A new method of super-resolution image reconstruction is proposed, which uses a three-step-training error backpropagation neural network (BPNN) to realize the super-resolution reconstruction (SRR) of satellite ima...A new method of super-resolution image reconstruction is proposed, which uses a three-step-training error backpropagation neural network (BPNN) to realize the super-resolution reconstruction (SRR) of satellite image. The method is based on BPNN. First, three groups learning samples with different resolutions are obtained according to image observation model, and then vector mappings are respectively used to those three group learning samples to speed up the convergence of BPNN, at last, three times consecutive training are carried on the BPNN. Training samples used in each step are of higher resolution than those used in the previous steps, so the increasing weights store a great amount of information for SRR, and network performance and generalization ability are improved greatly. Simulation and generalization tests are carried on the well-trained three-step-training NN respectively, and the reconstruction results with higher resolution images verify the effectiveness and validity of this method.展开更多
To get the high compression ratio as well as the high-quality reconstructed image, an effective image compression scheme named irregular segmentation region coding based on spiking cortical model(ISRCS) is presented...To get the high compression ratio as well as the high-quality reconstructed image, an effective image compression scheme named irregular segmentation region coding based on spiking cortical model(ISRCS) is presented. This scheme is region-based and mainly focuses on two issues. Firstly, an appropriate segmentation algorithm is developed to partition an image into some irregular regions and tidy contours, where the crucial regions corresponding to objects are retained and a lot of tiny parts are eliminated. The irregular regions and contours are coded using different methods respectively in the next step. The other issue is the coding method of contours where an efficient and novel chain code is employed. This scheme tries to find a compromise between the quality of reconstructed images and the compression ratio. Some principles and experiments are conducted and the results show its higher performance compared with other compression technologies, in terms of higher quality of reconstructed images, higher compression ratio and less time consuming.展开更多
A new nonlinear image filter using fuzzy neural network based on genetic algorithm is proposed. The learning of network parameters is performed by genetic algorithm with the efficient binary encoding scheme. In the fo...A new nonlinear image filter using fuzzy neural network based on genetic algorithm is proposed. The learning of network parameters is performed by genetic algorithm with the efficient binary encoding scheme. In the following, fuzzy reasoning embedded in the network aims at restoring noisy pixels without degrading the quality of fine details. It is shown by experiments that the filter is very effective in removing impulse noise and significantly outperforms conventional filters.展开更多
文摘A new method of super-resolution image reconstruction is proposed, which uses a three-step-training error backpropagation neural network (BPNN) to realize the super-resolution reconstruction (SRR) of satellite image. The method is based on BPNN. First, three groups learning samples with different resolutions are obtained according to image observation model, and then vector mappings are respectively used to those three group learning samples to speed up the convergence of BPNN, at last, three times consecutive training are carried on the BPNN. Training samples used in each step are of higher resolution than those used in the previous steps, so the increasing weights store a great amount of information for SRR, and network performance and generalization ability are improved greatly. Simulation and generalization tests are carried on the well-trained three-step-training NN respectively, and the reconstruction results with higher resolution images verify the effectiveness and validity of this method.
基金supported by the National Science Foundation of China(60872109)the Program for New Century Excellent Talents in University(NCET-06-0900)
文摘To get the high compression ratio as well as the high-quality reconstructed image, an effective image compression scheme named irregular segmentation region coding based on spiking cortical model(ISRCS) is presented. This scheme is region-based and mainly focuses on two issues. Firstly, an appropriate segmentation algorithm is developed to partition an image into some irregular regions and tidy contours, where the crucial regions corresponding to objects are retained and a lot of tiny parts are eliminated. The irregular regions and contours are coded using different methods respectively in the next step. The other issue is the coding method of contours where an efficient and novel chain code is employed. This scheme tries to find a compromise between the quality of reconstructed images and the compression ratio. Some principles and experiments are conducted and the results show its higher performance compared with other compression technologies, in terms of higher quality of reconstructed images, higher compression ratio and less time consuming.
文摘A new nonlinear image filter using fuzzy neural network based on genetic algorithm is proposed. The learning of network parameters is performed by genetic algorithm with the efficient binary encoding scheme. In the following, fuzzy reasoning embedded in the network aims at restoring noisy pixels without degrading the quality of fine details. It is shown by experiments that the filter is very effective in removing impulse noise and significantly outperforms conventional filters.