HNS-IV(Hexanitrostilbene-IV) is the main charge of the exploding foil initiators(EFI), and the microstructure of the HNS will directly affect its density, flowability, sensitivity, and stability. HNS microspheres were...HNS-IV(Hexanitrostilbene-IV) is the main charge of the exploding foil initiators(EFI), and the microstructure of the HNS will directly affect its density, flowability, sensitivity, and stability. HNS microspheres were prepared using droplet microfluidics, and the particle size, morphology, specific surface area, thermal performance, and ignition threshold of the HNS microspheres were characterized and tested. The results shown that the prepared HNS microspheres have high sphericity, with an average particle size of 20.52 μm(coefficient of variation less than 0.2), and a specific surface area of 21.62 m^(2)/g(6.87 m^(2)/g higher than the raw material). Without changing the crystal structure and thermal stability of HNS-IV, this method significantly enhances the sensitivity of HNS-IV to short pulses and reduces the ignition threshold of the slapper detonator to below 1000 V. This will contribute to the miniaturization and low cost of EFI.展开更多
Magnesium hydride(MgH2)was doped into PTFE/Al to improve the energy release characteristics of the material system and strive for better application in military engineering.Five types of PTFE/Al/MgH2 reactive material...Magnesium hydride(MgH2)was doped into PTFE/Al to improve the energy release characteristics of the material system and strive for better application in military engineering.Five types of PTFE/Al/MgH2 reactive materials with different MgH2 content were prepared by molding sintering method.The dynamic mechanical properties of the materials were studied by performing split-Hopkinson pressure bar(SHPB)tests and scanning electron microscope characterizations.The thermal behavior,reaction energy,reaction process and reaction mechanism were systematically investigated by conducting thermogravimetry-differential scanning calorimetry tests,oxygen bomb calorimeter measurements,Xray diffraction and SHPB tests.The results show that MgH2 particles less than 10%content contribute to heightening the dynamic mechanical properties of PTFE/Al system.The product Mg generated by decomposition of MgH2 can not only react with gas phase C2F4þbut also undergo a Grignard-type reaction with condensed PTFE.The reaction energy and ignition threshold of PTFE/Al/MgH2 reactive materials enhance monotonously as MgH2 content rose.With the increase of MgH2 content from 0%to 20%,the reaction time is prolonged as well as the reaction intensity is enhanced dramatically arising from the massive water vapour produced by the reaction between O2 and H2.The gaseous products generated can form a high pressure shortly after the reaction,which helps to elevate the damage effect of the PTFE/Al system.展开更多
基金financially supported by a foundation item from the China People’s Liberation Army General Armaments Department。
文摘HNS-IV(Hexanitrostilbene-IV) is the main charge of the exploding foil initiators(EFI), and the microstructure of the HNS will directly affect its density, flowability, sensitivity, and stability. HNS microspheres were prepared using droplet microfluidics, and the particle size, morphology, specific surface area, thermal performance, and ignition threshold of the HNS microspheres were characterized and tested. The results shown that the prepared HNS microspheres have high sphericity, with an average particle size of 20.52 μm(coefficient of variation less than 0.2), and a specific surface area of 21.62 m^(2)/g(6.87 m^(2)/g higher than the raw material). Without changing the crystal structure and thermal stability of HNS-IV, this method significantly enhances the sensitivity of HNS-IV to short pulses and reduces the ignition threshold of the slapper detonator to below 1000 V. This will contribute to the miniaturization and low cost of EFI.
基金support from the National Natural Science Foun-dation of China(General Program.Grant No.51673213)Na-tional Natural Science Foundation of China(Grant No.51803235)are gratefully acknowledged.
文摘Magnesium hydride(MgH2)was doped into PTFE/Al to improve the energy release characteristics of the material system and strive for better application in military engineering.Five types of PTFE/Al/MgH2 reactive materials with different MgH2 content were prepared by molding sintering method.The dynamic mechanical properties of the materials were studied by performing split-Hopkinson pressure bar(SHPB)tests and scanning electron microscope characterizations.The thermal behavior,reaction energy,reaction process and reaction mechanism were systematically investigated by conducting thermogravimetry-differential scanning calorimetry tests,oxygen bomb calorimeter measurements,Xray diffraction and SHPB tests.The results show that MgH2 particles less than 10%content contribute to heightening the dynamic mechanical properties of PTFE/Al system.The product Mg generated by decomposition of MgH2 can not only react with gas phase C2F4þbut also undergo a Grignard-type reaction with condensed PTFE.The reaction energy and ignition threshold of PTFE/Al/MgH2 reactive materials enhance monotonously as MgH2 content rose.With the increase of MgH2 content from 0%to 20%,the reaction time is prolonged as well as the reaction intensity is enhanced dramatically arising from the massive water vapour produced by the reaction between O2 and H2.The gaseous products generated can form a high pressure shortly after the reaction,which helps to elevate the damage effect of the PTFE/Al system.