期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
Super-resolution image reconstruction based on three-step-training neural networks
1
作者 Fuzhen Zhu Jinzong Li Bing Zhu Dongdong Ma 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第6期934-940,共7页
A new method of super-resolution image reconstruction is proposed, which uses a three-step-training error backpropagation neural network (BPNN) to realize the super-resolution reconstruction (SRR) of satellite ima... A new method of super-resolution image reconstruction is proposed, which uses a three-step-training error backpropagation neural network (BPNN) to realize the super-resolution reconstruction (SRR) of satellite image. The method is based on BPNN. First, three groups learning samples with different resolutions are obtained according to image observation model, and then vector mappings are respectively used to those three group learning samples to speed up the convergence of BPNN, at last, three times consecutive training are carried on the BPNN. Training samples used in each step are of higher resolution than those used in the previous steps, so the increasing weights store a great amount of information for SRR, and network performance and generalization ability are improved greatly. Simulation and generalization tests are carried on the well-trained three-step-training NN respectively, and the reconstruction results with higher resolution images verify the effectiveness and validity of this method. 展开更多
关键词 image reconstruction SUPER-RESOLUTION three-steptraining neural network BP algorithm vector mapping.
在线阅读 下载PDF
Image Super-Resolution Reconstruction Model Based on SRGAN
2
作者 LU Xin-ya CHEN Jia-yi +1 位作者 SI Zhan-jun ZHANG Ying-xue 《印刷与数字媒体技术研究》 北大核心 2025年第5期21-28,共8页
Image super-resolution reconstruction technology is currently widely used in medical imaging,video surveillance,and industrial quality inspection.It not only enhances image quality but also improves details and visual... Image super-resolution reconstruction technology is currently widely used in medical imaging,video surveillance,and industrial quality inspection.It not only enhances image quality but also improves details and visual perception,significantly increasing the utility of low-resolution images.In this study,an improved image superresolution reconstruction model based on Generative Adversarial Networks(SRGAN)was proposed.This model introduced a channel and spatial attention mechanism(CSAB)in the generator,allowing it to effectively leverage the information from the input image to enhance feature representations and capture important details.The discriminator was designed with an improved PatchGAN architecture,which more accurately captured local details and texture information of the image.With these enhanced generator and discriminator architectures and an optimized loss function design,this method demonstrated superior performance in image quality assessment metrics.Experimental results showed that this model outperforms traditional methods,presenting more detailed and realistic image details in the visual effects. 展开更多
关键词 image super-resolution reconstruction Generative Adversarial Networks CSAB PatchGAN architecture
在线阅读 下载PDF
Semantic segmentation of camouflage objects via fusing reconstructed multispectral and RGB images
3
作者 Feng Huang Gonghan Yang +5 位作者 Jing Chen Yixuan Xu Jingze Su Guimin Huang Shu Wang Wenxi Liu 《Defence Technology(防务技术)》 2025年第8期324-337,共14页
Accurate segmentation of camouflage objects in aerial imagery is vital for improving the efficiency of UAV-based reconnaissance and rescue missions.However,camouflage object segmentation is increasingly challenging du... Accurate segmentation of camouflage objects in aerial imagery is vital for improving the efficiency of UAV-based reconnaissance and rescue missions.However,camouflage object segmentation is increasingly challenging due to advances in both camouflage materials and biological mimicry.Although multispectral-RGB based technology shows promise,conventional dual-aperture multispectral-RGB imaging systems are constrained by imprecise and time-consuming registration and fusion across different modalities,limiting their performance.Here,we propose the Reconstructed Multispectral-RGB Fusion Network(RMRF-Net),which reconstructs RGB images into multispectral ones,enabling efficient multimodal segmentation using only an RGB camera.Specifically,RMRF-Net employs a divergentsimilarity feature correction strategy to minimize reconstruction errors and includes an efficient boundary-aware decoder to enhance object contours.Notably,we establish the first real-world aerial multispectral-RGB semantic segmentation of camouflage objects dataset,including 11 object categories.Experimental results demonstrate that RMRF-Net outperforms existing methods,achieving 17.38 FPS on the NVIDIA Jetson AGX Orin,with only a 0.96%drop in mIoU compared to the RTX 3090,showing its practical applicability in multimodal remote sensing. 展开更多
