期刊文献+
共找到53篇文章
< 1 2 3 >
每页显示 20 50 100
基于ISSA-BP的地震灾害救援装备需求预测
1
作者 刘浩 石福丽 +2 位作者 罗雷 李文博 李文渊 《中国安全科学学报》 北大核心 2025年第S1期246-251,共6页
为提高地震救援装备调配保障效率,分析国内历史地震救援信息,以受灾人数为预测对象,选取震级、震源深度、地震烈度等8个灾情信息为影响因素,提出一种基于反向传播(BP)神经网络并融合空间金字塔匹配(SPM)混沌映射、正余弦算法和Levy飞行... 为提高地震救援装备调配保障效率,分析国内历史地震救援信息,以受灾人数为预测对象,选取震级、震源深度、地震烈度等8个灾情信息为影响因素,提出一种基于反向传播(BP)神经网络并融合空间金字塔匹配(SPM)混沌映射、正余弦算法和Levy飞行策略的改进麻雀搜索算法(ISSA)的预测模型,结合受灾人数与救援装备间的数量关系,间接预测地震救援装备需求量,并以“12·18积石山地震”救援实例进行验证。结果表明:ISSA-BP模型在预测受灾人数方面精度更高,可有效预测震后受灾人数,从而推算所需救援装备数量。“12·18积石山地震”救援实例验证了模型对震后救援装备需求预测的实用性。 展开更多
关键词 改进麻雀优化算法(issa) 反向传播(BP) 地震灾害 救援装备 需求预测
在线阅读 下载PDF
基于P-ISSA-GRU模型的养殖水体溶解氧含量预测
2
作者 李敬民 陈斯 +1 位作者 唐海晨 杨增汪 《江苏农业学报》 北大核心 2025年第9期1781-1790,共10页
为了解决养殖水体溶解氧(DO)含量预测精度低的难题,本研究提出了一种基于改进的麻雀搜索算法(ISSA)优化门控循环单元(GRU)的养殖水体溶解氧含量预测模型(P-ISSA-GRU)。通过皮尔逊(Pearson)相关系数法确定水质中各种因子与溶解氧含量的... 为了解决养殖水体溶解氧(DO)含量预测精度低的难题,本研究提出了一种基于改进的麻雀搜索算法(ISSA)优化门控循环单元(GRU)的养殖水体溶解氧含量预测模型(P-ISSA-GRU)。通过皮尔逊(Pearson)相关系数法确定水质中各种因子与溶解氧含量的相关系数,选取强关联因子为模型输入特征;通过引入Tent混沌映射改进种群初始化,自适应动态权重因子ω动态改变权重系数以及高斯扰动(GP)改进最优位置更新,增强了麻雀搜索算法(SSA)在寻找全局最优解和局部最优解的能力,加快了其收敛速度;通过ISSA优化GRU网络,进行模型参数的优化搜索,构建了非线性溶解氧含量预测模型(P-ISSA-GRU)。试验结果表明,P-ISSA-GRU模型与其他5个常用的模型相比显示出更好的预测效果,均方误差(MSE)为0.152(mg/L)^(2)、平均绝对误差(MAE)为0.311 mg/L、均方根误差(RMSE)为0.390 mg/L、决定系数(R^(2))为0.984。因此,本研究建立的P-ISSA-GRU模型与传统模型相比在一定程度上提高了对养殖水体溶解氧含量的预测性能。 展开更多
关键词 溶解氧含量预测 皮尔逊相关系数 改进的麻雀搜索算法(issa) 门控循环单元(GRU)
在线阅读 下载PDF
融合ISSA和TA-CapNets的矿井滚动轴承故障诊断方法 被引量:1
3
作者 屈波 张兰峰 +2 位作者 王惠伟 闫明 周超逸 《金属矿山》 北大核心 2025年第4期226-232,共7页
滚动轴承作为矿井设备的核心部件,其运行状态直接关系到矿山生产安全和经济效益。为提升矿井滚动轴承故障诊断的性能,提出了一种融合改进麻雀搜索算法(Improved Sparrow Search Algorithm,ISSA)和时频自适应胶囊网络(Time-Frequency Ada... 滚动轴承作为矿井设备的核心部件,其运行状态直接关系到矿山生产安全和经济效益。为提升矿井滚动轴承故障诊断的性能,提出了一种融合改进麻雀搜索算法(Improved Sparrow Search Algorithm,ISSA)和时频自适应胶囊网络(Time-Frequency Adaptive Capsule Networks,TA-CapNets)的新型诊断方法。首先,通过采集矿井滚动轴承的运行数据,提取出反映轴承健康状况的特征;然后利用ISSA对特征进行优化选择,该算法通过模拟麻雀觅食行为,提高了全局搜索能力和收敛速度;再将优化后的特征输入TA-CapNets中,能够自适应地学习时频特征,有效捕捉轴承故障的动态变化。通过TA-CapNets的输出,结合故障模式识别,实现了对轴承故障的准确诊断。试验结果表明:该方法在故障诊断的准确性和实时性方面均优于传统方法,具有一定的实用价值和推广前景。 展开更多
