期刊文献+
共找到1,041篇文章
< 1 2 53 >
每页显示 20 50 100
DCEL:classifier fusion model for Android malware detection
1
作者 XU Xiaolong JIANG Shuai +1 位作者 ZHAO Jinbo WANG Xinheng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2024年第1期163-177,共15页
The rapid growth of mobile applications,the popularity of the Android system and its openness have attracted many hackers and even criminals,who are creating lots of Android malware.However,the current methods of Andr... The rapid growth of mobile applications,the popularity of the Android system and its openness have attracted many hackers and even criminals,who are creating lots of Android malware.However,the current methods of Android malware detection need a lot of time in the feature engineering phase.Furthermore,these models have the defects of low detection rate,high complexity,and poor practicability,etc.We analyze the Android malware samples,and the distribution of malware and benign software in application programming interface(API)calls,permissions,and other attributes.We classify the software’s threat levels based on the correlation of features.Then,we propose deep neural networks and convolutional neural networks with ensemble learning(DCEL),a new classifier fusion model for Android malware detection.First,DCEL preprocesses the malware data to remove redundant data,and converts the one-dimensional data into a two-dimensional gray image.Then,the ensemble learning approach is used to combine the deep neural network with the convolutional neural network,and the final classification results are obtained by voting on the prediction of each single classifier.Experiments based on the Drebin and Malgenome datasets show that compared with current state-of-art models,the proposed DCEL has a higher detection rate,higher recall rate,and lower computational cost. 展开更多
关键词 Android malware detection deep learning ensemble learning model fusion
在线阅读 下载PDF
FDiff-Fusion:基于模糊逻辑驱动的医学图像扩散融合网络分割模型
2
作者 耿胜 丁卫平 +3 位作者 鞠恒荣 黄嘉爽 姜舒 王海鹏 《计算机科学》 北大核心 2025年第6期274-285,共12页