关键词 Camouflage object detection Reconstructed multispectral image(MSI) Unmanned aerial vehicle(UAV) Semantic segmentation Remote sensing
在线阅读 下载PDF
Super-resolution reconstruction of synthetic-aperture radar image using adaptive-threshold singular value decomposition technique 被引量:2
4
作者 朱正为 周建江 《Journal of Central South University》 SCIE EI CAS 2011年第3期809-815,共7页
A super-resolution reconstruction approach of (SVD) technique was presented, and its performance was radar image using an adaptive-threshold singular value decomposition analyzed, compared and assessed detailedly. F... A super-resolution reconstruction approach of (SVD) technique was presented, and its performance was radar image using an adaptive-threshold singular value decomposition analyzed, compared and assessed detailedly. First, radar imaging model and super-resolution reconstruction mechanism were outlined. Then, the adaptive-threshold SVD super-resolution algorithm, and its two key aspects, namely the determination method of point spread function (PSF) matrix T and the selection scheme of singular value threshold, were presented. Finally, the super-resolution algorithm was demonstrated successfully using the measured synthetic-aperture radar (SAR) images, and a Monte Carlo assessment was carried out to evaluate the performance of the algorithm by using the input/output signal-to-noise ratio (SNR). Five versions of SVD algorithms, namely 1 ) using all singular values, 2) using the top 80% singular values, 3) using the top 50% singular values, 4) using the top 20% singular values and 5) using singular values s such that S2≥/max(s2)/rinsNR were tested. The experimental results indicate that when the singular value threshold is set as Smax/(rinSNR)1/2, the super-resolution algorithm provides a good compromise between too much noise and too much bias and has good reconstruction results. 展开更多
关键词 synthetic-aperture radar image reconstruction SUPER-RESOLUTION singular value decomposition adaptive-threshold
在线阅读 下载PDF
Wavelet-Based Mixed-Resolution Coding Approach Incorporating with SPT for the Stereo Image
5
作者 Xu, C. Zhang, Z. An, P. 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2001年第3期39-44,共6页
With the advances of display technology, three-dimensional(3-D) imaging systems are becoming increasingly popular. One way of stimulating 3-D perception is to use stereo pairs, a pair of images of the same scene acqui... With the advances of display technology, three-dimensional(3-D) imaging systems are becoming increasingly popular. One way of stimulating 3-D perception is to use stereo pairs, a pair of images of the same scene acquired from different perspectives. Since there is an inherent redundancy between the images of a stereo pairs, data compression algorithms should be employed to represent stereo pairs efficiently. The proposed techniques generally use block-based disparity compensation. In order to get the higher compression ratio, this paper employs the wavelet-based mixed-resolution coding technique to incorporate with SPT-based disparity-compensation to compress the stereo image data. The mixed-resolution coding is a perceptually justified technique that is achieved by presenting one eye with a low-resolution image and the other with a high-resolution image. Psychophysical experiments show that the stereo image pairs with one high-resolution image and one low-resolution image provide almost the same stereo depth to that of a stereo image with two high-resolution images. By combining the mixed-resolution coding and SPT-based disparity-compensation techniques, one reference (left) high-resolution image can be compressed by a hierarchical wavelet transform followed by vector quantization and Huffman encoder. After two level wavelet decompositions, for the low-resolution right image and low-resolution left image, subspace projection technique using the fixed block size disparity compensation estimation is used. At the decoder, the low-resolution right subimage is estimated using the disparity from the low-resolution left subimage. A full-size reconstruction is obtained by upsampling a factor of 4 and reconstructing with the synthesis low pass filter. Finally, experimental results are presented, which show that our scheme achieves a PSNR gain (about 0.92dB) as compared to the current block-based disparity compensation coding techniques. 展开更多
关键词 Data reduction DECODING image coding image compression image reconstruction Imaging techniques Motion compensation Motion estimation Optical resolving power Projection systems Stereo vision Wavelet transforms
在线阅读 下载PDF
Frequency domain based super-resolution method for mixed-resolution multi-view images
6
作者 Zhizhong Fu Yawei Li +2 位作者 Yuan Li Lan Ding Keyu Long 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第6期1303-1314,共12页