关键词 矿井滚动轴承 故障诊断 改进麻雀搜索算法 时频自适应胶囊网络
在线阅读 下载PDF
基于ISSA-Transformer的电梯制动力矩预测研究
4
作者 苏万斌 江叶峰 +2 位作者 李科 周振超 易灿灿 《机电工程》 北大核心 2025年第10期2027-2036,共10页
实现电梯制动器力矩的精确预测对确保电梯安全运行和实现预测性维护具有重要的意义。针对曳引式电梯在制动力矩预测方面存在准确性与可靠性不足的问题,以及现有Transformer存在计算复杂度高和训练时间长的局限性,提出了一种基于改进鲸... 实现电梯制动器力矩的精确预测对确保电梯安全运行和实现预测性维护具有重要的意义。针对曳引式电梯在制动力矩预测方面存在准确性与可靠性不足的问题,以及现有Transformer存在计算复杂度高和训练时间长的局限性,提出了一种基于改进鲸沙虫群算法优化Transformer网络(ISSA-Transformer)的电梯制动力矩预测方法。首先,为了提高Transformer的预测精度,在Transformer模型中添加了特征融合门(FFG)以提高模型的特征提取能力,使其能够更有效地捕捉制动力矩的全局与局部特征;然后,利用拉普拉斯交叉算子、混合对立学习方法以及高斯扰动对鲸沙虫群算法(SSA)进行了改进,以增强SSA的搜索能力和全局最优收敛性。并采用ISSA算法优化了Transformer的迭代次数、批次大小和学习率,以提高模型的计算效率并减少训练时间,从而建立了电梯制动器制动力矩的预测模型;最后,对曳引式电梯制动器数据进行了分析,将所得结果与LSTM、Transformer和SSA-Transformer模型进行了比较。研究结果表明:ISSA-Transformer的均方根误差(RMSE)较LSTM、Transformer和SSA-Transformer模型分别降低了0.0318、0.0144和0.0133,用于电梯制动力矩预测的准确率达到了98.7%,相较传统方法具有更高的精度和稳定性。该方法可为电梯的安全评估和预测性维护提供更可靠的技术支持。 展开更多
关键词 曳引式电梯 升降台 电梯制动器 改进鲸沙虫群算法 Transformer网络 特征融合门 均方根误差 长短期记忆网络
在线阅读 下载PDF
ISSA-LSTM和sEMG的绝缘杆法作业人员上肢运动预测研究
5
作者 刘凯 钟垒锋 +1 位作者 吴田 杨展豪 《机械设计与制造》 北大核心 2025年第7期16-23,共8页
随着带电作业的智能化进程的深入,尽管配网绝缘杆作业法安全性高但劳动强度大,为了有效减轻作业人员的劳动强度,引入外骨骼人机协同作业,为了准确跟踪作业人员上肢肌肉的运动变化,识别绝缘杆法带电作业肌肉出力特征,加强人机契合度,提... 随着带电作业的智能化进程的深入,尽管配网绝缘杆作业法安全性高但劳动强度大,为了有效减轻作业人员的劳动强度,引入外骨骼人机协同作业,为了准确跟踪作业人员上肢肌肉的运动变化,识别绝缘杆法带电作业肌肉出力特征,加强人机契合度,提出一种利用表面肌电信号(surface electromyography,sEMG)进行上肢肌肉连续运动预测的方法。采集作业人员在进行三种绝缘杆典型作业时的肱二头肌、肱三头肌sEMG信号,使用经过变模态分解去噪后的sEMG信号作为输入量,利用改进麻雀搜索算法优化LSTM神经网络,并使用状态估计器提高模型性能,实现对肱二头肌、肱三头肌sEMG信号变化的预测。预测结果表明:ISSA-LSTM优化模型的收敛速度快,泛化能力强,均方根误差RMSE、决定系数R 2均达到了非常高的预测精度,同时该模型在GPU占用率和训练时间上也表现出相对优异的性能,显示了基于ISSALSTM优化模型进行sEMG信号预测的优越性,为提供外骨骼更优控制提供依据。 展开更多