医学图像分割在临床诊疗和病理分析中具有重要的应用价值。近年来,去噪扩散模型在图像分割建模方面取得了显著成功,其能够更好地捕获图像中的复杂结构和细节信息。然而,利用去噪扩散模型进行医学图像分割的方法大多忽略了分割目标的边... 医学图像分割在临床诊疗和病理分析中具有重要的应用价值。近年来,去噪扩散模型在图像分割建模方面取得了显著成功,其能够更好地捕获图像中的复杂结构和细节信息。然而,利用去噪扩散模型进行医学图像分割的方法大多忽略了分割目标的边界不确定和区域模糊因素,从而造成了最终分割结果的不稳定性和不准确性。为了解决这一问题,提出了一种基于模糊逻辑驱动的医学图像扩散融合网络分割模型(FDiff-Fusion)。该模型通过将去噪扩散模型集成到经典U-Net网络中,有效地从输入医学图像中提取丰富的语义信息。由于医学图像的分割目标边界不确定性和区域模糊化现象普遍存在,因此在U-Net网络的跳跃路径上设计了一种模糊学习模块。该模块为输入的编码特征设置多个模糊隶属度函数,以描述特征点之间的相似程度,并对模糊隶属度函数应用模糊规则处理,从而增强了模型对不确定边界和模糊区域的建模能力。此外,为了提高模型分割结果的准确性和鲁棒性,在测试阶段引入了基于迭代注意力特征融合的方法。该方法将局部上下文信息添加到注意力模块中的全局上下文信息中,以融合每个去噪时间步的预测结果。实验结果显示,与现有的先进分割网络相比,FDiff-Fusion在BRATS 2020脑肿瘤数据集上获得的平均Dice分数和HD95距离分别为84.16%和2.473mm,在BTCV腹部多器官数据集上获得的平均Dice分数和HD95距离分别为83.82%和7.98mm,表现出良好的分割性能。 展开更多
关键词 去噪扩散模型 U-Net网络 医学图像分割 模糊学习 迭代注意力特征融合
在线阅读 下载PDF
Feature fusion method for edge detection of color images 被引量:4
3
作者 Ma Yu Gu Xiaodong Wang Yuanyuan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2009年第2期394-399,共6页
A novel feature fusion method is proposed for the edge detection of color images. Except for the typical features used in edge detection, the color contrast similarity and the orientation consistency are also selected... A novel feature fusion method is proposed for the edge detection of color images. Except for the typical features used in edge detection, the color contrast similarity and the orientation consistency are also selected as the features. The four features are combined together as a parameter to detect the edges of color images. Experimental results show that the method can inhibit noisy edges and facilitate the detection for weak edges. It has a better performance than conventional methods in noisy environments. 展开更多
关键词 color image processing edge detection feature extraction feature fusion
在线阅读 下载PDF
Bidirectional parallel multi-branch convolution feature pyramid network for target detection in aerial images of swarm UAVs 被引量:4
4
作者 Lei Fu Wen-bin Gu +3 位作者 Wei Li Liang Chen Yong-bao Ai Hua-lei Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第4期1531-1541,共11页