Super-resolution (SR) techniques, which are based on single or multi-frame low-resolution (LR) images, have been extensively investigated in the last two decades. Mixed-resolution multiview video format plays an impor... Super-resolution (SR) techniques, which are based on single or multi-frame low-resolution (LR) images, have been extensively investigated in the last two decades. Mixed-resolution multiview video format plays an important role in three-dimensional television (3DTV) coding scheme. Previous work considers multiview or multi-camera images and videos at the same resolution, which performs well under the planar model without or with little projection error among the videos captured by different cameras. In recent years, several researchers have discussed the SR problem in mixed-resolution multi-view video format, where the superresolved image is created using the up-sampled version of the LR image and the high frequency components extracted from the warped image in the adjacent high-resolution (HR) views. Unfortunately, the output HR images suffer from artifacts caused by depth error. To obtain the detailed texture and edge information from the HR image as much as possible, while preserving the structure of the LR image, a novel SR reconstruction algorithm is proposed. The algorithm is composed of three components: the structure term, the detail information term, and the regularization term. The first term preserves the structure similarity of the LR image; the second term extracts detailed information from the adjacent HR image; and the last term ensures the uniqueness of the solution. Experimental results show the effectiveness and robustness of the proposed algorithm, which achieves high performance both subjectively and objectively. © 2016 Beijing Institute of Aerospace Information. 展开更多
关键词 Cameras Edge detection Frequency domain analysis image reconstruction Optical resolving power
在线阅读 下载PDF
Fast view prediction for stereo images based on Delaunay triangular mesh model
7
作者 Guo Dabo Lu Zhaoyang Jiao Weidong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2009年第1期32-40,共9页
The view prediction is an important step in stereo/multiview video coding, wherein, disparity estil mation (DE) is a key and difficult operation. DE algorithms usually require enormous computing power. A fast DE alg... The view prediction is an important step in stereo/multiview video coding, wherein, disparity estil mation (DE) is a key and difficult operation. DE algorithms usually require enormous computing power. A fast DE algorithm based on Delaunay triangulation (DT) is proposed. First, a flexible and content adaptive DT mesh is established on a target frame by an iterative split-merge algorithm. Second, DE on DT nodes are performed in a three-stage algorithm, which gives the majority of nodes a good estimate of the disparity vectors (DV), by removing unreliable nodes due to occlusion, and forcing the minority of 'problematic nodes' to be searched again, within their umbrella-shaped polygon, to the best. Finally, the target view is predicted by using affine transformation. Experimental results show that the proposed algorithm can give a satisfactory DE with less computational cost. 展开更多
关键词 image reconstruction disparity estimation view prediction triangular mesh.
在线阅读 下载PDF
Digital Imaging Reconstruction from Multiple Angle Diversity Using Digital Filtering Technique
8
作者 Wu Chuanjie and Li ShizhiDept. of Electronic Engineering, Beijing Institute of Technology P.O. Box 327, Beijing 100081, China 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 1991年第1期67-73,共7页
Microwave diffraction tomography is a process to infer the internal structure of an objectfrom multiple angle views of microwave diffraction shadow. Being sensitive to variations in refractive index of the object, the... Microwave diffraction tomography is a process to infer the internal structure of an objectfrom multiple angle views of microwave diffraction shadow. Being sensitive to variations in refractive index of the object, the procedure can be used to measure permittivity distributions within dielectric objects and to image soft tissues for biomedical applications. The optimal resolution distance obtainable is half a wavelength, but this can rarely be achieved because of practical limitations. Some procedures, however, are available to improve the practical resolution. One, which is suitable for microwave tomography, is to use multiple angle views data and to combine the resulting images. The other, which is suitable for improving the image reconstruction resolution, is to use the digital filtering technique and the filtered backpropagation algorithm. A system operating over the X-band microwave frequency is described and some experimental results for objects in air are given. 展开更多
关键词 Digital filtering Digital image reconstruction Microwave diffraction tomography.
