Lead(Pb)and zinc(Zn)are widely recognized as common environmental contaminants,contributing to soil degradation and posing risks to environmental health.Combining functional carbon-based materials with microorganisms ...Lead(Pb)and zinc(Zn)are widely recognized as common environmental contaminants,contributing to soil degradation and posing risks to environmental health.Combining functional carbon-based materials with microorganisms has been considered as an effective and environmentally friendly strategy for remediating Pb/Zn-contaminated soil.However,there is still a lack of understanding the connection between heavy metal immobilization and plant responses,which hampers practical applications.Here,a 90-day pot experiment was conducted to investigate the integrated effects of biochar(WS700)and microorganisms including inorganic phosphate-solubilizing bacteria(IPSB)and sulfate reducing bacteria(SRB)on Pb and Zn synchronous immobilization and the physiological responses of Brassica rapa var.chinensis(Brassica).Compared with CK,bacteria-loaded biochar treatment declined the exchangeable Pb and Zn fraction by 94.69%−98.37%and 94.55%−99.52%,while increasing the residual state Pb and Zn by 75.50%−208.58%and 96.71%−110.85%,respectively.Three amendments enhanced Brassica growth by improving total chlorophyll content and superoxide dismutase(SOD)and peroxidase(POD)activities.The bacteria-loaded biochar treatment effectively regulated stomatal conductance and reduced intercellular CO_(2) concentration.Moreover,compared with CK,three amendments reduced MDA content by 28.84%,28.30%and 41.60%,respectively,under the high concentration of Pb and Zn.The findings demonstrated the significant role of bacterial-biochar consortia in immobilizing Pb and Zn and mitigating Pb and Zn-induced stress in plants by regulating photosynthetic characteristics and antioxidant enzyme activities.展开更多
Soil contaminated with typical heavy metals (Pb,Cd,Cu,and Zn) was remedied by using the polymeric aluminum salt coagulants including polyaluminum chloride (PAC) and polyaluminum sulfate (PAS).The remediation efficienc...Soil contaminated with typical heavy metals (Pb,Cd,Cu,and Zn) was remedied by using the polymeric aluminum salt coagulants including polyaluminum chloride (PAC) and polyaluminum sulfate (PAS).The remediation efficiencies are influenced by reaction time,water amount,and dosage of remediation agent.The optimal remediation conditions are as follows:6 h of reaction time,1 kg/kg of water addition amount,and 0.25 kg/kg of remediation agent dosage.After PAC addition,the remediation efficiencies of diethylenetriamine-pentaacetic acid (DTPA)-extractable Pb,Cd,Cu,and Zn reach 88.3%,85.1%,85.4%,and 73.7%,respectively;and those for PAS are 89.7%,88.7%,83.5%,and 72.6%,respectively.The main remediation mechanism of the polymeric aluminum salt may contribute to the ionization and hydrolysis of PAC and PAS.H + released from ionization of polymeric aluminum salt can cause the leaching of heavy metals,while the multinuclear complex produced from hydrolysis may result in the immobilization of heavy metals.For PAC,the immobilization of heavy metals is the main remediation process.For PAS,both leaching and immobilization are involved in the remediation process of heavy metals.展开更多
A novel technology for lead removal with nonliving Rhizopus oligosporus immobilized in calcium alginate was studied. The results show that the main influencing factors include pH value and interfering cations. pH valu...A novel technology for lead removal with nonliving Rhizopus oligosporus immobilized in calcium alginate was studied. The results show that the main influencing factors include pH value and interfering cations. pH value has different effects on biosorption of various heavy metals and lead adsorption can be proceeded by controlling pH value in a range of 2–5; interfering cations especially Cu(II) can make the adsorption amount of Pb(II) decrease by immobilized Rhizopus oligosporus. Desorption efficiency of different eluants and kinetics were investigated. Citrate acid with concentration of 0.3 mol ? L?1 is the best for the elution of Pb(II) and desorption rate is over 98%when the reaction equilibrium reaches 3 h. Immobilized biomass keeps high lead biosorption capacity after five cycles of regeneration.展开更多