关键词 带电作业 人机协同作业 表面肌电信号 连续运动预测 改进麻雀搜索算法 LSTM
在线阅读 下载PDF
基于ISSA-VMD的地铁构架应力谱门槛值自适应确定方法 被引量:1
6
作者 薛海 叶层林 +1 位作者 和永峰 陈江涛 《中国铁道科学》 EI CAS CSCD 北大核心 2024年第4期180-188,共9页
针对地铁构架应力谱编制过程中小应力循环舍弃缺乏标准可依的问题,提出基于改进麻雀搜索算法(ISSA)和应力-时间历程信号变分模态分解(VMD)的应力谱门槛值自适应确定方法。首先,通过融合Tent混沌映射、鱼鹰优化算法和柯西变异策略改进麻... 针对地铁构架应力谱编制过程中小应力循环舍弃缺乏标准可依的问题,提出基于改进麻雀搜索算法(ISSA)和应力-时间历程信号变分模态分解(VMD)的应力谱门槛值自适应确定方法。首先,通过融合Tent混沌映射、鱼鹰优化算法和柯西变异策略改进麻雀搜索算法,从而避免陷入局部最优,提高分析效率;其次,采用ISSA优化VMD的分解个数和惩罚因子,实现关键参数确定;最后,根据最优参数组合,对应力信号进行VMD分解,并结合疲劳损伤占比、均方根和均方误差等参数对分解得到不同分量信号的中心频率进行综合分析,提取损伤占比较大的信号频率作为截止频率,从频域层面实现小应力门槛值的确定。结果表明:采用此方法确定的小应力门槛值使得应力雨流循环总数降低17.1%,实际损伤较传统方法所得结果减少7.8%,在有效反映应力所造成疲劳效应的同时保留了应力循环特性,提高了应力谱编制效率,从而为地铁构架应力谱编制过程中小应力门槛值的合理确定提供了参考。 展开更多
关键词 地铁构架 应力谱 小应力门槛值 疲劳损伤 issa-VMD
在线阅读 下载PDF
基于ISSA-SVC的配电网高损台区窃电检测方法研究 被引量:8
7
作者 赖健 许志浩 +3 位作者 康兵 王宗耀 丁贵立 袁小翠 《电力系统保护与控制》 EI CSCD 北大核心 2024年第12期104-112,共9页
针对现有的基于机器学习的用户窃电行为检测方法检测效率和准确率不高等问题,提出一种基于改进麻雀搜索算法(improved sparrow search algorithm,ISSA)优化支持向量分类机(support vector classification,SVC)参数的ISSA-SVC窃电检测模... 针对现有的基于机器学习的用户窃电行为检测方法检测效率和准确率不高等问题,提出一种基于改进麻雀搜索算法(improved sparrow search algorithm,ISSA)优化支持向量分类机(support vector classification,SVC)参数的ISSA-SVC窃电检测模型。首先,该模型通过分析台区每一天的线损率与窃电电量、窃电用户计量电量与窃电电量、窃电用户计量电量与线损电量、台区供电量与窃电电量、用户最近一天用电量和相邻几天用电量、具有相似特征用户用电量曲线的相关性提取用户窃电特征参量。其次,利用动态时间规整(dynamic time warping,DTW)方法计算得到它们的相关系数。最后,采用ISSA优化SVC惩罚参数C和核参数g,并对台区内窃电用户进行检测。仿真算例与实际电网数据分析表明,所提方法与传统的窃电检测方法相比,具有更高的效率和准确率。 展开更多
关键词 机器学习 窃电检测 用户窃电特征参量 相关系数 issa-SVC
在线阅读 下载PDF
基于MDFF与ISSA的滚动轴承故障声发射诊断 被引量:2
8
作者 魏巍 王之海 +2 位作者 柳小勤 冯正江 李佳慧 《振动与冲击》 EI CSCD 北大核心 2023年第7期65-76,共12页