在线阅读 下载PDF
Near field 3-D imaging approach for joint high-resolution imaging and phase error correction 被引量:2
9
作者 Yang Fang Baoping Wang +2 位作者 Chao Sun Zuxun Song Shuzhen Wang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2017年第2期199-211,共13页
This paper combines compressed sensing (CS) imaging theory and range migration algorithm (RMA), and then proposes a near-field three-dimensional (3-D) imaging approach for joint high-resolution imaging and phase error... This paper combines compressed sensing (CS) imaging theory and range migration algorithm (RMA), and then proposes a near-field three-dimensional (3-D) imaging approach for joint high-resolution imaging and phase error correction. Firstly, a sparse measurement matrix construction method based on a logistic sequence is proposed, which conducts nonlinear transformation for the determined logistic sequence, making it obey uniform distribution, then conducts sign function mapping, and generates the pseudorandom sequence with Bernoulli distribution, thus leading to good signal recovery under down-sampling and easy availability for engineering realization. Secondly, in combination with the RMA imaging approach, the dictionary with all scene information and phase error correction is constructed for CS signal recovery and error correction. Finally, the non-quadratic solution model jointing imaging and phase error correction based on regularization is built, and it is solved by two steps - the separable surrogate functionals (SSF) iterative shrinkage algorithm is adopted to realize target scattering estimate; the iteration mode is adopted for the correction of the dictionary model, so as to achieve the goal of error correction and highly-focused imaging. The proposed approach proves to be effective through numerical simulation and real measurement in anechoic chamber. The results show that, the proposed approach can realize high-resolution imaging in the case of less data; the designed measurement matrix has better non-coherence and easy availability for engineering realization. The proposed approach can effectively correct the phase error, and achieve highly-focused target image. © 2017 Beijing Institute of Aerospace Information. 展开更多
关键词 Compressed sensing Error correction image reconstruction Iterative methods Linear transformations Mathematical transformations Signal reconstruction Signal sampling
在线阅读 下载PDF
Autofocus technique for ISAR imaging of uniformly rotating targets based on the ExCoV method 被引量:1
10
作者 Chengguang Wu Hongqiang Wang +2 位作者 Bin Deng Yuliang Qin Wuge Su 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2017年第2期267-275,共9页
The inverse synthetic aperture radar (ISAR) imaging can be converted into a sparse reconstruction problem and solved by the l1norm minimization algorithm. The basis matrix in sparse ISAR imaging is usually characteriz... The inverse synthetic aperture radar (ISAR) imaging can be converted into a sparse reconstruction problem and solved by the l1norm minimization algorithm. The basis matrix in sparse ISAR imaging is usually characterized by the unknown rotation rate of a moving target, thus the rotation rate and the sparse signal should be jointly estimated. Especially due to the imperfect coarse motion compensation, we consider the phase error correction problem in the context of the sparse signal reconstruction. To address this issue, we propose an iterative reweighted method, which jointly estimates the rotation rate, corrects the phase error and reconstructs a high resolution ISAR image. The proposed method gives a gradual and interweaved iterative process to refine the unknown parameters to achieve the best sparse representation for the ISAR signals. Particularly, in ISAR image reconstruction, the l1norm minimization algorithm is sensitive to user parameters. Setting these user parameters are not trivial and the reconstruction performance depends significantly on their choices. Then, we consider an expansion-compression variance-component (ExCoV) based method, which is automatic and demands no prior knowledge about signal-sparsity or measurement-noise levels. Both numerical and electromagnetic data experiments are implemented to show the effectiveness of the proposed method. It is shown that the proposed method can estimate the rotation rate and correct the phase errors simultaneously, and its superior performance is proved in terms of high resolution ISAR image. © 2017 Beijing Institute of Aerospace Information. 展开更多
关键词 Error compensation Error correction Errors image processing image reconstruction Inverse problems Inverse synthetic aperture radar Iterative methods Motion compensation Numerical methods Rotation Signal reconstruction Synthetic aperture radar
在线阅读 下载PDF
