A magnet is an important component of a speaker,as it makes the coil move back forth,and it is commonly used in mobile information terminals.Defects may appear on the surface of the magnet while cutting it into smalle...A magnet is an important component of a speaker,as it makes the coil move back forth,and it is commonly used in mobile information terminals.Defects may appear on the surface of the magnet while cutting it into smaller slices,and hence,automatic detection of surface cutting defect detection becomes an important task for magnet production.In this work,an image-based detection system for magnet surface defect was constructed,a Fourier image reconstruction based on the magnet surface image processing method was proposed.The Fourier transform was used to get the spectrum image of the magnet image,and the defect was shown as a bright line in it.The Hough transform was used to detect the angle of the bright line,and this line was removed to eliminate the defect from the original gray image;then the inverse Fourier transform was applied to get the background gray image.The defect region was obtained by evaluating the gray-level differences between the original image and the background gray image.Further,the effects of several parameters in this method were studied and the optimized values were obtained.Experiment results show that the proposed method can detect surface cutting defects in a magnet automatically and efficiently.展开更多
To preserve the sharp features and details of the synthetic aperture radar (SAR) image effectively when despeckling, a despeckling algorithm with edge detection in nonsubsampled second generation bandelet transform ...To preserve the sharp features and details of the synthetic aperture radar (SAR) image effectively when despeckling, a despeckling algorithm with edge detection in nonsubsampled second generation bandelet transform (NSBT) domain is proposed. First, the Canny operator is utilized to detect and remove edges from the SAR image. Then the NSBT which has an optimal approximation to the edges of images and a hard thresholding rule are used to approximate the details while despeckling the edge-removed image. Finally, the removed edges are added to the reconstructed image. As the edges axe detected and protected, and the NSBT is used, the proposed algorithm reaches the state-of-the-art effect which realizes both despeckling and preserving edges and details simultaneously. Experimental results show that both the subjective visual effect and the mainly objective performance indexes of the proposed algorithm outperform that of both Bayesian wavelet shrinkage with edge detection and Bayesian least square-Gaussian scale mixture (BLS-GSM).展开更多
通过自动识别自然环境下获取果实图像中的未成熟果实,以实现自动化果实估产的目的。该文以番茄为对象,根据视觉显著性的特点,提出了使用基于密集和稀疏重构(dense and sparse reconstruction,DSR)的显著性检测方法检测未成熟番茄果实图...通过自动识别自然环境下获取果实图像中的未成熟果实,以实现自动化果实估产的目的。该文以番茄为对象,根据视觉显著性的特点,提出了使用基于密集和稀疏重构(dense and sparse reconstruction,DSR)的显著性检测方法检测未成熟番茄果实图像,该方法首先计算密集和稀疏重构误差;其次使用基于上下文的重构误差传播机制平滑重构误差和提亮显著性区域;再通过多尺度重构误差融合与偏目标高斯细化;最后通过贝叶斯算法融合显著图得到DSR显著灰度图。番茄DSR灰度图再经过OTSU算法进行分割和去噪处理,最终使用该文提出的改进随机Hough变换(randomized hough transform,RHT)圆检测方法识别番茄果簇中的单果。结果显示,该文方法对未成熟番茄果实的正确识别率能达到77.6%。同时,该文方法与人工测量的圆心和半径的相关系数也分别达到0.98和0.76,研究结果为估产机器人的多种果实自动化识别提供参考。展开更多
基金Project (51575542) supported by the National Natural Science Foundation of ChinaProject (2016CX010) supported by the Innovation-Driven Project of CSU,ChinaProject (2015CB057202) supported by the National Basic Research Program of China
文摘A magnet is an important component of a speaker,as it makes the coil move back forth,and it is commonly used in mobile information terminals.Defects may appear on the surface of the magnet while cutting it into smaller slices,and hence,automatic detection of surface cutting defect detection becomes an important task for magnet production.In this work,an image-based detection system for magnet surface defect was constructed,a Fourier image reconstruction based on the magnet surface image processing method was proposed.The Fourier transform was used to get the spectrum image of the magnet image,and the defect was shown as a bright line in it.The Hough transform was used to detect the angle of the bright line,and this line was removed to eliminate the defect from the original gray image;then the inverse Fourier transform was applied to get the background gray image.The defect region was obtained by evaluating the gray-level differences between the original image and the background gray image.Further,the effects of several parameters in this method were studied and the optimized values were obtained.Experiment results show that the proposed method can detect surface cutting defects in a magnet automatically and efficiently.
基金supported by the National Natural Science Foundation of China(6067309760702062)+3 种基金the National HighTechnology Research and Development Program of China(863 Program)(2008AA01Z1252007AA12Z136)the National ResearchFoundation for the Doctoral Program of Higher Education of China(20060701007)the Program for Cheung Kong Scholarsand Innovative Research Team in University(IRT 0645).
文摘To preserve the sharp features and details of the synthetic aperture radar (SAR) image effectively when despeckling, a despeckling algorithm with edge detection in nonsubsampled second generation bandelet transform (NSBT) domain is proposed. First, the Canny operator is utilized to detect and remove edges from the SAR image. Then the NSBT which has an optimal approximation to the edges of images and a hard thresholding rule are used to approximate the details while despeckling the edge-removed image. Finally, the removed edges are added to the reconstructed image. As the edges axe detected and protected, and the NSBT is used, the proposed algorithm reaches the state-of-the-art effect which realizes both despeckling and preserving edges and details simultaneously. Experimental results show that both the subjective visual effect and the mainly objective performance indexes of the proposed algorithm outperform that of both Bayesian wavelet shrinkage with edge detection and Bayesian least square-Gaussian scale mixture (BLS-GSM).