In this paper,based on a bidirectional parallel multi-branch feature pyramid network(BPMFPN),a novel one-stage object detector called BPMFPN Det is proposed for real-time detection of ground multi-scale targets by swa... In this paper,based on a bidirectional parallel multi-branch feature pyramid network(BPMFPN),a novel one-stage object detector called BPMFPN Det is proposed for real-time detection of ground multi-scale targets by swarm unmanned aerial vehicles(UAVs).First,the bidirectional parallel multi-branch convolution modules are used to construct the feature pyramid to enhance the feature expression abilities of different scale feature layers.Next,the feature pyramid is integrated into the single-stage object detection framework to ensure real-time performance.In order to validate the effectiveness of the proposed algorithm,experiments are conducted on four datasets.For the PASCAL VOC dataset,the proposed algorithm achieves the mean average precision(mAP)of 85.4 on the VOC 2007 test set.With regard to the detection in optical remote sensing(DIOR)dataset,the proposed algorithm achieves 73.9 mAP.For vehicle detection in aerial imagery(VEDAI)dataset,the detection accuracy of small land vehicle(slv)targets reaches 97.4 mAP.For unmanned aerial vehicle detection and tracking(UAVDT)dataset,the proposed BPMFPN Det achieves the mAP of 48.75.Compared with the previous state-of-the-art methods,the results obtained by the proposed algorithm are more competitive.The experimental results demonstrate that the proposed algorithm can effectively solve the problem of real-time detection of ground multi-scale targets in aerial images of swarm UAVs. 展开更多
关键词 Aerial images Object detection Feature pyramid networks Multi-scale feature fusion Swarm UAVs
在线阅读 下载PDF
改进YOLOv8的无人机航拍图像目标检测算法 被引量:5
5
作者 梁燕 何孝武 +1 位作者 邵凯 陈俊宏 《计算机工程与应用》 北大核心 2025年第1期121-130,共10页
针对无人机航拍图像存在多个小目标聚集、目标尺度变化大的问题,提出一种改进YOLOv8的目标检测算法TS-YOLO(tiny and scale-YOLO)。在主干部分去除冗余的特征提取层,设计了一种高效特征提取模块(efficient feature extraction module,EF... 针对无人机航拍图像存在多个小目标聚集、目标尺度变化大的问题,提出一种改进YOLOv8的目标检测算法TS-YOLO(tiny and scale-YOLO)。在主干部分去除冗余的特征提取层,设计了一种高效特征提取模块(efficient feature extraction module,EFEM),避免小目标特征消失在冗余信息中。在颈部设计了一种双重跨尺度加权特征融合方法(dual cross-scale weighted feature-fusion,DCWF),融合多尺度信息的同时抑制噪声干扰,提升特征表达能力。通过构建一种参数共享检测头(parameter-shared detection header,PSDH),使回归和分类任务实现参数共享,保证检测精度的同时有效降低了模型的参数量。所提模型在VisDrone-2019数据集上的精度(P)和召回率(R)分别达到54.0%、42.5%;相比于原始YOLOv8s模型,mAP50提高了5.0个百分点,达到44.5%,且参数量减少了55.8%,仅有4.94×106;在DOTAv1.0遥感数据集上,mAP50达到71.9%,仍具有较好的泛化能力。 展开更多