Visualization detection of slurry transportation pipeline based on electrical capacitance tomography in mining filling
11
作者 QIN Xue-bin SHEN Yu-tong +4 位作者 LI Ming-qiao LIU Lang YANG Pei-jiao HU Jia-chen JI Chen-chen 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第11期3757-3766,共10页
In the long distance transportation of slurry filled for mining filling,there exist complex variation rules of pressure and flow velocity,pipe distribution location and other influencing factors.Electrical capacitance... In the long distance transportation of slurry filled for mining filling,there exist complex variation rules of pressure and flow velocity,pipe distribution location and other influencing factors.Electrical capacitance tomography(ECT)is a technique for visualizing two-phase flow in a pipe or closed container.In this paper,a visual detection method was proposed by image reconstruction of core,laminar,bubble and annular flow based on ECT technology,which reflects distribution of slurry in deep filling pipeline and measures the degree of blockage.There is an error between the measured and the real two-phase flow distribution due to two factors,which are immature image reconstruction algorithm of ECT and difference of flow patterns leading to degrees of error.In this paper,convolutional neural networks(CNN)is used to recognize flow patterns,and then the optimal image is calculated by the improved particle swarm optimization(PSO)algorithm with weights using simulated annealing strategy,and the fitness function is improved based on the results of the shallow neural network.Finally,the reconstructed binary image is further processed to obtain the position,size and direction of the blocked pipe.The realization of this method provides technical support for pipeline detection technology. 展开更多
关键词 image reconstruction electrical capacitance tomography convolutional neural networks blocked pipe
在线阅读 下载PDF
SAR imaging method for sea scene target based on improved phase retrieval algorithm
12
作者 Hongyin Shi Qiuxiao Zhou +1 位作者 Xiaoyan Yang Qiusheng Lian 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第6期1176-1182,共7页
Due to the influence of the platform random motion and electromagnetic propagation in turbulent media, the synthetic aperture radar (SAR) high resolution imaging for the sea scenes where there are large amounts of wat... Due to the influence of the platform random motion and electromagnetic propagation in turbulent media, the synthetic aperture radar (SAR) high resolution imaging for the sea scenes where there are large amounts of water returns with some target (land) returns is very difficult. To solve this problem, a SAR imaging method based on the improved phase retrieval (PR) algorithm is proposed. First, a filter is added to the conventional PR algorithm which can reduce the influence of water returns on the reconstruction of the targets and improve the reconstruction result of the targets. Then, the corrupted phase of the Fourier transform of the intensity image in the iterative process, which can improve the stability of the iterative algorithm, is used to reduce the recovery errors, and a better recovery performance is achieved. Finally, several experiments are performed to demonstrate the advantages of the proposed method. © 2016 Beijing Institute of Aerospace Information. 展开更多
关键词 image reconstruction Iterative methods RADAR Synthetic aperture radar
在线阅读 下载PDF
Radar Cross-Section Measurement Using the Near-Field Single-Frequency Angular-Diversity Technique
13
作者 Ye, Xiaodong Fang, Dagang Sheng, Weixing 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2000年第1期1-7,共7页
Radar cross-section (RCS) measurement with the near-field electromagnetic wave illumination of a target has been proved to be practical. The existing methods employ the multiplefrequency angular-diversity (MFAD) techn... Radar cross-section (RCS) measurement with the near-field electromagnetic wave illumination of a target has been proved to be practical. The existing methods employ the multiplefrequency angular-diversity (MFAD) technique, whereas this paper considers the single-frequency angular-diversity (SFAD) technique. The paper takes into account the scattering center modeling and the limitation of higher sidelobes in reconstructing images in the SFAD technique compared to the MFAD technique. A method of combining the SFAD technique with the RELAX approach is presented for the high-resolution extraction of scattering centers on a target. The proposed method offers an excellent RCS recovery, which is validated by numerical results. 展开更多
关键词 Electromagnetic wave scattering image reconstruction Radar imaging Radar target recognition Relaxation processes
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部