针对滚动轴承早期、复合故障难以准确诊断与智能诊断模型超参数确定严重依赖专家先验知识问题,提出一种基于多维深度特征融合(multi-dimensional depth feature fusion, MDFF)与改进麻雀搜索算法(improved sparrow search algorithm, IS... 针对滚动轴承早期、复合故障难以准确诊断与智能诊断模型超参数确定严重依赖专家先验知识问题,提出一种基于多维深度特征融合(multi-dimensional depth feature fusion, MDFF)与改进麻雀搜索算法(improved sparrow search algorithm, ISSA)的滚动轴承故障声发射诊断方法。用一维卷积与线性瓶颈反向残差二维卷积神经网络构建多输入卷积神经网络(convolution neural network, CNN)结构的诊断模型,模型输入为滚动轴承声发射信号及其小波时频图,提出基于布伦纳梯度和信噪比的质量指标,在108种小波基中筛选出最佳时频图以提升输入数据质量。接着,采用特征金字塔网络将模型的一、二维低层与高层特征融合,建立深度融合的诊断模型。然后,将交叉混沌映射、自适应权重及融合的随机游走策略引入麻雀搜索算法中,以自适应获取MDFFCNN最优超参数。试验表明,对比近期多个主流智能诊断算法,所提方法可避免人工选择诊断模型超参数,对滚动轴承早期尤其复合故障具有更高的诊断精度和稳定性,模型诊断过程的智能化水平得到了进一步提高。 展开更多
关键词 滚动轴承 声发射(AE) 深度学习 改进麻雀搜索(issa) 卷积神经网络(CNN) 多维深度特征融合(MDFF) 最佳时频图
在线阅读 下载PDF
基于ISSA的燃料电池多电源模糊能量管理策略 被引量:1
9
作者 罗闯 许亮 《汽车安全与节能学报》 CAS CSCD 北大核心 2023年第4期496-504,共9页
为了提高燃料电池(FC)混合动力汽车(HEV)的经济性,提出一种利用模糊逻辑控制(FLC)的方法对其实现能量管理策略(EMS)。以氢耗量最优为目标,加入超级电容器作为辅助能源,考虑汽车驱动与制动2种状态,把需求功率、超级电容荷电状态、燃料电... 为了提高燃料电池(FC)混合动力汽车(HEV)的经济性,提出一种利用模糊逻辑控制(FLC)的方法对其实现能量管理策略(EMS)。以氢耗量最优为目标,加入超级电容器作为辅助能源,考虑汽车驱动与制动2种状态,把需求功率、超级电容荷电状态、燃料电池的工作效率,添加为模糊控制器输入变量,对模糊规则进行改进。引入改进的麻雀搜索算法(ISSA)对模糊控制器的隶属度函数进行优化,采用Circle映射初始化麻雀种群,同时引入随机游走策略对全局最优解扰动。采用Advisor软件和Matlab/Simulink环境建模并进行联合仿真。结果表明:本文能量管理策略,在城市道路循环工况(UDDS)和高速公路燃油经济性测试工况(HWFET)下,等效氢耗量分别减低了29.38%和29.88%,同时,也减少了燃料电池在运行时的变载次数,使得燃料电池寿命得到延长。 展开更多
关键词 混合动力汽车(HEV) 燃料电池(FC) 能量管理策略(EMS) 模糊逻辑控制(FLC) 改进的麻雀搜索算法(issa)
在线阅读 下载PDF
ISSA优化Attention双向LSTM的短期电力负荷预测 被引量:31
10
作者 王金玉 金宏哲 +1 位作者 王海生 张忠伟 《电力系统及其自动化学报》 CSCD 北大核心 2022年第5期111-117,共7页
针对短期电力负荷数据的复杂性和多样性,提出一种含Attention的双向LSTM预测方法,简称Bi-LSTM-AT。该方法将电力负荷历史数据作为输入且考虑温度、湿度和日期类型因素的影响。通过建模学习构建网络模型,挖掘网络特征内部变化规律,通过... 针对短期电力负荷数据的复杂性和多样性,提出一种含Attention的双向LSTM预测方法,简称Bi-LSTM-AT。该方法将电力负荷历史数据作为输入且考虑温度、湿度和日期类型因素的影响。通过建模学习构建网络模型,挖掘网络特征内部变化规律,通过映射加权和学习参数矩阵赋予Bi-LSTM-AT网络隐含状态相应的权重。同时,针对该模型超参数选择困难的问题,提出利用改进麻雀算法实现该模型超参数的优化选择,使得全年最后两天预测值的MAPE为0.42%、RMSE为0.29%和MAE为0.21%,验证了模型线性回归拟合能力的准确性和稳定性。 展开更多
关键词 电力负荷 预测 长短期记忆 注意力机制 改进麻雀搜索算法优化
在线阅读 下载PDF
基于CNN-GRU-ISSA-XGBoost的短期光伏功率预测 被引量:6
11
