跃响应实验和信号跟随实验。仿真结果表明,相较于传统的PID算法和FNN-PID算法,基于WOA的优化FNN-PID算法有效提升了系统的升温速度且无超调。对加热炉进行升温实验,结果表明温度超调量最高为0.9℃,恒温区温控精度保持在±0.3℃,表明该方法可有效提升系统升温速度和稳定性。 展开更多
关键词 多温区温度控制 鲸鱼优化算法(woa) 模糊神经网络(FNN) 比例-积分-微分(PID) 单晶硅加热炉
在线阅读 下载PDF
基于WOA-BP模型的船舶横摇运动极短期预报
14
作者 牟新宇 胡丽芬 +2 位作者 姜逸凡 孔梦宇 刘洁 《舰船科学技术》 北大核心 2025年第16期83-90,共8页
为了提高船舶在随机海况下运动的预测精度,本文提出一种基于鲸鱼优化算法(Whale Optimization Algorithm,WOA)优化的BP神经网络(WOA-BP)模型,用于船舶横摇运动的极短期预报。该模型在传统BP神经网络的基础上,融合了WOA的高效全局搜索能... 为了提高船舶在随机海况下运动的预测精度,本文提出一种基于鲸鱼优化算法(Whale Optimization Algorithm,WOA)优化的BP神经网络(WOA-BP)模型,用于船舶横摇运动的极短期预报。该模型在传统BP神经网络的基础上,融合了WOA的高效全局搜索能力,以优化网络参数,从而提升预测的准确性和收敛速度。通过对一艘17000 DWT油船运动的极短期预测,验证了WOA-BP模型在船舶横摇角、横摇角速度及横摇角加速度预测方面的高精度和泛化能力。通过与AQWA软件计算结果的对比分析,表明WOA-BP模型的预测频率响应与AQWA结果具有高度一致性,且预测性能显著优于传统BP神经网络,进一步验证了所提方法在船舶横摇预测方面的准确性和可靠性。本研究可望为船舶运动预测和控制提供一定的理论基础。 展开更多
关键词 BP神经网络 鲸鱼优化算法 横摇运动 运动预测 频率响应
在线阅读 下载PDF
基于1DCNN-IWOA-SVM的齿轮箱故障诊断方法研究
15
作者 贾丽臻 雷欣然 李耀华 《机械设计》 北大核心 2025年第7期98-106,共9页
齿轮箱作为航空发动机重要的传动装置,工作环境恶劣,导致振动信号呈多种信息叠加难以区分。针对齿轮箱故障特征难以提取、故障难以识别的问题,提出一种基于一维卷积神经网络结合改进鲸鱼优化支持向量机的航空发动机齿轮箱故障诊断方法,... 齿轮箱作为航空发动机重要的传动装置,工作环境恶劣,导致振动信号呈多种信息叠加难以区分。针对齿轮箱故障特征难以提取、故障难以识别的问题,提出一种基于一维卷积神经网络结合改进鲸鱼优化支持向量机的航空发动机齿轮箱故障诊断方法,实现航空发动机齿轮箱故障快速、精准诊断。使用一维卷积神经通过其内置的卷积和池化对振动信号进行故障特征提取,在鲸鱼优化算法中引入混沌映射、非线性因子和自适应权重对其进行改进;使用改进后的鲸鱼优化算法对支持向量机进行参数寻优,再将一维卷积神经网络提取的故障特征输入到经改进鲸鱼优化参数后的支持向量机中进行故障诊断。仿真结果表明:所提的故障诊断模型对齿轮箱故障具有良好的诊断效果,与其他方法相比效果更好、泛化能力更强。 展开更多
关键词 齿轮箱 故障诊断 一维卷积神经网络 改进鲸鱼优化算法 支持向量机
在线阅读 下载PDF
基于IWOA-BERT的磨煤机故障预警
16
作者 段明达 张胜 《振动与冲击》 北大核心 2025年第11期288-294,共7页