Three strains of aerobic denitrifiers,named as AT3,AT6 and AT7,were isolated from concentric-circles reactor with diversion wall possessing simultaneous nitrification and denitrification (SND) effect of 69%. The three...Three strains of aerobic denitrifiers,named as AT3,AT6 and AT7,were isolated from concentric-circles reactor with diversion wall possessing simultaneous nitrification and denitrification (SND) effect of 69%. The three strains are all gram-positive and rod-shaped,and their colonial colors are pale yellow,milk white and pink,respectively. Combined with 16SrDNA sequence homology comparison and biochemical tests,AT3 and AT7 were identified to belong to Rhodococcus,and AT6 to Gordonia. These bacterial strains could grow well in the medium with potassium nitrate as nitrogen source and sodium citrate as carbon source. Based on the enhanced nitrogen removal experiments of selected bacteria mixture for activated sludge,the inoculum amount of 5% was supposed to be proper. The mixed biomass suspension of selected strains with PVA immobilization was put into the concentric-circles reactor in order to study the characteristics of enhanced nitrogen removal after amplifying cultivation with inoculated amount of 5%. The experimental results show that the average removal efficiencies of ammonia nitrogen (NH3-N) and total nitrogen (TN) in the reactor enhanced with aerobic denitrifying bacteria using PVA are 92.18% and 79.14% respectively,increasing by 5.29% and 7.83% respectively compared with removal effects of control group without strains enhancement.展开更多
The Microcystis aeruginosa(MA) was immobilized on sodium alginate and used as biosorbent for removal of Cd(Ⅱ) ions from aqueous solution.The biosorption process is pH dependent,and the optimum biosorption was observe...The Microcystis aeruginosa(MA) was immobilized on sodium alginate and used as biosorbent for removal of Cd(Ⅱ) ions from aqueous solution.The biosorption process is pH dependent,and the optimum biosorption was observed at pH 6.0 with the biosorption capacity of 98.38 mg/g.Among Langmuir,Freundlich and Temkin isotherm models,the Freundlich and the Temkin isotherm fit well with the experimental data.Cd(Ⅱ) ions biosorption follows the pseudo-second-order kinetic model.The rate controlling mechanism study reveals that film diffusion is the rate-limiting step and intraparticle diffusion is also involved in biosorption.Thermodynamic parameters,such as Gibbs free energy(ΔG°),the enthalpy(ΔH°) and entropy(ΔS°) were calculated,and revealed that the biosorption process is spontaneous,exothermic and random.Furthermore,the immobilized MA can be regenerated using 0.1 mol/L HCl solutions.展开更多
Based on ecological niche theory, Microcystis Aeruginosa(MA) immobilized in the complex of polyvinyl alcohol(PVA)and sodium alginate(SA) crosslinked by CaCl2, was treated as a new kind of special species, and its prop...Based on ecological niche theory, Microcystis Aeruginosa(MA) immobilized in the complex of polyvinyl alcohol(PVA)and sodium alginate(SA) crosslinked by CaCl2, was treated as a new kind of special species, and its properties were investigated.Chlorophyll a was used to characterize the bioactivity of the immobilized MA. Results reveal that the gel beads have mechanical strength and chemical stability even under non-sterile harsh conditions, which may be attributed to the rarely seen structure(including three different layers: dense surface, tubular-shaped divergent structure and honeycomb crystal lattice layer) of the immobilized MA determined by scanning electron microscope(SEM). SEM also displays that more quantity of MA is attached to the inwall after cultivation, which demonstrates that the MA within beads maintains high bioactivity. Removal capacities on phosphorous(P) removal in wastewater in the presence and absence of the BG-11 medium were examined, and the removal ratios are 80.3% and76.7%, respectively, which indicates that the beads without providing ample nutrients still have high capacity of P removal. In addition, control experiment, utilizing polyvinyl alcohol and sodium alginate(PVA-SA) beads without immobilized MA,demonstrates that MA within beads plays the key role in absorbing P.展开更多
Endotoxins(also known as lipopolysaccharides(LPS)) are undesirable by-products of recombinant proteins,purified from Escherichia coli.LPS can be considered stable under a wide range of temperature and pH,making their ...Endotoxins(also known as lipopolysaccharides(LPS)) are undesirable by-products of recombinant proteins,purified from Escherichia coli.LPS can be considered stable under a wide range of temperature and pH,making their removal one of the most difficult tasks in downstream processes during protein purification.The inherent toxicity of LPS makes their removal an important step for the application of these proteins in several biological assays and for a safe parenteral administration.Immobilized metal affinity chromatography(IMAC) enables the affinity interactions between the metal ions(immobilized on the support through the chelating compound) and the target molecules,thus enabling high-efficiency separation of the target molecules from other components present in a mixture.Affinity chromatography is applied with Ca2+-iminodiacetic acid(IDA) to remove most of the LPS contaminants from the end product(more than90%).In this study,the adsorption of LPS on an IDA-Ca2+ was investigated.The adsorption Freundlich isotherm of LPS-IDA-Ca2+ provides a theoretical basis for LPS removal.It was found that LPS is bound mainly by interactions between the phosphate group in LPS and Ca2+ ligands on the beads.The factors such as pH(4.0 or 5.5) and ionic strength(1.0 mol/L) are essential to obtain effective removal of LPS for contaminant levels between endotoxin' concentration values less than100 EU/mL and 100 000 EU/mL.This new protocol represents a substantial advantage in time,effort,and production costs.展开更多