作者 岳有军 吴明沅 +1 位作者 王红君 赵辉 《南京信息工程大学学报》 CAS 北大核心 2024年第2期231-238,共8页
针对光伏功率随机性及波动性大,单一预测模型往往难以准确分析历史数据波动规律,从而导致预测精度不高的问题,提出一种基于卷积神经网络-门控循环单元(CNN-GRU)和改进麻雀搜索算法(ISSA)优化的极限梯度提升(XGBoost)模型的短期光伏功率... 针对光伏功率随机性及波动性大,单一预测模型往往难以准确分析历史数据波动规律,从而导致预测精度不高的问题,提出一种基于卷积神经网络-门控循环单元(CNN-GRU)和改进麻雀搜索算法(ISSA)优化的极限梯度提升(XGBoost)模型的短期光伏功率预测组合模型.首先去除历史数据中的异常值并对其进行归一化处理,利用主成分分析法(PCA)进行特征选取,以便更好地识别影响光伏功率的关键因素.然后采用CNN网络提取数据的空间特征,再经过GRU网络提取时间特征,针对XGBoost模型手动配置参数困难、随机性大的问题,利用ISSA对模型超参数寻优.最后对两种方法预测的结果用误差倒数法减小误差的同时对权重进行更新,得到新的预测值,从而完成对光伏功率的预测.实验结果表明,所提出的CNN-GRU-ISSA-XGBoost组合模型具有更强的适应性和更高的精度. 展开更多
关键词 光伏功率预测 改进麻雀搜索算法 卷积神经网络 门控循环单元 XGBoost模型
在线阅读 下载PDF
基于RBFNN-ISSA的特大跨径悬索桥有限元模型修正 被引量:4
12
作者 王祺顺 何维 +2 位作者 吴欣 郭伟奇 雷顺成 《振动与冲击》 EI CSCD 北大核心 2024年第7期155-167,共13页
针对大跨径悬索桥一类复杂结构的有限元模型修正问题,提出了一种基于径向基神经网络(radial basis function neural network,RBFNN)子结构代理模型与改进麻雀搜索算法(improved sparrow search algorithm,ISSA)的有限元模型修正方法。首... 针对大跨径悬索桥一类复杂结构的有限元模型修正问题,提出了一种基于径向基神经网络(radial basis function neural network,RBFNN)子结构代理模型与改进麻雀搜索算法(improved sparrow search algorithm,ISSA)的有限元模型修正方法。首先,基于桥梁图纸数据采用通用有限元软件建立一座大跨悬索桥的初始有限元模型,并根据拉丁超立方抽样原则生成子结构材料参数-结构响应的训练样本,通过RBF神经网络和子结构模拟方法对初始有限元模型进行解构重组和样本学习,拟合关于材料参数-结构响应的代理模型。其次,建立考虑主梁挠度和模态频率误差最小的有限元模型参数修正数学优化模型,采用Tent混沌映射及黄金正弦策略改进标准麻雀搜索算法,引入柯西分布函数和贪心保留策略对每一代麻雀种群进行扰动,以用于求解联合静、动力特征的有限元模型修正数学优化问题。最后,以杭瑞高速洞庭湖大桥为工程背景,进行了悬索桥荷载试验,利用实测桥梁响应数据验证了该方法的可行性。研究结果表明:基于RBF神经网络与子结构法的模型修正方法,可以建立拟合精度较高的悬索桥结构代理模型;基于子结构RBF神经网络与改进麻雀搜索算法修正后的有限元模型相较于整体RBF神经网络、支持向量机和Kriging模型,大幅提升了对于实际结构的模拟精度,与实测数据相比,修正前后有限元模型在两级静力加载工况下13个有效测点挠度的平均相对误差降低了25%以上,前8阶模态频率的平均相对误差由-6.83%降至-2.38%,MAC值结果表明修正后模型能够准确地反映出大桥的实际振动状态,有效改善了初始有限元模型计算失真的情况;此外,基于混合策略改进后的麻雀搜索算法对于有限元模型修正参数的寻优具有更佳的收敛效率和稳定性。 展开更多
关键词 桥梁工程 有限元模型修正 改进麻雀搜索算法(issa) 悬索桥 径向基神经网络(RBFNN) 柯西变异策略
在线阅读 下载PDF
基于EEMD能量矩与ISSA-SVM算法的GIS局部放电类型识别方法 被引量:19
13
作者 王利福 刘屹江泽 王燚增 《电子测量与仪器学报》 CSCD 北大核心 2022年第5期204-212,共9页
