A new method of super-resolution image reconstruction is proposed, which uses a three-step-training error backpropagation neural network (BPNN) to realize the super-resolution reconstruction (SRR) of satellite ima...A new method of super-resolution image reconstruction is proposed, which uses a three-step-training error backpropagation neural network (BPNN) to realize the super-resolution reconstruction (SRR) of satellite image. The method is based on BPNN. First, three groups learning samples with different resolutions are obtained according to image observation model, and then vector mappings are respectively used to those three group learning samples to speed up the convergence of BPNN, at last, three times consecutive training are carried on the BPNN. Training samples used in each step are of higher resolution than those used in the previous steps, so the increasing weights store a great amount of information for SRR, and network performance and generalization ability are improved greatly. Simulation and generalization tests are carried on the well-trained three-step-training NN respectively, and the reconstruction results with higher resolution images verify the effectiveness and validity of this method.展开更多
Image super-resolution reconstruction technology is currently widely used in medical imaging,video surveillance,and industrial quality inspection.It not only enhances image quality but also improves details and visual...Image super-resolution reconstruction technology is currently widely used in medical imaging,video surveillance,and industrial quality inspection.It not only enhances image quality but also improves details and visual perception,significantly increasing the utility of low-resolution images.In this study,an improved image superresolution reconstruction model based on Generative Adversarial Networks(SRGAN)was proposed.This model introduced a channel and spatial attention mechanism(CSAB)in the generator,allowing it to effectively leverage the information from the input image to enhance feature representations and capture important details.The discriminator was designed with an improved PatchGAN architecture,which more accurately captured local details and texture information of the image.With these enhanced generator and discriminator architectures and an optimized loss function design,this method demonstrated superior performance in image quality assessment metrics.Experimental results showed that this model outperforms traditional methods,presenting more detailed and realistic image details in the visual effects.展开更多
Accurate segmentation of camouflage objects in aerial imagery is vital for improving the efficiency of UAV-based reconnaissance and rescue missions.However,camouflage object segmentation is increasingly challenging du...Accurate segmentation of camouflage objects in aerial imagery is vital for improving the efficiency of UAV-based reconnaissance and rescue missions.However,camouflage object segmentation is increasingly challenging due to advances in both camouflage materials and biological mimicry.Although multispectral-RGB based technology shows promise,conventional dual-aperture multispectral-RGB imaging systems are constrained by imprecise and time-consuming registration and fusion across different modalities,limiting their performance.Here,we propose the Reconstructed Multispectral-RGB Fusion Network(RMRF-Net),which reconstructs RGB images into multispectral ones,enabling efficient multimodal segmentation using only an RGB camera.Specifically,RMRF-Net employs a divergentsimilarity feature correction strategy to minimize reconstruction errors and includes an efficient boundary-aware decoder to enhance object contours.Notably,we establish the first real-world aerial multispectral-RGB semantic segmentation of camouflage objects dataset,including 11 object categories.Experimental results demonstrate that RMRF-Net outperforms existing methods,achieving 17.38 FPS on the NVIDIA Jetson AGX Orin,with only a 0.96%drop in mIoU compared to the RTX 3090,showing its practical applicability in multimodal remote sensing.展开更多
A super-resolution reconstruction approach of (SVD) technique was presented, and its performance was radar image using an adaptive-threshold singular value decomposition analyzed, compared and assessed detailedly. F...A super-resolution reconstruction approach of (SVD) technique was presented, and its performance was radar image using an adaptive-threshold singular value decomposition analyzed, compared and assessed detailedly. First, radar imaging model and super-resolution reconstruction mechanism were outlined. Then, the adaptive-threshold SVD super-resolution algorithm, and its two key aspects, namely the determination method of point spread function (PSF) matrix T and the selection scheme of singular value threshold, were presented. Finally, the super-resolution algorithm was demonstrated successfully using the measured synthetic-aperture radar (SAR) images, and a Monte Carlo assessment was carried out to evaluate the performance of the algorithm by using the input/output signal-to-noise ratio (SNR). Five versions of SVD algorithms, namely 1 ) using all singular values, 2) using the top 80% singular values, 3) using the top 50% singular values, 4) using the top 20% singular values and 5) using singular values s such that S2≥/max(s2)/rinsNR were tested. The experimental results indicate that when the singular value threshold is set as Smax/(rinSNR)1/2, the super-resolution algorithm provides a good compromise between too much noise and too much bias and has good reconstruction results.展开更多
With the advances of display technology, three-dimensional(3-D) imaging systems are becoming increasingly popular. One way of stimulating 3-D perception is to use stereo pairs, a pair of images of the same scene acqui...With the advances of display technology, three-dimensional(3-D) imaging systems are becoming increasingly popular. One way of stimulating 3-D perception is to use stereo pairs, a pair of images of the same scene acquired from different perspectives. Since there is an inherent redundancy between the images of a stereo pairs, data compression algorithms should be employed to represent stereo pairs efficiently. The proposed techniques generally use block-based disparity compensation. In order to get the higher compression ratio, this paper employs the wavelet-based mixed-resolution coding technique to incorporate with SPT-based disparity-compensation to compress the stereo image data. The mixed-resolution coding is a perceptually justified technique that is achieved by presenting one eye with a low-resolution image and the other with a high-resolution image. Psychophysical experiments show that the stereo image pairs with one high-resolution image and one low-resolution image provide almost the same stereo depth to that of a stereo image with two high-resolution images. By combining the mixed-resolution coding and SPT-based disparity-compensation techniques, one reference (left) high-resolution image can be compressed by a hierarchical wavelet transform followed by vector quantization and Huffman encoder. After two level wavelet decompositions, for the low-resolution right image and low-resolution left image, subspace projection technique using the fixed block size disparity compensation estimation is used. At the decoder, the low-resolution right subimage is estimated using the disparity from the low-resolution left subimage. A full-size reconstruction is obtained by upsampling a factor of 4 and reconstructing with the synthesis low pass filter. Finally, experimental results are presented, which show that our scheme achieves a PSNR gain (about 0.92dB) as compared to the current block-based disparity compensation coding techniques.展开更多