Objective This work is designed to fabricate a new low density lipoprotein(LDL)absorbent through a mussel-inspired approach and to evaluate the blood compatibility and adsorption clearance,capacity and selectivity of ...Objective This work is designed to fabricate a new low density lipoprotein(LDL)absorbent through a mussel-inspired approach and to evaluate the blood compatibility and adsorption clearance,capacity and selectivity of this technique in vitro.Methods Heparin immobilized cellulose(HeTaCe)hydrogels were fabricated through a mussel-inspired approach.Fourier transform infrared spectroscopy,X-ray photoelectron spectroscopy,thermo gravimetric analysis were used to characterize the chemical compositions of the hydrogels.展开更多
In this research, major and immobile minor and trace elements are used to study the petrology of Yamaghan deposit. Some major elements of least altered samples were used to classify the host rocks and their magma type...In this research, major and immobile minor and trace elements are used to study the petrology of Yamaghan deposit. Some major elements of least altered samples were used to classify the host rocks and their magma type. Considering slight to medium alteration of the host rock, immobile minor and trace elements of more than 110 samples were used to get more confidential results as well. The results show the high accuracy and reliability of the implemented techniques in the study area.展开更多
Molybdenum and tungsten components in catalysts Bu<sub>4</sub>N〔Mo(CO)<sub>5</sub>Cl〕-EtAlCl<sub>2</sub>andWCl<sub>6</sub>-Bu<sub>4</sub>Sn were immobili...Molybdenum and tungsten components in catalysts Bu<sub>4</sub>N〔Mo(CO)<sub>5</sub>Cl〕-EtAlCl<sub>2</sub>andWCl<sub>6</sub>-Bu<sub>4</sub>Sn were immobilized respectively on polymers.The influence of immobilization ofthe soluble catalysts on their catalytic behavior in the metathesis of 1—hexene was investi-gated.It has been found that polystyrene is a good supporting material among all thepolymers tested.The immobilized catalysts have higher stability and better selectivity incomparison with their homogeneous equivalents.The metathesis yield of 1-hexene is in-creased by fourfold with WCl<sub>6</sub>immobilized on polystyrene.The reason for the increase ofstability of the immobilized catalyst is discussed.展开更多
基金Projects(2019NY-200,2020ZDLNY06-06,2020ZDLNY07-10)supported by the Key Research and Development Program of Shaanxi Province,ChinaProject(2019YFC1803604)supported by the National Key Research and Development Program of China。
文摘Lead(Pb)and zinc(Zn)are widely recognized as common environmental contaminants,contributing to soil degradation and posing risks to environmental health.Combining functional carbon-based materials with microorganisms has been considered as an effective and environmentally friendly strategy for remediating Pb/Zn-contaminated soil.However,there is still a lack of understanding the connection between heavy metal immobilization and plant responses,which hampers practical applications.Here,a 90-day pot experiment was conducted to investigate the integrated effects of biochar(WS700)and microorganisms including inorganic phosphate-solubilizing bacteria(IPSB)and sulfate reducing bacteria(SRB)on Pb and Zn synchronous immobilization and the physiological responses of Brassica rapa var.chinensis(Brassica).Compared with CK,bacteria-loaded biochar treatment declined the exchangeable Pb and Zn fraction by 94.69%−98.37%and 94.55%−99.52%,while increasing the residual state Pb and Zn by 75.50%−208.58%and 96.71%−110.85%,respectively.Three amendments enhanced Brassica growth by improving total chlorophyll content and superoxide dismutase(SOD)and peroxidase(POD)activities.The bacteria-loaded biochar treatment effectively regulated stomatal conductance and reduced intercellular CO_(2) concentration.Moreover,compared with CK,three amendments reduced MDA content by 28.84%,28.30%and 41.60%,respectively,under the high concentration of Pb and Zn.The findings demonstrated the significant role of bacterial-biochar consortia in immobilizing Pb and Zn and mitigating Pb and Zn-induced stress in plants by regulating photosynthetic characteristics and antioxidant enzyme activities.