为有效识别气体绝缘开关组合电器(gas insulated switchgear,GIS)局部放电(partial discharge,PD)类型,进而保障设备安全稳定运行,提出了一种基于集合模态分解(ensemble empirical mode decomposition,EEMD)联合能量矩与改进麻雀群搜索... 为有效识别气体绝缘开关组合电器(gas insulated switchgear,GIS)局部放电(partial discharge,PD)类型,进而保障设备安全稳定运行,提出了一种基于集合模态分解(ensemble empirical mode decomposition,EEMD)联合能量矩与改进麻雀群搜索算法优化支持向量机(improved sparrow search algorithm-support vector machines,ISSA-SVM)算法的GIS局部放电类型识别方法。首先搭建能产生4种局部放电类型效果的GIS局部放电实验平台,以获取4种局部放电信号,然后利用EEMD联合能量矩算法分别对4种局部放电信号进行模态分解与特征向量提取,最后利用经ISSA算法优化后的SVM算法对GIS局部放电类型进行识别。实验结果表明,所提方法可有效识别GIS不同局部放电类型,且较PSO-SVM与SSA-SVM算法识别精度分别提高了16.7%与8.5%,验证了所提GIS局部放电类型识别方法的有效性以及优越性。 展开更多
关键词 气体绝缘开关组合电器 局部放电 集合模态分解 改进麻雀群搜索算法优化支持向量机(issa-SVM)
在线阅读 下载PDF
基于ISSA-ELM的船舶压载水系统故障诊断研究
14
作者 王曼绮 曹辉 +1 位作者 张琦 张宝中 《舰船科学技术》 北大核心 2024年第19期36-41,共6页
为了从船舶压载水系统中有效挖掘数据信息,降低极限学习机(ELM)初始参数随机性对故障诊断精度的影响,提出基于改进麻雀搜索算法(ISSA)优化ELM的船舶压载水系统故障诊断模型。首先,使用自适应加权策略和Levy飞行策略改进发现者位置公式,... 为了从船舶压载水系统中有效挖掘数据信息,降低极限学习机(ELM)初始参数随机性对故障诊断精度的影响,提出基于改进麻雀搜索算法(ISSA)优化ELM的船舶压载水系统故障诊断模型。首先,使用自适应加权策略和Levy飞行策略改进发现者位置公式,获得ISSA并验证其性能;而后利用改进后的麻雀搜索算法对ELM的初始输入权重和阈值进行优化,建立基于ISSA-ELM的故障诊断模型。结果表明,ISSA-ELM模型的故障诊断精度为96.6%,比SSAELM、PSO-ELM、GWO-ELM模型高出1.8%、3.5%和2.6%,比ELM和SVM模型高出4.5%和7.1%。 展开更多
关键词 船舶压载水系统 故障诊断 极限学习机(ELM) 改进麻雀搜索算法(issa)
在线阅读 下载PDF
基于ISSA-DELM算法的CSTR系统广义预测控制研究
15
作者 盛斌 张军 《现代电子技术》 北大核心 2024年第19期123-130,共8页
连续搅拌反应釜(CSTR)作为典型的聚合反应化工生产用到的设备,其在工作运行时具有强非线性、大滞后性和不确定性,用传统的方法难以建立精准的数学模型。文中根据一类CSTR反应过程采用Hammerstein-Wiener模型,使用高斯径向基函数的LS-SV... 连续搅拌反应釜(CSTR)作为典型的聚合反应化工生产用到的设备,其在工作运行时具有强非线性、大滞后性和不确定性,用传统的方法难以建立精准的数学模型。文中根据一类CSTR反应过程采用Hammerstein-Wiener模型,使用高斯径向基函数的LS-SVM分别对模型的两个非线性模块进行建模,并使用其建立的Hammerstein-Wiener模型作为广义预测控制的预测模型;针对广义预测控制的滚动优化环节,采用多策略改进的麻雀算法(ISSA)优化深度极限学习机(DELM)的混和优化算法策略,并利用基准函数测试改进麻雀算法的优越性;最后将混合优化算法应用在非线性CSTR对象上,经过实验证明,所提出的ISSA-DELM混合优化算法对CSTR系统具有较好的控制效果,并与未改进的SSA-DELM算法和DELM算法进行仿真结果对比,结果显示,文中算法控制效果明显优于SSA-DELM算法和传统的DELM算法。 展开更多