The view prediction is an important step in stereo/multiview video coding, wherein, disparity estil mation (DE) is a key and difficult operation. DE algorithms usually require enormous computing power. A fast DE alg...The view prediction is an important step in stereo/multiview video coding, wherein, disparity estil mation (DE) is a key and difficult operation. DE algorithms usually require enormous computing power. A fast DE algorithm based on Delaunay triangulation (DT) is proposed. First, a flexible and content adaptive DT mesh is established on a target frame by an iterative split-merge algorithm. Second, DE on DT nodes are performed in a three-stage algorithm, which gives the majority of nodes a good estimate of the disparity vectors (DV), by removing unreliable nodes due to occlusion, and forcing the minority of 'problematic nodes' to be searched again, within their umbrella-shaped polygon, to the best. Finally, the target view is predicted by using affine transformation. Experimental results show that the proposed algorithm can give a satisfactory DE with less computational cost.展开更多
Microwave diffraction tomography is a process to infer the internal structure of an objectfrom multiple angle views of microwave diffraction shadow. Being sensitive to variations in refractive index of the object, the...Microwave diffraction tomography is a process to infer the internal structure of an objectfrom multiple angle views of microwave diffraction shadow. Being sensitive to variations in refractive index of the object, the procedure can be used to measure permittivity distributions within dielectric objects and to image soft tissues for biomedical applications. The optimal resolution distance obtainable is half a wavelength, but this can rarely be achieved because of practical limitations. Some procedures, however, are available to improve the practical resolution. One, which is suitable for microwave tomography, is to use multiple angle views data and to combine the resulting images. The other, which is suitable for improving the image reconstruction resolution, is to use the digital filtering technique and the filtered backpropagation algorithm. A system operating over the X-band microwave frequency is described and some experimental results for objects in air are given.展开更多
In the long distance transportation of slurry filled for mining filling,there exist complex variation rules of pressure and flow velocity,pipe distribution location and other influencing factors.Electrical capacitance...In the long distance transportation of slurry filled for mining filling,there exist complex variation rules of pressure and flow velocity,pipe distribution location and other influencing factors.Electrical capacitance tomography(ECT)is a technique for visualizing two-phase flow in a pipe or closed container.In this paper,a visual detection method was proposed by image reconstruction of core,laminar,bubble and annular flow based on ECT technology,which reflects distribution of slurry in deep filling pipeline and measures the degree of blockage.There is an error between the measured and the real two-phase flow distribution due to two factors,which are immature image reconstruction algorithm of ECT and difference of flow patterns leading to degrees of error.In this paper,convolutional neural networks(CNN)is used to recognize flow patterns,and then the optimal image is calculated by the improved particle swarm optimization(PSO)algorithm with weights using simulated annealing strategy,and the fitness function is improved based on the results of the shallow neural network.Finally,the reconstructed binary image is further processed to obtain the position,size and direction of the blocked pipe.The realization of this method provides technical support for pipeline detection technology.展开更多
Radar cross-section (RCS) measurement with the near-field electromagnetic wave illumination of a target has been proved to be practical. The existing methods employ the multiplefrequency angular-diversity (MFAD) techn...Radar cross-section (RCS) measurement with the near-field electromagnetic wave illumination of a target has been proved to be practical. The existing methods employ the multiplefrequency angular-diversity (MFAD) technique, whereas this paper considers the single-frequency angular-diversity (SFAD) technique. The paper takes into account the scattering center modeling and the limitation of higher sidelobes in reconstructing images in the SFAD technique compared to the MFAD technique. A method of combining the SFAD technique with the RELAX approach is presented for the high-resolution extraction of scattering centers on a target. The proposed method offers an excellent RCS recovery, which is validated by numerical results.展开更多
文摘A new method of super-resolution image reconstruction is proposed, which uses a three-step-training error backpropagation neural network (BPNN) to realize the super-resolution reconstruction (SRR) of satellite image. The method is based on BPNN. First, three groups learning samples with different resolutions are obtained according to image observation model, and then vector mappings are respectively used to those three group learning samples to speed up the convergence of BPNN, at last, three times consecutive training are carried on the BPNN. Training samples used in each step are of higher resolution than those used in the previous steps, so the increasing weights store a great amount of information for SRR, and network performance and generalization ability are improved greatly. Simulation and generalization tests are carried on the well-trained three-step-training NN respectively, and the reconstruction results with higher resolution images verify the effectiveness and validity of this method.