实现磨煤机的故障预警技术可以降低事故发生率,针对其运行中随机扰动多,且故障早期阶段不易判断的特点,提出了一种基于改进鲸鱼算法优化BERT(bidirectional encoder representations from transformers)模型的故障预警方法。首先,通过... 实现磨煤机的故障预警技术可以降低事故发生率,针对其运行中随机扰动多,且故障早期阶段不易判断的特点,提出了一种基于改进鲸鱼算法优化BERT(bidirectional encoder representations from transformers)模型的故障预警方法。首先,通过改进传统鲸鱼算法的收敛因子和引入高斯变异算子来增强算法的寻优能力;其次,选取与磨煤机故障相关的特征参数作为建模变量,利用改进鲸鱼算法优化BERT模型的超参数,建立故障预警模型;然后,计算正常状态数据中每个滑动窗口的相似度均值,选取最小值乘以阈值系数确定预警阈值;最后,根据专家系统推理预警时刻的故障类型并给出检修指导。将所提方法应用于某350 MW机组磨煤机的运行中,结果表明模型的预测准确率高,且能提前24 s给出预警信息,为工程应用提供了参考。 展开更多
关键词 磨煤机 故障预警 BERT算法 改进鲸鱼优化算法(Iwoa) 专家系统
在线阅读 下载PDF
基于IWOA-LightGBM的煤自燃程度预测方法研究
17
作者 臧燕杰 《中国安全科学学报》 北大核心 2025年第S1期64-70,共7页
为提升煤自燃预测精度,提出基于改进鲸鱼优化算法(IWOA)与轻量级梯度提升机(LightGBM)融合的预测模型。首先,通过SPSS 27分析煤自燃程序升温试验中指标气体浓度的相关性,采用核主成分分析法(KPCA)提取主成分数据;然后,针对传统鲸鱼算法(... 为提升煤自燃预测精度,提出基于改进鲸鱼优化算法(IWOA)与轻量级梯度提升机(LightGBM)融合的预测模型。首先,通过SPSS 27分析煤自燃程序升温试验中指标气体浓度的相关性,采用核主成分分析法(KPCA)提取主成分数据;然后,针对传统鲸鱼算法(WOA)易陷入局部最优的问题,引入Circle混沌映射、自适应权重及最优领域扰动策略改进其全局搜索能力,进而优化LightGBM超参数以提升预测精度并抑制过拟合;最后,将该模型应用于新疆沙吉海煤矿实际预测场景。结果表明:IWOA-LightGBM模型相较于其他模型,在测试样本中的准确率A分别提高13.33%、26.66%、20%、20%、13.33%;精确率P分别提高12.23%、24.45%、18.89%、18.89%、12.23%;召回率R分别提高13.1%、23.02%、18.1%、16.07%、10.56%;F_( 1)分别提高12.56%、23.79%、18.52%、17.58%、13.15%。模型在复杂条件下的可靠性与稳定性,展现出优于传统模型的泛化性与鲁棒性,能够为矿井煤自燃灾害预警提供了新的技术方案。 展开更多
关键词 煤自燃 改进鲸鱼优化算法(Iwoa) 轻量级梯度提升机(LightGBM) 核主成分分析法(KPCA) 预测模型
在线阅读 下载PDF
基于AMOWOA的区域综合能源系统运行优化调度 被引量:4
18
作者 韩永明 王新鲁 +3 位作者 耿志强 朱群雄 毕帅 张红斌 《自动化学报》 EI CAS CSCD 北大核心 2024年第3期576-588,共13页
目前,智能优化算法已广泛应用于工程优化中,在当前多能耦合与互补的能源发展趋势下,仅考虑系统经济指标的单目标优化模式已经不再适用于目前区域综合能源系统(Integrated energy system, IES)的运行优化调度,需要研究一种多目标运行策... 目前,智能优化算法已广泛应用于工程优化中,在当前多能耦合与互补的能源发展趋势下,仅考虑系统经济指标的单目标优化模式已经不再适用于目前区域综合能源系统(Integrated energy system, IES)的运行优化调度,需要研究一种多目标运行策略来解决区域综合能源系统的运行优化调度问题.首先综合考虑经济与能源利用两个指标并结合商业住宅区域的特性,以系统日运行收益和一次能源利用率为优化目标构建商业住宅区域综合能源系统多目标运行优化调度模型.其次由于传统多目标智能优化算法缺乏一种最优解综合评价方法,基于非支配排序以及拥挤度计算的多目标算法框架,提出一种利用模糊一致矩阵选取全局最优解的多目标鲸鱼优化算法(A multi-objective whale optimization algorithm, AMOWOA),并将提出算法对商住区域综合能源系统多目标运行优化调度模型进行求解.最后以华东某商业住宅区域综合能源系统为例进行仿真,验证了该方法的有效性和可行性. 展开更多