关键词 连续搅拌反应釜(CSTR) HAMMERSTEIN-WIENER模型 广义预测控制(GPC) 改进麻雀算法(issa) 深度极限学习机(DELM) 高斯径向基函数
在线阅读 下载PDF
基于ISSA-ELM的煤与瓦斯突出危险等级预测 被引量:7
16
作者 邵良杉 毕圣昊 +1 位作者 王彦彬 赵硕嫱 《中国安全生产科学技术》 CAS CSCD 北大核心 2023年第9期76-82,共7页
为提高煤与瓦斯突出危险等级预测的准确性,提出改进麻雀搜索算法(ISSA)优化极限学习机(ELM)的煤与瓦斯突出预测模型。首先,选用60组煤与瓦斯突出数据作为数据样本,采用主成分分析法(PCA)对其影响因素进行降维处理。然后,利用ISSA算法优... 为提高煤与瓦斯突出危险等级预测的准确性,提出改进麻雀搜索算法(ISSA)优化极限学习机(ELM)的煤与瓦斯突出预测模型。首先,选用60组煤与瓦斯突出数据作为数据样本,采用主成分分析法(PCA)对其影响因素进行降维处理。然后,利用ISSA算法优化ELM算法的参数,建立ISSA-ELM模型。最后,选取样本后15组作为测试样本来验证模型的有效性,并与其他模型进行对比。研究结果表明:ISSA-ELM模型具有预测准确率更高、收敛速度更快和稳定性更佳等优点。研究结果可为煤与瓦斯突出危险等级准确判别提供参考。 展开更多
关键词 矿山安全 煤与瓦斯突出预测 主成分分析法 改进麻雀搜索算法 极限学习机
在线阅读 下载PDF
基于ISSA-VMD的滚动轴承早期故障诊断方法 被引量:9
17
作者 刘玉明 刘自然 王鹏博 《机电工程》 CAS 北大核心 2023年第9期1426-1432,共7页
针对滚动轴承早期信号微弱导致故障特征难以提取和故障诊断准确率不高的问题,提出了一种基于改进麻雀搜索算法-变分模态分解(ISSA-VMD)和样本熵(SE)的滚动轴承早期故障特征提取方法。首先,在轴承早期故障诊断过程中,模态分解个数和惩罚... 针对滚动轴承早期信号微弱导致故障特征难以提取和故障诊断准确率不高的问题,提出了一种基于改进麻雀搜索算法-变分模态分解(ISSA-VMD)和样本熵(SE)的滚动轴承早期故障特征提取方法。首先,在轴承早期故障诊断过程中,模态分解个数和惩罚因子的选择对变分模态分解(VMD)的分解效果有着很大的影响,为消除人为选择参数的影响,将麻雀搜索算法(SSA)优化为改进麻雀搜索算法(ISSA),利用ISSA参数优化后的VMD方法对信号进行了分解;然后,计算了敏感固有模态函数(IMF)分量的样本熵,构成了特征向量;最后,将特征向量作为支持向量机(SVM)的输入,进行了滚动轴承早期故障类型的识别。研究结果表明:ISSA-VMD+样本熵特征提取模型的故障诊断准确率为98.3%,与SSA-VMD+样本熵、灰狼优化算法(GWO)-VMD+样本熵、鲸鱼优化算法(WOA)-VMD+样本熵、传统VMD+样本熵、经验模态分解(EMD)+样本熵等特征提取模型相比,故障诊断准确率分别提高了3.3%、6.6%、5%、3.3%、5%;该模型可以准确地提取故障特征,提高故障诊断准确率。 展开更多
关键词 轴承早期故障 故障特征提取 改进麻雀搜索算法-变分模态分解 样本熵 支持向量机 经验模态分解
在线阅读 下载PDF
基于ISSAE和XGBoost的滚动轴承故障诊断研究 被引量:8
18
作者 向川 任泽俊 +1 位作者 赵晶 周佳慧 《机电工程》 CAS 北大核心 2021年第6期704-711,共8页
