By using the characteristic properties of the anti-Hermitian generalized anti-Hamiltonian matrices, we prove some necessary and sufficient conditions of the solvability for algebra inverse eigenvalue problem of anti-H...By using the characteristic properties of the anti-Hermitian generalized anti-Hamiltonian matrices, we prove some necessary and sufficient conditions of the solvability for algebra inverse eigenvalue problem of anti-Hermitian generalized anti-Hamiltonian matrices, and obtain a general expression of the solution to this problem. By using the properties of the orthogonal projection matrix, we also obtain the expression of the solution to optimal approximate problem of an n× n complex matrix under spectral restriction.展开更多
It has been shown in various papers that most interior-point algorithms for linear optimization and their analysis can be generalized to P_*(κ) linear complementarity problems.This paper presents an extension of t...It has been shown in various papers that most interior-point algorithms for linear optimization and their analysis can be generalized to P_*(κ) linear complementarity problems.This paper presents an extension of the recent variant of Mehrotra's second order algorithm for linear optimijation.It is shown that the iteration-complexity bound of the algorithm is O(4κ + 3)√14κ + 5 nlog(x0)Ts0/ε,which is similar to that of the corresponding algorithm for linear optimization.展开更多
基金Project(10171031) supported by the National Natural Science Foundation of China
文摘By using the characteristic properties of the anti-Hermitian generalized anti-Hamiltonian matrices, we prove some necessary and sufficient conditions of the solvability for algebra inverse eigenvalue problem of anti-Hermitian generalized anti-Hamiltonian matrices, and obtain a general expression of the solution to this problem. By using the properties of the orthogonal projection matrix, we also obtain the expression of the solution to optimal approximate problem of an n× n complex matrix under spectral restriction.
基金supported by the Natural Science Foundation of Hubei Province of China(2008CDZ047)
文摘It has been shown in various papers that most interior-point algorithms for linear optimization and their analysis can be generalized to P_*(κ) linear complementarity problems.This paper presents an extension of the recent variant of Mehrotra's second order algorithm for linear optimijation.It is shown that the iteration-complexity bound of the algorithm is O(4κ + 3)√14κ + 5 nlog(x0)Ts0/ε,which is similar to that of the corresponding algorithm for linear optimization.