关键词 目标检测 无人机航拍图像 YOLOv8 小目标 特征融合
在线阅读 下载PDF
基于RGB与深度图像融合的生菜表型特征估算方法 被引量:1
6
作者 陆声链 李沂杨 +3 位作者 李帼 贾小泽 鞠青青 钱婷婷 《农业机械学报》 北大核心 2025年第1期84-91,101,共9页
采用自动化手段对植物生长过程中的表型特征进行精准测量对于育种和栽培等应用具有重要意义。本文围绕工厂化生菜种植中的表型特征无损精准检测需求,通过融合深度相机采集的RGB图像和深度图像,利用改进的DeepLabv3+模型进行图像分割,并... 采用自动化手段对植物生长过程中的表型特征进行精准测量对于育种和栽培等应用具有重要意义。本文围绕工厂化生菜种植中的表型特征无损精准检测需求,通过融合深度相机采集的RGB图像和深度图像,利用改进的DeepLabv3+模型进行图像分割,并通过双模态回归网络对生菜表型特征进行估算。本文改进的分割模型的骨干网络由Xception替换为MobileViTv2,以增强其全局感知能力和性能;在回归网络中,提出了卷积双模态特征融合模块CMMCM,用于估算生菜的表型特征。在包含4个生菜品种的公开数据集上的实验结果表明,本文方法可对鲜质量、干质量、冠幅、叶面积和株高共5种生菜表型特征进行估算,决定系数分别达到0.9222、0.9314、0.8620、0.9359和0.8875。相较于未添加CMMCM和SE模块的RGB和深度图的表型参数估计基准ResNet-10(双模态),本文改进的模型决定系数分别提高2.54%、2.54%、1.48%、2.99%和4.88%,单幅图像检测耗时为44.8 ms,说明该方法对于双模态图像融合的生菜表型特征无损提取具有较高的准确性和实时性。 展开更多
关键词 生菜 表型估算 模态融合 分割模型 RGB图像 深度图像
在线阅读 下载PDF
利用多层次特征融合网络的图像异常检测算法
7
作者 唐俊 左金梅 +2 位作者 王科 张艳 王年 《国防科技大学学报》 北大核心 2025年第2期173-182,共10页
图像异常检测旨在识别并定位图像中的异常区域,针对现有算法中不同层次特征信息利用不充分的问题,提出了基于多层次特征融合网络的图像异常检测算法。通过使用融合了异常先验知识的伪异常数据生成算法,对训练集进行了异常数据扩充,将异... 图像异常检测旨在识别并定位图像中的异常区域,针对现有算法中不同层次特征信息利用不充分的问题,提出了基于多层次特征融合网络的图像异常检测算法。通过使用融合了异常先验知识的伪异常数据生成算法,对训练集进行了异常数据扩充,将异常检测任务转化为监督学习任务;构建了多层次特征融合网络,将神经网络中不同层次特征进行融合,丰富了特征中的低层纹理信息和高层语义信息,使得用于异常检测的特征更具区分性;训练时,设计了分数约束损失和一致性约束损失,并结合特征约束损失对整个网络模型进行训练。实验结果表明,MVTec数据集上图像级检测接收机工作特性曲线下面积(area under the receiver operating characteristic, AUROC)平均值为98.7%,像素级定位AUROC平均值为97.9%,每区域重叠率平均值为94.2%,均高于现有的异常检测算法。 展开更多
关键词 图像异常检测 伪异常 多层次特征融合 一致性约束
在线阅读 下载PDF
跨模态多层特征融合的遥感影像语义分割
8
作者 李智杰 程鑫 +3 位作者 李昌华 高元 薛靖裕 介军 《计算机科学与探索》 北大核心 2025年第4期989-1000,共12页
多模态语义分割网络能够利用不同模态中的互补信息来提高分割精度,在地物分类领域具有广泛的应用潜力。然而,现有的多模态遥感影像语义分割模型大多忽略了深度特征的几何形状信息,未将多层特征充分利用就进行融合,导致跨模态特征提取不... 多模态语义分割网络能够利用不同模态中的互补信息来提高分割精度,在地物分类领域具有广泛的应用潜力。然而,现有的多模态遥感影像语义分割模型大多忽略了深度特征的几何形状信息,未将多层特征充分利用就进行融合,导致跨模态特征提取不充分,融合效果不理想。针对这些问题,提出了一种基于多模态特征提取和多层特征融合的遥感影像语义分割模型。通过构建双分支编码器,模型能够分别提取遥感影像的光谱信息和归一化数字表面模型(nDSM)的高程信息,并深入挖掘nDSM的几何形状信息。引入跨层丰富模块细化完善每层特征,从深层到浅层充分利用多层的特征信息。完善后的特征通过注意力特征融合模块,对特征进行差异性互补和交叉融合,以减轻分支结构之间的差异,充分发挥多模态特征的优势,从而提高遥感影像分割精度。在ISPRS Vaihingen和Potsdam数据集上进行实验,mF1分数分别达到了90.88%和93.41%,平均交互比(mIoU)分别达到了83.49%和87.85%,相较于当前主流算法,该算法实现了更准确的遥感影像语义分割。 展开更多