基金Project(K1201010-61)supported by the Science and Technology Program of Changsha,ChinaProject(51074191)supported by the National Natural Science Foundation of ChinaProject(2012BAC09B04)supported by National Key Technology Research and Development Program,China
文摘Soil contaminated with typical heavy metals (Pb,Cd,Cu,and Zn) was remedied by using the polymeric aluminum salt coagulants including polyaluminum chloride (PAC) and polyaluminum sulfate (PAS).The remediation efficiencies are influenced by reaction time,water amount,and dosage of remediation agent.The optimal remediation conditions are as follows:6 h of reaction time,1 kg/kg of water addition amount,and 0.25 kg/kg of remediation agent dosage.After PAC addition,the remediation efficiencies of diethylenetriamine-pentaacetic acid (DTPA)-extractable Pb,Cd,Cu,and Zn reach 88.3%,85.1%,85.4%,and 73.7%,respectively;and those for PAS are 89.7%,88.7%,83.5%,and 72.6%,respectively.The main remediation mechanism of the polymeric aluminum salt may contribute to the ionization and hydrolysis of PAC and PAS.H + released from ionization of polymeric aluminum salt can cause the leaching of heavy metals,while the multinuclear complex produced from hydrolysis may result in the immobilization of heavy metals.For PAC,the immobilization of heavy metals is the main remediation process.For PAS,both leaching and immobilization are involved in the remediation process of heavy metals.
文摘A novel technology for lead removal with nonliving Rhizopus oligosporus immobilized in calcium alginate was studied. The results show that the main influencing factors include pH value and interfering cations. pH value has different effects on biosorption of various heavy metals and lead adsorption can be proceeded by controlling pH value in a range of 2–5; interfering cations especially Cu(II) can make the adsorption amount of Pb(II) decrease by immobilized Rhizopus oligosporus. Desorption efficiency of different eluants and kinetics were investigated. Citrate acid with concentration of 0.3 mol ? L?1 is the best for the elution of Pb(II) and desorption rate is over 98%when the reaction equilibrium reaches 3 h. Immobilized biomass keeps high lead biosorption capacity after five cycles of regeneration.
基金Science and Technology Cooperation Project (2007DFA90660) supported by the International Cooperation Program of Ministry of Science and TechnologyProject(CSTC,2008BB7305) supported by the Natural Science Funds of ChongqingProject(CSTS,2006AA7003) supported by the Major Scientific and Technical Program
文摘Three strains of aerobic denitrifiers,named as AT3,AT6 and AT7,were isolated from concentric-circles reactor with diversion wall possessing simultaneous nitrification and denitrification (SND) effect of 69%. The three strains are all gram-positive and rod-shaped,and their colonial colors are pale yellow,milk white and pink,respectively. Combined with 16SrDNA sequence homology comparison and biochemical tests,AT3 and AT7 were identified to belong to Rhodococcus,and AT6 to Gordonia. These bacterial strains could grow well in the medium with potassium nitrate as nitrogen source and sodium citrate as carbon source. Based on the enhanced nitrogen removal experiments of selected bacteria mixture for activated sludge,the inoculum amount of 5% was supposed to be proper. The mixed biomass suspension of selected strains with PVA immobilization was put into the concentric-circles reactor in order to study the characteristics of enhanced nitrogen removal after amplifying cultivation with inoculated amount of 5%. The experimental results show that the average removal efficiencies of ammonia nitrogen (NH3-N) and total nitrogen (TN) in the reactor enhanced with aerobic denitrifying bacteria using PVA are 92.18% and 79.14% respectively,increasing by 5.29% and 7.83% respectively compared with removal effects of control group without strains enhancement.
基金Project(41271332) supported by the National Natural Science Foundation of ChinaProject(11JJ2031) supported by the Natural Science Foundation of Hunan Province,China+1 种基金Project(2012SK2021) supported by the Science and Technology Planning Program of Hunan Province,ChinaProject(CX2012B138) supported by the Hunan Provincial Innovation Foundation for Postgraduate,China
文摘The Microcystis aeruginosa(MA) was immobilized on sodium alginate and used as biosorbent for removal of Cd(Ⅱ) ions from aqueous solution.The biosorption process is pH dependent,and the optimum biosorption was observed at pH 6.0 with the biosorption capacity of 98.38 mg/g.Among Langmuir,Freundlich and Temkin isotherm models,the Freundlich and the Temkin isotherm fit well with the experimental data.Cd(Ⅱ) ions biosorption follows the pseudo-second-order kinetic model.The rate controlling mechanism study reveals that film diffusion is the rate-limiting step and intraparticle diffusion is also involved in biosorption.Thermodynamic parameters,such as Gibbs free energy(ΔG°),the enthalpy(ΔH°) and entropy(ΔS°) were calculated,and revealed that the biosorption process is spontaneous,exothermic and random.Furthermore,the immobilized MA can be regenerated using 0.1 mol/L HCl solutions.