关键词 多目标优化 综合能源系统 动态层次分析 鲸鱼优化算法
在线阅读 下载PDF
基于WOA-XGBoost模型的电阻点焊熔核直径预测算法 被引量:1
19
作者 郑银环 宋宣科 +1 位作者 卢杰 丁刚强 《热加工工艺》 北大核心 2024年第24期53-60,共8页
电阻点焊是一个多变量相互作用的复杂物理过程,点焊质量容易受很大的不确定性影响,因此本文提出了结合WOA优化算法和XGBoost算法进行电阻点焊熔核直径预测。该模型将主要的工艺参数和板材厚度作为模型的特征输入,将超声波检测的焊点熔... 电阻点焊是一个多变量相互作用的复杂物理过程,点焊质量容易受很大的不确定性影响,因此本文提出了结合WOA优化算法和XGBoost算法进行电阻点焊熔核直径预测。该模型将主要的工艺参数和板材厚度作为模型的特征输入,将超声波检测的焊点熔核直径作为输出,构建了一个包含102个由7个输入属性组成的实验实例的数据库,用于训练和测试XGBoost回归模型;利用WOA优化算法寻找XGBoost的最优结构,并对WOA优化算法进行改进以提高模型预测准确性。结果表明,WOA-XGBoost模型相较于其他单一机器学习模型具有更高的预测精度。该组合模型可以帮助企业分析影响熔核直径大小的特征因素,同时为调节工艺参数提供理论依据,有望在汽车焊接过程中发挥重要作用。 展开更多
关键词 电阻点焊 集成学习 woa优化算法 熔核直径
在线阅读 下载PDF
基于多源信息融合和WOA-CNN-LSTM的外脚手架隐患分类预警研究 被引量:8
20
作者 赵江平 张雪莹 侯刚 《安全与环境学报》 CAS CSCD 北大核心 2024年第3期933-942,共10页
面对施工现场外脚手架隐患信息的多样性,传统的基于传感器监测的单一信号预警研究存在容错力不佳、含有信息有限等问题。针对施工现场外脚手架“图像+监测”数据,提出一种基于数据层和特征层信息融合的脚手架隐患分类预警方法。首先,利... 面对施工现场外脚手架隐患信息的多样性,传统的基于传感器监测的单一信号预警研究存在容错力不佳、含有信息有限等问题。针对施工现场外脚手架“图像+监测”数据,提出一种基于数据层和特征层信息融合的脚手架隐患分类预警方法。首先,利用Revit三维建模软件建立外脚手架实体模型,对不同初始隐患下的外脚手架进行有限元分析,划分隐患预警等级;其次,利用无迹卡尔曼滤波算法(Unscented Kalman Filter,UKF)及卷积长短时记忆网络(Convolutional Neural Network-Long Short Term Memory Network,CNN-LSTM)实现脚手架同类信息数据层融合及异类信息特征层融合;最后,通过实时收集西安市某在建项目落地式双排扣件式钢管脚手架隐患信息,对其进行分类预警,并使用鲸鱼优化算法(Whale Optimization Algorithm,WOA)对CNN-LSTM网络进行参数优化,发现隐藏节点个数为30、学习率为0.0072、正则化系数为1×10^(-4)时分类效果最佳,优化后预警精度达到了91.4526%。通过可视化WOA-CNN-LSTM、CNN-LSTM、CNN-SVM(Support Vector Machine,支持向量机)及CNN-GRU(Gate Recurrent Unit,门控循环单元)分类预警结果,证实了优化后的CNN-LSTM网络在脚手架分类预警方面的优越性。 展开更多
关键词 安全工程 多源信息融合 鲸鱼优化算法 卷积长短时记忆网络 可视化
在线阅读 下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部