关键词 遥感影像 归一化数字表面模型(nDSM) 语义分割 特征提取 特征融合
在线阅读 下载PDF
条件扩散和多通道高低频并行的红外与可见光图像融合
9
作者 邸敬 王鹤然 +2 位作者 梁婵 刘冀钊 廉敬 《光学精密工程》 北大核心 2025年第1期148-163,共16页
针对去噪扩散模型在红外与可见光图像融合任务中缺少基准真实值和可见光信息利用不足的问题,提出一种条件扩散和多通道高低频并行的红外与可见光图像融合模型。条件扩散模型利用拼接技术将拼接源图像作为基准真实值进行训练,获得红外与... 针对去噪扩散模型在红外与可见光图像融合任务中缺少基准真实值和可见光信息利用不足的问题,提出一种条件扩散和多通道高低频并行的红外与可见光图像融合模型。条件扩散模型利用拼接技术将拼接源图像作为基准真实值进行训练,获得红外与可见光图像特征提取任务的最优先验分布,在反向去噪过程中引入多通道似然校正模块,更有效地模拟红外与可见光图像的多通道复杂分布。然后,提出细节自适应去噪网络来完成红外与可见光图像的多通道高低频特征提取任务。最后,在融合网络中设计了一种多通道高低频并行融合模块,采用区域一致性融合网络和多通道低频特征融合网络分别完成高低频特征的融合。该模型为红外与可见光图像融合任务提供了一种可训练的扩散模型范式用于特征提取,使用特定的卷积神经网络进行特征融合。通过与近年来提出的9种高水平方法相比,在MSRS和RoadScene数据集上的实验结果表明,本文方法的8种客观评价指标平均提升了4.52%~59.62%。本文方法在色彩保真度和纹理细节保持等方面都优于其他方法,符合人眼视觉特性,能够很好地处理各种光照和环境场景下的红外与可见光图像融合任务。 展开更多
关键词 图像融合 红外与可见光 条件扩散模型 细节自适应去噪网络 多通道高低频并行融合模块
在线阅读 下载PDF
采用地面约束的图像点云配准与目标检测方法
10
作者 汪威 黄旭东 +2 位作者 黄玉春 刘旭 徐显金 《激光杂志》 北大核心 2025年第4期57-64,共8页
针对室外场景3D目标检测所面临的挑战,利用较为成熟的2D目标检测研究成果,提出一种基于地面约束的图像与点云配准方法,以实现点云目标的识别与定位。具体而言,提出了基于体素的滤波算法,最大程度地保留有效三维点。依据室外场景地面点... 针对室外场景3D目标检测所面临的挑战,利用较为成熟的2D目标检测研究成果,提出一种基于地面约束的图像与点云配准方法,以实现点云目标的识别与定位。具体而言,提出了基于体素的滤波算法,最大程度地保留有效三维点。依据室外场景地面点的分布规律,设计了基于法向量Z向角的聚类算法,快速、精确地提取地面特征参数。进一步的,按地面约束条件构建从图像空间至点云空间的映射模型,完成图像目标与点云目标的配准,从而实现3D目标的检测与定位。实验结果表明,与传统方法相比,点云滤波的准确度、点云平面参数的提取速度和3D目标的平均定位精度分别提升了约8%,46.7%和10%。证明了所提方法的可行性与有效性,为室外场景3D目标检测技术的发展提供了有价值的参考与实践依据。 展开更多
关键词 地面约束 体素滤波 角度聚类直方图 图像点云融合 3D目标检测
在线阅读 下载PDF
基于改进YOLOv5s车载雷达图像目标检测分类方法
11
作者 李家强 汪星宇 +2 位作者 杨志豪 刘浩波 陈金立 《现代雷达》 北大核心 2025年第4期38-45,共8页
针对车载毫米波雷达图像细节模糊、目标占比小的问题,提出了一种基于YOLOv5s改进的目标检测分类网络。首先通过帧同步与最小外接矩形方法处理原始数据集,获得由相机、激光雷达联合标定的毫米波雷达距离-方位图像与标注信息;然后将YOLOv5... 针对车载毫米波雷达图像细节模糊、目标占比小的问题,提出了一种基于YOLOv5s改进的目标检测分类网络。首先通过帧同步与最小外接矩形方法处理原始数据集,获得由相机、激光雷达联合标定的毫米波雷达距离-方位图像与标注信息;然后将YOLOv5s网络的上采样模块改进为CARAFE,使网络充分融合不同尺度特征,并改进网络损失函数为综合交并比损失函数(CIoU Loss),使预测结果更加精确;最后,通过网络解耦头(Decoupled head)采用不同的分支并行处理检测与分类问题。实测数据实验处理结果表明,该方法较原始YOLOv5s网络的mAP@0.5与mAP@0.5∶0.95分别提升了3.3%和2.0%,尤其适用于小目标检测,并能同时满足检测和分类精度与实时性要求,适合部署至车载嵌入式系统中。 展开更多