基金Projects(51178172,51308076)supported by the National Natural Science Foundation of ChinaProject(13JJ4107)supported by Hunan Provincial Natural Science Foundation,ChinaProject(K1207026-31)supported by Changsha Planning Project of Science and Technology,China
文摘Based on ecological niche theory, Microcystis Aeruginosa(MA) immobilized in the complex of polyvinyl alcohol(PVA)and sodium alginate(SA) crosslinked by CaCl2, was treated as a new kind of special species, and its properties were investigated.Chlorophyll a was used to characterize the bioactivity of the immobilized MA. Results reveal that the gel beads have mechanical strength and chemical stability even under non-sterile harsh conditions, which may be attributed to the rarely seen structure(including three different layers: dense surface, tubular-shaped divergent structure and honeycomb crystal lattice layer) of the immobilized MA determined by scanning electron microscope(SEM). SEM also displays that more quantity of MA is attached to the inwall after cultivation, which demonstrates that the MA within beads maintains high bioactivity. Removal capacities on phosphorous(P) removal in wastewater in the presence and absence of the BG-11 medium were examined, and the removal ratios are 80.3% and76.7%, respectively, which indicates that the beads without providing ample nutrients still have high capacity of P removal. In addition, control experiment, utilizing polyvinyl alcohol and sodium alginate(PVA-SA) beads without immobilized MA,demonstrates that MA within beads plays the key role in absorbing P.
基金supported by grants from the Brazilian Agency Coordination of Graduate Level Training(CAPES,project 0366/09-9)State of So Paulo Research Support Foundation(FAPESP-Brazil,project 2005/60159-7)
文摘Endotoxins(also known as lipopolysaccharides(LPS)) are undesirable by-products of recombinant proteins,purified from Escherichia coli.LPS can be considered stable under a wide range of temperature and pH,making their removal one of the most difficult tasks in downstream processes during protein purification.The inherent toxicity of LPS makes their removal an important step for the application of these proteins in several biological assays and for a safe parenteral administration.Immobilized metal affinity chromatography(IMAC) enables the affinity interactions between the metal ions(immobilized on the support through the chelating compound) and the target molecules,thus enabling high-efficiency separation of the target molecules from other components present in a mixture.Affinity chromatography is applied with Ca2+-iminodiacetic acid(IDA) to remove most of the LPS contaminants from the end product(more than90%).In this study,the adsorption of LPS on an IDA-Ca2+ was investigated.The adsorption Freundlich isotherm of LPS-IDA-Ca2+ provides a theoretical basis for LPS removal.It was found that LPS is bound mainly by interactions between the phosphate group in LPS and Ca2+ ligands on the beads.The factors such as pH(4.0 or 5.5) and ionic strength(1.0 mol/L) are essential to obtain effective removal of LPS for contaminant levels between endotoxin' concentration values less than100 EU/mL and 100 000 EU/mL.This new protocol represents a substantial advantage in time,effort,and production costs.
文摘Objective This work is designed to fabricate a new low density lipoprotein(LDL)absorbent through a mussel-inspired approach and to evaluate the blood compatibility and adsorption clearance,capacity and selectivity of this technique in vitro.Methods Heparin immobilized cellulose(HeTaCe)hydrogels were fabricated through a mussel-inspired approach.Fourier transform infrared spectroscopy,X-ray photoelectron spectroscopy,thermo gravimetric analysis were used to characterize the chemical compositions of the hydrogels.
文摘In this research, major and immobile minor and trace elements are used to study the petrology of Yamaghan deposit. Some major elements of least altered samples were used to classify the host rocks and their magma type. Considering slight to medium alteration of the host rock, immobile minor and trace elements of more than 110 samples were used to get more confidential results as well. The results show the high accuracy and reliability of the implemented techniques in the study area.
基金This work was supported by Science Foundation of Chinese Academy of Sciences
文摘Molybdenum and tungsten components in catalysts Bu<sub>4</sub>N〔Mo(CO)<sub>5</sub>Cl〕-EtAlCl<sub>2</sub>andWCl<sub>6</sub>-Bu<sub>4</sub>Sn were immobilized respectively on polymers.The influence of immobilization ofthe soluble catalysts on their catalytic behavior in the metathesis of 1—hexene was investi-gated.It has been found that polystyrene is a good supporting material among all thepolymers tested.The immobilized catalysts have higher stability and better selectivity incomparison with their homogeneous equivalents.The metathesis yield of 1-hexene is in-creased by fourfold with WCl<sub>6</sub>immobilized on polystyrene.The reason for the increase ofstability of the immobilized catalyst is discussed.