文摘Image super-resolution reconstruction technology is currently widely used in medical imaging,video surveillance,and industrial quality inspection.It not only enhances image quality but also improves details and visual perception,significantly increasing the utility of low-resolution images.In this study,an improved image superresolution reconstruction model based on Generative Adversarial Networks(SRGAN)was proposed.This model introduced a channel and spatial attention mechanism(CSAB)in the generator,allowing it to effectively leverage the information from the input image to enhance feature representations and capture important details.The discriminator was designed with an improved PatchGAN architecture,which more accurately captured local details and texture information of the image.With these enhanced generator and discriminator architectures and an optimized loss function design,this method demonstrated superior performance in image quality assessment metrics.Experimental results showed that this model outperforms traditional methods,presenting more detailed and realistic image details in the visual effects.
基金National Natural Science Foundation of China(Grant Nos.62005049 and 62072110)Natural Science Foundation of Fujian Province(Grant No.2020J01451).
文摘Accurate segmentation of camouflage objects in aerial imagery is vital for improving the efficiency of UAV-based reconnaissance and rescue missions.However,camouflage object segmentation is increasingly challenging due to advances in both camouflage materials and biological mimicry.Although multispectral-RGB based technology shows promise,conventional dual-aperture multispectral-RGB imaging systems are constrained by imprecise and time-consuming registration and fusion across different modalities,limiting their performance.Here,we propose the Reconstructed Multispectral-RGB Fusion Network(RMRF-Net),which reconstructs RGB images into multispectral ones,enabling efficient multimodal segmentation using only an RGB camera.Specifically,RMRF-Net employs a divergentsimilarity feature correction strategy to minimize reconstruction errors and includes an efficient boundary-aware decoder to enhance object contours.Notably,we establish the first real-world aerial multispectral-RGB semantic segmentation of camouflage objects dataset,including 11 object categories.Experimental results demonstrate that RMRF-Net outperforms existing methods,achieving 17.38 FPS on the NVIDIA Jetson AGX Orin,with only a 0.96%drop in mIoU compared to the RTX 3090,showing its practical applicability in multimodal remote sensing.
基金Project(2008041001) supported by the Academician Foundation of China Project(N0601-041) supported by the General Armament Department Science Foundation of China
文摘A super-resolution reconstruction approach of (SVD) technique was presented, and its performance was radar image using an adaptive-threshold singular value decomposition analyzed, compared and assessed detailedly. First, radar imaging model and super-resolution reconstruction mechanism were outlined. Then, the adaptive-threshold SVD super-resolution algorithm, and its two key aspects, namely the determination method of point spread function (PSF) matrix T and the selection scheme of singular value threshold, were presented. Finally, the super-resolution algorithm was demonstrated successfully using the measured synthetic-aperture radar (SAR) images, and a Monte Carlo assessment was carried out to evaluate the performance of the algorithm by using the input/output signal-to-noise ratio (SNR). Five versions of SVD algorithms, namely 1 ) using all singular values, 2) using the top 80% singular values, 3) using the top 50% singular values, 4) using the top 20% singular values and 5) using singular values s such that S2≥/max(s2)/rinsNR were tested. The experimental results indicate that when the singular value threshold is set as Smax/(rinSNR)1/2, the super-resolution algorithm provides a good compromise between too much noise and too much bias and has good reconstruction results.
基金This project was supported by the National Natural Science Foundation (No. 69972027).