关键词 目标检测与分类 雷达图像 YOLOv5s网络 特征融合 解耦头
在线阅读 下载PDF
面向社交网络平台的多模态网络欺凌检测模型研究
12
作者 李猛坤 李柯锦 +3 位作者 王琪 袁晨 吕慧颖 应作斌 《信息安全研究》 北大核心 2025年第2期154-163,共10页
随着社交网络平台的迅速发展,网络欺凌问题日益突出,文本与图片相结合的多样化网络表达形式提高了网络欺凌的检测和治理难度.构建了一个包含文本和图片的中文多模态网络欺凌数据集,将BERT(bidirectional encoder representations from t... 随着社交网络平台的迅速发展,网络欺凌问题日益突出,文本与图片相结合的多样化网络表达形式提高了网络欺凌的检测和治理难度.构建了一个包含文本和图片的中文多模态网络欺凌数据集,将BERT(bidirectional encoder representations from transformers)模型与ResNet50模型相结合,分别提取文本和图片的单模态特征,并进行决策层融合,对融合后的特征进行检测,实现了对网络欺凌与非网络欺凌2个类别的文本和图片的准确识别.实验结果表明,提出的多模态网络欺凌检测模型能够有效识别出包含文本与图片的具有网络欺凌性质的社交网络帖子或者评论,提高了多模态形式网络欺凌检测的实用性、准确性和效率,为社交网络平台的网络欺凌检测和治理提供了一种新的思路和方法,有助于构建更加健康、文明的网络环境. 展开更多
关键词 网络欺凌 多模态 特征融合 检测模型 社交网络平台
在线阅读 下载PDF
混合注意力优化的SAR图像小目标检测方法
13
作者 付卫红 彭文洪 刘乃安 《系统工程与电子技术》 北大核心 2025年第8期2519-2526,共8页
近年来,卷积神经网络在合成孔径雷达(synthetic aperture radar,SAR)图像船舶检测中取得突出成就,但小目标检测方面仍然存在较大不足。对此,提出一种基于YOLO(you only look once)v5的改进检测网络,结合空间感知通道注意力、自注意力机... 近年来,卷积神经网络在合成孔径雷达(synthetic aperture radar,SAR)图像船舶检测中取得突出成就,但小目标检测方面仍然存在较大不足。对此,提出一种基于YOLO(you only look once)v5的改进检测网络,结合空间感知通道注意力、自注意力机制和上下文特征融合策略,以提高小型船舶的检测性能。首先,通道注意力机制抑制了背景信息并强调目标特征,显著提高检测精度。其次,在YOLOv5的骨干网络和检测层中引入自注意力模块,以捕获全局信息,增强定位能力。最后,通过融合浅层和深层特征,补充特征提取中丢失的小目标信息,进一步提高检测精度。基于大规模SAR船舶监测数据集(large-scale SAR ship detection dataset version 1.0 LSSSDDv1.0)数据集的实验结果表明,改进后的网络的全类平均精度(mean average precision,mAP)0.5指标达78.9%,显著优于现有方法。 展开更多
关键词 合成孔径雷达图像 船舶检测 注意力机制 特征融合 小目标检测
在线阅读 下载PDF
上下文感知多感受野融合网络的定向遥感目标检测
14
作者 姚婷婷 肇恒鑫 +1 位作者 冯子豪 胡青 《电子与信息学报》 北大核心 2025年第1期233-243,共11页
以广距鸟瞰视角拍摄获取的遥感图像通常具有目标种类多、尺度变化大以及背景信息丰富等特点,为目标检测任务带来巨大挑战。针对遥感图像成像特点,该文设计一种上下文感知多感受野融合网络,通过充分挖掘深度网络中遥感图像在不同尺寸特... 以广距鸟瞰视角拍摄获取的遥感图像通常具有目标种类多、尺度变化大以及背景信息丰富等特点,为目标检测任务带来巨大挑战。针对遥感图像成像特点,该文设计一种上下文感知多感受野融合网络,通过充分挖掘深度网络中遥感图像在不同尺寸特征描述下所包含的上下文关联信息,提高图像特征描述力,进而提升遥感目标检测精度。首先,在特征金字塔前4层网络中构建了感受野扩张模块,通过扩大网络在不同尺度特征图上的感受野范围,增强网络对不同尺度遥感目标的感知能力;进一步,构建了高层特征聚合模块,通过将特征金字塔网络中高层语义信息聚合到低层特征中,从而将特征图中所包含的多尺度上下文信息进行有效融合;最后,在双阶段定向目标检测框架下设计了特征细化区域建议网络。通过对一阶段提案进行精细化处理,提升提案准确性,进而提高二阶段兴趣区域对齐网络得到的不同成像方向下的遥感目标检测性能。在公测数据集DIOR-R和HRSC2016上的定性和定量的对比实验结果证明,所提方法对不同种类和尺度大小的遥感目标均能实现更加准确的检测。 展开更多
关键词 遥感图像 深度学习 目标检测 多感受野融合
在线阅读 下载PDF
融合RGB与IR图像的遥感小目标检测方法
15
作者 刘春霞 孟吉星 +1 位作者 潘理虎 龚大立 《计算机工程》 北大核心 2025年第7期326-338,共13页
