Missile interception problem can be regarded as a two-person zero-sum differential games problem,which depends on the solution of Hamilton-Jacobi-Isaacs(HJI)equa-tion.It has been proved impossible to obtain a closed-f...Missile interception problem can be regarded as a two-person zero-sum differential games problem,which depends on the solution of Hamilton-Jacobi-Isaacs(HJI)equa-tion.It has been proved impossible to obtain a closed-form solu-tion due to the nonlinearity of HJI equation,and many iterative algorithms are proposed to solve the HJI equation.Simultane-ous policy updating algorithm(SPUA)is an effective algorithm for solving HJI equation,but it is an on-policy integral reinforce-ment learning(IRL).For online implementation of SPUA,the dis-turbance signals need to be adjustable,which is unrealistic.In this paper,an off-policy IRL algorithm based on SPUA is pro-posed without making use of any knowledge of the systems dynamics.Then,a neural-network based online adaptive critic implementation scheme of the off-policy IRL algorithm is pre-sented.Based on the online off-policy IRL method,a computa-tional intelligence interception guidance(CIIG)law is developed for intercepting high-maneuvering target.As a model-free method,intercepting targets can be achieved through measur-ing system data online.The effectiveness of the CIIG is verified through two missile and target engagement scenarios.展开更多
The classical elastic impedance (EI) inversion method, however, is based on the L2-norm misfit function and considerably sensitive to outliers, assuming the noise of the seismic data to be the Guassian-distribution....The classical elastic impedance (EI) inversion method, however, is based on the L2-norm misfit function and considerably sensitive to outliers, assuming the noise of the seismic data to be the Guassian-distribution. So we have developed a more robust elastic impedance inversion based on the Ll-norm misfit function, and the noise is assumed to be non-Gaussian. Meanwhile, some regularization methods including the sparse constraint regularization and elastic impedance point constraint regularization are incorporated to improve the ill-posed characteristics of the seismic inversion problem. Firstly, we create the Ll-norm misfit objective function of pre-stack inversion problem based on the Bayesian scheme within the sparse constraint regularization and elastic impedance point constraint regularization. And then, we obtain more robust elastic impedances of different angles which are less sensitive to outliers in seismic data by using the IRLS strategy. Finally, we extract the P-wave and S-wave velocity and density by using the more stable parameter extraction method. Tests on synthetic data show that the P-wave and S-wave velocity and density parameters are still estimated reasonable with moderate noise. A test on the real data set shows that compared to the results of the classical elastic impedance inversion method, the estimated results using the proposed method can get better lateral continuity and more distinct show of the gas, verifying the feasibility and stability of the method.展开更多
该文首先简要介绍了无线电掩星探测技术及其发展现状和传统Abel变换方法面临的问题。为改进传统Abel变换反演方法,利用电子密度廓线的分离假设,引进了分离假设反演法。随后利用国际电离层参考模式IRI2007给出1000个掩星事件截面的模拟...该文首先简要介绍了无线电掩星探测技术及其发展现状和传统Abel变换方法面临的问题。为改进传统Abel变换反演方法,利用电子密度廓线的分离假设,引进了分离假设反演法。随后利用国际电离层参考模式IRI2007给出1000个掩星事件截面的模拟数据及COSMIC卫星星座的一天实测数据,进行比较计算,并对结果进行了分析,验证了分离假设反演法的有效性。文中还给出了垂直电子总量VTEC(Vertical Total Electron Content)先验场的获取途径。最后,对分离假设反演法的进一步研究的方向进行了探讨。展开更多
In real-time strategy(RTS)games,the ability of recognizing other players’goals is important for creating artifical intelligence(AI)players.However,most current goal recognition methods do not take the player’s decep...In real-time strategy(RTS)games,the ability of recognizing other players’goals is important for creating artifical intelligence(AI)players.However,most current goal recognition methods do not take the player’s deceptive behavior into account which often occurs in RTS game scenarios,resulting in poor recognition results.In order to solve this problem,this paper proposes goal recognition for deceptive agent,which is an extended goal recognition method applying the deductive reason method(from general to special)to model the deceptive agent’s behavioral strategy.First of all,the general deceptive behavior model is proposed to abstract features of deception,and then these features are applied to construct a behavior strategy that best matches the deceiver’s historical behavior data by the inverse reinforcement learning(IRL)method.Final,to interfere with the deceptive behavior implementation,we construct a game model to describe the confrontation scenario and the most effective interference measures.展开更多
An integration-centric approach is proposed to handle inadequate information in the system readiness level (SRL) assessment using the evidential reasoning (ER) algorithm. Current SRL assessment approaches cannot b...An integration-centric approach is proposed to handle inadequate information in the system readiness level (SRL) assessment using the evidential reasoning (ER) algorithm. Current SRL assessment approaches cannot be applied to handle inadequate information as the input. The ER-based approach is proposed to synthesize inadequate input information and an integration-centric perspective is applied to reduce the computational complexity. Two case studies are performed to validate the efficiency of the proposed approach. And these studies are also performed to study how the inadequate information will affect the assessment result. And the differences caused by the system's structure. The importance of the system's structure in the SRL assessment is demonstrated and the contributions made in this study are summarized as conclusions.展开更多
文摘Missile interception problem can be regarded as a two-person zero-sum differential games problem,which depends on the solution of Hamilton-Jacobi-Isaacs(HJI)equa-tion.It has been proved impossible to obtain a closed-form solu-tion due to the nonlinearity of HJI equation,and many iterative algorithms are proposed to solve the HJI equation.Simultane-ous policy updating algorithm(SPUA)is an effective algorithm for solving HJI equation,but it is an on-policy integral reinforce-ment learning(IRL).For online implementation of SPUA,the dis-turbance signals need to be adjustable,which is unrealistic.In this paper,an off-policy IRL algorithm based on SPUA is pro-posed without making use of any knowledge of the systems dynamics.Then,a neural-network based online adaptive critic implementation scheme of the off-policy IRL algorithm is pre-sented.Based on the online off-policy IRL method,a computa-tional intelligence interception guidance(CIIG)law is developed for intercepting high-maneuvering target.As a model-free method,intercepting targets can be achieved through measur-ing system data online.The effectiveness of the CIIG is verified through two missile and target engagement scenarios.
