A super-resolution reconstruction approach of (SVD) technique was presented, and its performance was radar image using an adaptive-threshold singular value decomposition analyzed, compared and assessed detailedly. F...A super-resolution reconstruction approach of (SVD) technique was presented, and its performance was radar image using an adaptive-threshold singular value decomposition analyzed, compared and assessed detailedly. First, radar imaging model and super-resolution reconstruction mechanism were outlined. Then, the adaptive-threshold SVD super-resolution algorithm, and its two key aspects, namely the determination method of point spread function (PSF) matrix T and the selection scheme of singular value threshold, were presented. Finally, the super-resolution algorithm was demonstrated successfully using the measured synthetic-aperture radar (SAR) images, and a Monte Carlo assessment was carried out to evaluate the performance of the algorithm by using the input/output signal-to-noise ratio (SNR). Five versions of SVD algorithms, namely 1 ) using all singular values, 2) using the top 80% singular values, 3) using the top 50% singular values, 4) using the top 20% singular values and 5) using singular values s such that S2≥/max(s2)/rinsNR were tested. The experimental results indicate that when the singular value threshold is set as Smax/(rinSNR)1/2, the super-resolution algorithm provides a good compromise between too much noise and too much bias and has good reconstruction results.展开更多
针对当前图像超分辨率重建算法中存在的字典单一而导致重建图像质量不佳的问题,提出一种将图像块分类与图像卡通纹理分解相结合的单幅图像超分辨率重建算法。首先,将图像分块,并将图像块分为边缘类、纹理类和平滑类三类,其中纹理类用形...针对当前图像超分辨率重建算法中存在的字典单一而导致重建图像质量不佳的问题,提出一种将图像块分类与图像卡通纹理分解相结合的单幅图像超分辨率重建算法。首先,将图像分块,并将图像块分为边缘类、纹理类和平滑类三类,其中纹理类用形态成分分析(MCA)算法分解为卡通部分和纹理部分;然后,对边缘类、卡通部分和纹理部分分别训练高低分辨率字典;最后,求解稀疏系数并与高分辨率字典重建图像块。仿真结果显示,与基于稀疏表示的超分辨率重建(SCSR)算法和单幅图像超分辨率重建(SISR)算法相比,所提算法的峰值信噪比(PNSR)值分别提高了0. 26 d B和0. 14 d B,表明该算法的重建效果更好,重建图像纹理细节更丰富。展开更多
为了在小样本、低信噪比以及高信源相关性的条件下都能对波达方向(direction of arrival,DOA)进行精确估计,基于压缩感知理论,利用目标信号空间分布的稀疏性,提出了基于加权l_1范数稀疏信号表示的DOA估计算法.该算法对l_1-奇异值分解(si...为了在小样本、低信噪比以及高信源相关性的条件下都能对波达方向(direction of arrival,DOA)进行精确估计,基于压缩感知理论,利用目标信号空间分布的稀疏性,提出了基于加权l_1范数稀疏信号表示的DOA估计算法.该算法对l_1-奇异值分解(singular value decomposition,SVD)算法进行改进,对接收矩阵进行预处理,根据子空间的正交性确定加权矩阵,以加权l_1范数作为最小化的目标函数进行优化得到稀疏信号,进而得到信号的DOA.仿真结果表明,通过加权处理的l_1范数下稀疏信号重构方法能有效抑制偏差,在低信噪比下能够准确稳定地估计出DOA,并且能够提高估计精度.展开更多
基金Project(2008041001) supported by the Academician Foundation of China Project(N0601-041) supported by the General Armament Department Science Foundation of China
文摘A super-resolution reconstruction approach of (SVD) technique was presented, and its performance was radar image using an adaptive-threshold singular value decomposition analyzed, compared and assessed detailedly. First, radar imaging model and super-resolution reconstruction mechanism were outlined. Then, the adaptive-threshold SVD super-resolution algorithm, and its two key aspects, namely the determination method of point spread function (PSF) matrix T and the selection scheme of singular value threshold, were presented. Finally, the super-resolution algorithm was demonstrated successfully using the measured synthetic-aperture radar (SAR) images, and a Monte Carlo assessment was carried out to evaluate the performance of the algorithm by using the input/output signal-to-noise ratio (SNR). Five versions of SVD algorithms, namely 1 ) using all singular values, 2) using the top 80% singular values, 3) using the top 50% singular values, 4) using the top 20% singular values and 5) using singular values s such that S2≥/max(s2)/rinsNR were tested. The experimental results indicate that when the singular value threshold is set as Smax/(rinSNR)1/2, the super-resolution algorithm provides a good compromise between too much noise and too much bias and has good reconstruction results.
文摘针对当前图像超分辨率重建算法中存在的字典单一而导致重建图像质量不佳的问题,提出一种将图像块分类与图像卡通纹理分解相结合的单幅图像超分辨率重建算法。首先,将图像分块,并将图像块分为边缘类、纹理类和平滑类三类,其中纹理类用形态成分分析(MCA)算法分解为卡通部分和纹理部分;然后,对边缘类、卡通部分和纹理部分分别训练高低分辨率字典;最后,求解稀疏系数并与高分辨率字典重建图像块。仿真结果显示,与基于稀疏表示的超分辨率重建(SCSR)算法和单幅图像超分辨率重建(SISR)算法相比,所提算法的峰值信噪比(PNSR)值分别提高了0. 26 d B和0. 14 d B,表明该算法的重建效果更好,重建图像纹理细节更丰富。
文摘为了在小样本、低信噪比以及高信源相关性的条件下都能对波达方向(direction of arrival,DOA)进行精确估计,基于压缩感知理论,利用目标信号空间分布的稀疏性,提出了基于加权l_1范数稀疏信号表示的DOA估计算法.该算法对l_1-奇异值分解(singular value decomposition,SVD)算法进行改进,对接收矩阵进行预处理,根据子空间的正交性确定加权矩阵,以加权l_1范数作为最小化的目标函数进行优化得到稀疏信号,进而得到信号的DOA.仿真结果表明,通过加权处理的l_1范数下稀疏信号重构方法能有效抑制偏差,在低信噪比下能够准确稳定地估计出DOA,并且能够提高估计精度.