为了提高滚动轴承的故障诊断准确率,并增强诊断模型的抗噪性能,提出了一种基于改进堆栈稀疏自编码(ISSAE)网络和极端梯度提升(XGBoost)相结合的轴承故障诊断方法(ISSAE网络将多个稀疏自编码(SAE)网络堆叠,增强了自编码网络提取数据深层... 为了提高滚动轴承的故障诊断准确率,并增强诊断模型的抗噪性能,提出了一种基于改进堆栈稀疏自编码(ISSAE)网络和极端梯度提升(XGBoost)相结合的轴承故障诊断方法(ISSAE网络将多个稀疏自编码(SAE)网络堆叠,增强了自编码网络提取数据深层特征的能力,通过改进网络损失函数提高了网络抗噪性能)。首先,将轴承测量信号输入到使用Adam算法优化的ISSAE网络中;网络对输入信号进行重构并自行学习,提取出了测量信号的内在特征。然后,将特征值输入到XGBoost模型中,通过网格搜索法调节参数,对故障诊断分类器模型进行了训练。最后,将轴承故障测试集输入到训练好的ISSAE-XGBoost模型中,完成了对故障类型的自动识别;采用多个实验平台的不同轴承实验数据,验证了该算法的有效性和适用性。研究结果表明:相比于SSAE-XGBoost和ISSAE-SVM算法,该方法对轴承故障识别率高、适用性强,在大样本数量情况下,识别率达到99%以上,即使在样本数量较少时,也具有较高的识别准确率;该算法通过在网络中改进损失函数,可使模型抑制微小扰动的干扰,对含有噪声的测量信号,仍能保持较高的故障诊断准确率。 展开更多
关键词 滚动轴承 故障诊断 改进堆栈稀疏自编码 极端梯度提升
在线阅读 下载PDF
基于VMD-ISSA-LSTM的短期光伏发电 功率预测 被引量:13
19
作者 彭宇文 杨之乐 +2 位作者 李冰 张豪 周邦昱 《广东电力》 北大核心 2024年第1期18-26,共9页
针对光伏发电功率存在随机波动性的问题,提出基于变分模态分解(variational mode decomposition,VMD)和改进麻雀搜索算法(improved sparrow search algorithm,ISSA)优化长短期记忆(long short term memory,LSTM)神经网络的短期光伏发电... 针对光伏发电功率存在随机波动性的问题,提出基于变分模态分解(variational mode decomposition,VMD)和改进麻雀搜索算法(improved sparrow search algorithm,ISSA)优化长短期记忆(long short term memory,LSTM)神经网络的短期光伏发电功率预测方法。首先,通过VMD算法将多维光伏特征数据分解为若干不同频率的本征模态和残差分量,以降低原始序列的非平稳性;然后,采用ISSA对LSTM神经网络超参数进行全局寻优,建立了不同模态序列分量下的ISSA-LSTM组合模型;最后,使用训练好的组合模型对各分解的子序列模态特征分量进行多维预测,并将各层模态预测序列叠加组合成最终的输出结果。仿真结果表明,构建的VMD-ISSA-LSTM组合模型相较于常规的短期光伏发电功率预测模型,具有更强的鲁棒性和高精度性。 展开更多
关键词 光伏发电功率 变分模态分解 改进麻雀搜索算法 长短期记忆神经网络
在线阅读 下载PDF
基于SVMD-ISSA-CNN-TGLSTM的供热负荷预测模型 被引量:5
20
作者 薛贵军 牛盼 +1 位作者 谢文举 李水清 《现代电子技术》 北大核心 2024年第11期131-139,共9页
针对目前集中供热负荷预测的研究中极少考虑换热站内部因素以及供热负荷预测精准度较低的问题,提出一种基于SVMD-ISSA-CNN-TGLSTM的混合预测模型。首先,利用卷积神经网络和转换门控长短期记忆神经网络构建具有空间提取能力的CNN-TGLSTM... 针对目前集中供热负荷预测的研究中极少考虑换热站内部因素以及供热负荷预测精准度较低的问题,提出一种基于SVMD-ISSA-CNN-TGLSTM的混合预测模型。首先,利用卷积神经网络和转换门控长短期记忆神经网络构建具有空间提取能力的CNN-TGLSTM模型;其次,考虑到负荷序列的非平稳特征,采用SVMD分解,并引用改进的麻雀搜索算法来优化模型的参数,避免调参陷入局部最优;最后,将不同模型之间的预测效果与经济效益进行对比。结果表明:SVMD-ISSA-CNN-TGLSTM模型经济效益最高,评价指标RMSE、MSE、MAE相比ISSA-CNN-TGLSTM模型分别降低了35.7%、59.0%、32.7%,且均优于其他不同模型,预测效果最佳。 展开更多
关键词 供热负荷预测 逐次变分模态分解 改进的麻雀搜索算法 卷积神经网络 转换门控长短期记忆神经网络 空间提取能力
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部