针对现有的目标检测方法在处理背景复杂、有效信息量少的遥感图像时存在的误检、漏检等问题,提出了一种多模态遥感小目标检测方法——BFMYOLO。设计了像素级的红-绿-蓝(RGB)和红外(IR)图像的融合模块,即多模态融合模块(BFM),充分利用不... 针对现有的目标检测方法在处理背景复杂、有效信息量少的遥感图像时存在的误检、漏检等问题,提出了一种多模态遥感小目标检测方法——BFMYOLO。设计了像素级的红-绿-蓝(RGB)和红外(IR)图像的融合模块,即多模态融合模块(BFM),充分利用不同模态的互补性,实现两种模态信息的有效融合;设计了全尺度自适应更新模块(AA),解决特征融合过程中的多目标信息冲突问题,通过结合CARAFE上采样算子并进一步融入浅层特征,在加强非相邻层间融合的同时增强小目标的空间信息;设计了改进的任务解耦检测头(IDHead),将分类和回归任务分开处理,以降低不同任务的相互干扰,融合深层语义特征,进一步提升模型的检测性能。采用归一化Wasserstein距离(NWD)损失函数作为定位回归损失函数,降低位置偏差的敏感性。实验结果表明,该方法在VEDAI、NWPU VHR-10和DIOR数据集上的阈值设定为0.5时的均值平均精度(mAP@0.5)分别达到78.6%、95.5%和73.3%,优于其他先进模型,在遥感小目标检测中表现出良好的性能。 展开更多
关键词 遥感目标检测 可见光和红外图像 轻量级上采样算子 注意力机制 特征融合
在线阅读 下载PDF
基于扩散模型的遥感图像变化检测方法
16
作者 李克文 蒋衡杰 +2 位作者 李国庆 姚贤哲 刘文龙 《计算机工程与设计》 北大核心 2025年第2期337-344,共8页
针对遥感图像人工标注耗时且昂贵的缺点,提出一种两阶段的变化检测方法。通过预训练去噪扩散概率模型来利用这些现成的、未标注的遥感图像信息,利用从扩散模型主干网络U-Net的后半部分编码器中获取的多尺度特征来训练一个轻量级的变化... 针对遥感图像人工标注耗时且昂贵的缺点,提出一种两阶段的变化检测方法。通过预训练去噪扩散概率模型来利用这些现成的、未标注的遥感图像信息,利用从扩散模型主干网络U-Net的后半部分编码器中获取的多尺度特征来训练一个轻量级的变化检测头部。通过同时处理不同加噪时间步的遥感图像,基于噪声水平进行加权融合进一步提升模型对变化相关信息的敏感性。在LEVIR-CD和WHU-CD数据集上的对比实验结果表明,该方法有效提高了识别精度。 展开更多
关键词 变化检测 深度学习 预训练 特征融合 特征提取 扩散模型 无监督训练
在线阅读 下载PDF
基于多维度动态加权alpha图像融合与特征增强的恶意软件检测方法
17
作者 谢丽霞 魏晨阳 +2 位作者 杨宏宇 胡泽 成翔 《电子学报》 北大核心 2025年第3期849-863,共15页
针对现有恶意软件检测方法缺乏对样本特征的有效提取、过度依赖领域专家知识和运行行为监控,导致严重影响检测分类性能的问题,提出一种基于多维度动态加权alpha图像融合与特征增强的恶意软件检测方法 .通过无效样本清洗与异常值处理获... 针对现有恶意软件检测方法缺乏对样本特征的有效提取、过度依赖领域专家知识和运行行为监控,导致严重影响检测分类性能的问题,提出一种基于多维度动态加权alpha图像融合与特征增强的恶意软件检测方法 .通过无效样本清洗与异常值处理获得标准化样本集,利用三通道图像生成与多维度动态加权alpha图像融合方法生成高质量融合图像样本.采用傀儡优化算法进行数据重构,减少因数据类不平衡对检测结果造成的影响,并对重构数据样本进行图像增强.通过基于双分支特征提取与融合通道信息表示的空间注意力增强网络,分别提取图像特征和文本特征并进行特征增强,提高特征表达能力.通过加权融合的方法将增强的图像特征与文本特征进行融合,实现恶意软件家族的检测分类.实验结果表明,本文所提方法在BIG2015数据集上的恶意软件检测分类准确率为99.72%,与现有检测方法相比提升幅度为0.22~2.50个百分点. 展开更多
关键词 恶意软件检测 图像融合 傀儡优化算法 双分支特征提取 数据重构 特征增强
在线阅读 下载PDF
多层次精细化无人机图像目标检测
18
作者 肖振久 赖思宇 曲海成 《光电工程》 北大核心 2025年第5期34-49,共16页