文摘With the advances of display technology, three-dimensional(3-D) imaging systems are becoming increasingly popular. One way of stimulating 3-D perception is to use stereo pairs, a pair of images of the same scene acquired from different perspectives. Since there is an inherent redundancy between the images of a stereo pairs, data compression algorithms should be employed to represent stereo pairs efficiently. The proposed techniques generally use block-based disparity compensation. In order to get the higher compression ratio, this paper employs the wavelet-based mixed-resolution coding technique to incorporate with SPT-based disparity-compensation to compress the stereo image data. The mixed-resolution coding is a perceptually justified technique that is achieved by presenting one eye with a low-resolution image and the other with a high-resolution image. Psychophysical experiments show that the stereo image pairs with one high-resolution image and one low-resolution image provide almost the same stereo depth to that of a stereo image with two high-resolution images. By combining the mixed-resolution coding and SPT-based disparity-compensation techniques, one reference (left) high-resolution image can be compressed by a hierarchical wavelet transform followed by vector quantization and Huffman encoder. After two level wavelet decompositions, for the low-resolution right image and low-resolution left image, subspace projection technique using the fixed block size disparity compensation estimation is used. At the decoder, the low-resolution right subimage is estimated using the disparity from the low-resolution left subimage. A full-size reconstruction is obtained by upsampling a factor of 4 and reconstructing with the synthesis low pass filter. Finally, experimental results are presented, which show that our scheme achieves a PSNR gain (about 0.92dB) as compared to the current block-based disparity compensation coding techniques.
基金supported by the National Natural Science Foundation of China (60472083 60872141)
文摘The view prediction is an important step in stereo/multiview video coding, wherein, disparity estil mation (DE) is a key and difficult operation. DE algorithms usually require enormous computing power. A fast DE algorithm based on Delaunay triangulation (DT) is proposed. First, a flexible and content adaptive DT mesh is established on a target frame by an iterative split-merge algorithm. Second, DE on DT nodes are performed in a three-stage algorithm, which gives the majority of nodes a good estimate of the disparity vectors (DV), by removing unreliable nodes due to occlusion, and forcing the minority of 'problematic nodes' to be searched again, within their umbrella-shaped polygon, to the best. Finally, the target view is predicted by using affine transformation. Experimental results show that the proposed algorithm can give a satisfactory DE with less computational cost.
文摘Microwave diffraction tomography is a process to infer the internal structure of an objectfrom multiple angle views of microwave diffraction shadow. Being sensitive to variations in refractive index of the object, the procedure can be used to measure permittivity distributions within dielectric objects and to image soft tissues for biomedical applications. The optimal resolution distance obtainable is half a wavelength, but this can rarely be achieved because of practical limitations. Some procedures, however, are available to improve the practical resolution. One, which is suitable for microwave tomography, is to use multiple angle views data and to combine the resulting images. The other, which is suitable for improving the image reconstruction resolution, is to use the digital filtering technique and the filtered backpropagation algorithm. A system operating over the X-band microwave frequency is described and some experimental results for objects in air are given.
基金Project(51704229)supported by the National Natural Science Foundation of ChinaProject(2018YQ2-01)supported by the Outstanding Youth Science Fund of Xi’an University of Science and Technology,China。
文摘In the long distance transportation of slurry filled for mining filling,there exist complex variation rules of pressure and flow velocity,pipe distribution location and other influencing factors.Electrical capacitance tomography(ECT)is a technique for visualizing two-phase flow in a pipe or closed container.In this paper,a visual detection method was proposed by image reconstruction of core,laminar,bubble and annular flow based on ECT technology,which reflects distribution of slurry in deep filling pipeline and measures the degree of blockage.There is an error between the measured and the real two-phase flow distribution due to two factors,which are immature image reconstruction algorithm of ECT and difference of flow patterns leading to degrees of error.In this paper,convolutional neural networks(CNN)is used to recognize flow patterns,and then the optimal image is calculated by the improved particle swarm optimization(PSO)algorithm with weights using simulated annealing strategy,and the fitness function is improved based on the results of the shallow neural network.Finally,the reconstructed binary image is further processed to obtain the position,size and direction of the blocked pipe.The realization of this method provides technical support for pipeline detection technology.
基金the National Natural Science Foundation of China.
文摘Radar cross-section (RCS) measurement with the near-field electromagnetic wave illumination of a target has been proved to be practical. The existing methods employ the multiplefrequency angular-diversity (MFAD) technique, whereas this paper considers the single-frequency angular-diversity (SFAD) technique. The paper takes into account the scattering center modeling and the limitation of higher sidelobes in reconstructing images in the SFAD technique compared to the MFAD technique. A method of combining the SFAD technique with the RELAX approach is presented for the high-resolution extraction of scattering centers on a target. The proposed method offers an excellent RCS recovery, which is validated by numerical results.