基金Projects(U1562215,41674130,41404088)supported by the National Natural Science Foundation of ChinaProjects(2013CB228604,2014CB239201)supported by the National Basic Research Program of China+1 种基金Projects(2016ZX05027004-001,2016ZX05002006-009)supported by the National Oil and Gas Major Projects of ChinaProject(15CX08002A)supported by the Fundamental Research Funds for the Central Universities,China
文摘The classical elastic impedance (EI) inversion method, however, is based on the L2-norm misfit function and considerably sensitive to outliers, assuming the noise of the seismic data to be the Guassian-distribution. So we have developed a more robust elastic impedance inversion based on the Ll-norm misfit function, and the noise is assumed to be non-Gaussian. Meanwhile, some regularization methods including the sparse constraint regularization and elastic impedance point constraint regularization are incorporated to improve the ill-posed characteristics of the seismic inversion problem. Firstly, we create the Ll-norm misfit objective function of pre-stack inversion problem based on the Bayesian scheme within the sparse constraint regularization and elastic impedance point constraint regularization. And then, we obtain more robust elastic impedances of different angles which are less sensitive to outliers in seismic data by using the IRLS strategy. Finally, we extract the P-wave and S-wave velocity and density by using the more stable parameter extraction method. Tests on synthetic data show that the P-wave and S-wave velocity and density parameters are still estimated reasonable with moderate noise. A test on the real data set shows that compared to the results of the classical elastic impedance inversion method, the estimated results using the proposed method can get better lateral continuity and more distinct show of the gas, verifying the feasibility and stability of the method.
文摘该文首先简要介绍了无线电掩星探测技术及其发展现状和传统Abel变换方法面临的问题。为改进传统Abel变换反演方法,利用电子密度廓线的分离假设,引进了分离假设反演法。随后利用国际电离层参考模式IRI2007给出1000个掩星事件截面的模拟数据及COSMIC卫星星座的一天实测数据,进行比较计算,并对结果进行了分析,验证了分离假设反演法的有效性。文中还给出了垂直电子总量VTEC(Vertical Total Electron Content)先验场的获取途径。最后,对分离假设反演法的进一步研究的方向进行了探讨。
文摘In real-time strategy(RTS)games,the ability of recognizing other players’goals is important for creating artifical intelligence(AI)players.However,most current goal recognition methods do not take the player’s deceptive behavior into account which often occurs in RTS game scenarios,resulting in poor recognition results.In order to solve this problem,this paper proposes goal recognition for deceptive agent,which is an extended goal recognition method applying the deductive reason method(from general to special)to model the deceptive agent’s behavioral strategy.First of all,the general deceptive behavior model is proposed to abstract features of deception,and then these features are applied to construct a behavior strategy that best matches the deceiver’s historical behavior data by the inverse reinforcement learning(IRL)method.Final,to interfere with the deceptive behavior implementation,we construct a game model to describe the confrontation scenario and the most effective interference measures.
基金supported by the National Natural Science Foundation of China (70901074 71001104)
文摘An integration-centric approach is proposed to handle inadequate information in the system readiness level (SRL) assessment using the evidential reasoning (ER) algorithm. Current SRL assessment approaches cannot be applied to handle inadequate information as the input. The ER-based approach is proposed to synthesize inadequate input information and an integration-centric perspective is applied to reduce the computational complexity. Two case studies are performed to validate the efficiency of the proposed approach. And these studies are also performed to study how the inadequate information will affect the assessment result. And the differences caused by the system's structure. The importance of the system's structure in the SRL assessment is demonstrated and the contributions made in this study are summarized as conclusions.