针对无人机图像中背景复杂、光线多变、目标遮挡及尺度不一导致的漏检、误检问题,提出一种多层次精细化无人机图像目标检测算法。首先,结合多尺度特征提取与特征融合增强策略,设计CSP-SMSFF(cross stage partial selective multi-scale ... 针对无人机图像中背景复杂、光线多变、目标遮挡及尺度不一导致的漏检、误检问题,提出一种多层次精细化无人机图像目标检测算法。首先,结合多尺度特征提取与特征融合增强策略,设计CSP-SMSFF(cross stage partial selective multi-scale feature fusion)模块,该模块通过递增卷积核与通道融合,精确捕获多尺度目标特征。其次,引入AFGCAttention(adaptive fine-grained channel attention)机制,通过动态调优机制优化通道特征表达,增强算法对多尺度重要样本特征的感知力与判别力及细粒度映射信息的保留能力,抑制背景噪声,改善漏检情况。而后,设计SGCE-Head(shared group convolution efficient head)检测头,利用EMSPConv(efficient multi-scale convolution)卷积实现对空间通道维度中全局重要特征与局部细节信息的精准捕获,增强对多尺度特征的定位与识别能力,改善误检问题。最后,提出Inner-Powerful-IoUv2损失函数,通过动态梯度加权与分层IoU优化,平衡不同质量样本的定位权重,增强模型对模糊目标的检测能力。采用数据集VisDrone2019和VisDrone2021进行实验,结果表明,该方法mAP@0.5数值达到了47.5%和45.3%,较基线模型分别提升5.7%和4.7%,优于对比算法。 展开更多
关键词 无人机图像 目标检测 多尺度特征提取与融合 自适应细粒度通道注意力 EMSPConv
在线阅读 下载PDF
融合注意力和上下文信息的遥感图像小目标检测算法
19
作者 刘赏 周煜炜 +2 位作者 代娆 董林芳 刘猛 《计算机应用》 北大核心 2025年第1期292-300,共9页
对多尺度的遥感图像进行小目标检测时,基于深度学习的目标检测算法容易出现误检和漏检的情况。这是因为此类算法的特征提取模块进行了多次的下采样操作;而且未能根据不同类别、不同尺度的目标关注所需的上下文信息。为了解决该问题,提... 对多尺度的遥感图像进行小目标检测时,基于深度学习的目标检测算法容易出现误检和漏检的情况。这是因为此类算法的特征提取模块进行了多次的下采样操作;而且未能根据不同类别、不同尺度的目标关注所需的上下文信息。为了解决该问题,提出一种融合注意力和上下文信息的遥感图像小目标检测算法ACM-YOLO(Attention-Context-Multiscale YOLO)。首先,应用细粒度的查询感知稀疏注意力以减少小目标特征信息的丢失,从而避免漏检;其次,设计局部上下文增强(LCE)函数以更好地关注不同类别的遥感目标所需的上下文信息,从而避免误检;最后,使用加权双向特征金字塔网络(BiFPN)强化特征融合模块对遥感图像小目标的多尺度特征融合能力,从而改善算法检测效果。在DOTA数据集和NWPU VHR-10数据集上进行对比实验和消融实验,以验证所提算法的有效性和泛化性。实验结果表明,在2个数据集上所提算法的平均精确率均值(mAP)分别达到了77.33%和96.12%,而相较于YOLOv5算法,召回率分别提升了10.00和7.50个百分点。可见,所提算法能有效提升mAP和召回率,减少误检和漏检。 展开更多
关键词 遥感图像 小目标检测 稀疏采样 局部上下文信息增强 多尺度特征融合
在线阅读 下载PDF
多尺度特征增强与交互融合的遥感小目标检测
20
作者 李云红 魏小双 +5 位作者 苏雪平 李丽敏 田谷丰 郝特吉 冯准若 李仕博 《西北大学学报(自然科学版)》 北大核心 2025年第2期277-285,共9页
针对遥感图像小目标检测任务中,存在目标细节纹理信息模糊导致特征提取与融合不佳、小目标漏检等问题,提出了一种基于多尺度特征增强与交互融合的遥感小目标检测算法。首先,采用跨层多分支连接结构的多尺度特征增强(multiscale feature ... 针对遥感图像小目标检测任务中,存在目标细节纹理信息模糊导致特征提取与融合不佳、小目标漏检等问题,提出了一种基于多尺度特征增强与交互融合的遥感小目标检测算法。首先,采用跨层多分支连接结构的多尺度特征增强(multiscale feature enhancement,MFE)模块,利用Split分流操作丰富和增强不同梯度获取的纹理特征信息,同时引入轻量级特征幻影模块Ghost进行通道线性变换,生成更多有效的特征细节信息流,以增强对图像中局部细节特征信息的关注;其次,构建特征交互融合(feature interaction fusion,FIF)模块,引入多分支串并行的卷积块与自适应机制的池化块,交互输入特征的通道语义信息和空间特征变换,捕获全局上下文信息,精确小目标的关键位置信息,加强特征信息之间的相关性,实现细粒度特征的多维度交互融合。使用公开的光学遥感数据集DIOR验证所提算法,改进后的网络模型平均精度值为87.6%,与NPMMR-Det、YOLOv7、YOLOv5等其他7种优秀算法相比均有提高,改进后的遥感图像小目标检测算法取得了更好的检测精度。 展开更多
关键词 遥感图像小目标检测 多尺度特征增强 Split分流 自适应机制 细节特征交互融合
在线阅读 下载PDF
上一页 1 2 53 下一页 到第
使用帮助 返回顶部