An iridium (Ⅲ) bis[(4,6-difluorophenyl)pyridinato-N, C^2][6-(6'-(4"-( 5"-phenyl- 1", 3", 4"-oxadiazole-2"-yl) phenoxy) hexyloxy picolinate) was synthesized and characterized by IH NMR and elementary ...An iridium (Ⅲ) bis[(4,6-difluorophenyl)pyridinato-N, C^2][6-(6'-(4"-( 5"-phenyl- 1", 3", 4"-oxadiazole-2"-yl) phenoxy) hexyloxy picolinate) was synthesized and characterized by IH NMR and elementary analysis in order to study the effect of ancillary ligand of the oxadiazole-based picolinic acid derivative on optophysical properties of its iridium complex, and further to obtain an iridium complex with highly-efficient blue emission. The thermal stability, UV absorption and photoluminescent properties of this iridium complex were investigated. Compared with iridium (Ⅲ) bis[(4,6-difluorophenyl)pyridinato-N, C^2](picolinate) reported as a highly-efficient blue electroluminescent material, this iridium complex bearing an oxadiazole-based picolinic acid derivative presents higher thermal stability, more intense UV absorption at 291 nm and similar photoluminescent spectrum peaked at 469 nm. This indicates that tuning ancillary ligand of picolinic acid with an oxadiazole unit can improve the optophysical properties of its iridium complex.展开更多
Pt and Ir coatings were produced by double glow plasma technology on the surface of Ti alloy substrates. The chemical compositions of the coatings were determined by X-ray diffraction and X-ray photoelectron spectrosc...Pt and Ir coatings were produced by double glow plasma technology on the surface of Ti alloy substrates. The chemical compositions of the coatings were determined by X-ray diffraction and X-ray photoelectron spectroscopy. The microstructure and morphology of the coatings were observed by scanning electron microscopy. The hardness and elastic modulus of the coatings were estimated by nanoindentation. The measurements of adhesive forces of the coatings were performed with scratch tester. The results indicated that the Pt and Ir coatings displayed the preferred (220) orientation due to the initial nuclei with preferred growth on the surface of the substrates. The interface between the Pt coating and substrate exhibited no evidence of delamination. The Ir coating was composed of irregular columnar grains with many nanovoids at the interface between the coating and substrate. The mean values of hardness for Pt and Ir coatings were 0.9 GPa and 9 GPa, respectively. The elastic modulus of Pt and Ir coatings were 178 GPa and 339 GPa, respectively. The adhesive forces of the Pt and Ir coatings were about 66.4 N and 55 N, respectively. The Pt and Ir coatings adhered well to the Ti alloy substrates.展开更多
A new functionalized heteroleptic iridium complex coordinated with 1-phenylisoquinoline (1-piq) and a functionalized fl-diketone (G1), Ir(1-piq)2G1, was synthesized and characterized by 1H-NMR, mass spectrometry...A new functionalized heteroleptic iridium complex coordinated with 1-phenylisoquinoline (1-piq) and a functionalized fl-diketone (G1), Ir(1-piq)2G1, was synthesized and characterized by 1H-NMR, mass spectrometry and elemental analysis. The larger conjugation of the replacement of acetylacetone (acac) by a functionalizedβ-diketonate ligand led to a significant decrease in the HOMO level toward vacuum level, while Ir(1-piq)2G1 and Ir(1-piq)2(acac) showed red phosphorescent emissions of about 620 nm in dichloromethane solution. The phosphorescent polymer light-emitting devices were achieved, with the complexes incorporated with polyfluorene (PFO) as a host polymer doped with 30% of 5-(4-biphenylyl)-2-(4-tert-butylphenyl)-1,3,4-oxadiazole (PBD) as electron transport material. The energy transfer mechanism of the devices was also discussed. The lower EL performance of Ir(1-piq)2G1 is ascribed to the inter-ligand energy transfer, indicating that it is important to control the energy level of the cyclometalated and ancillary ligands.展开更多
Organic light-emitting diodes(OLEDs)have important applications in the field of next-generation displays and lighting,and phosphorescent iridium complexes are an important class of electroluminescent phosphorescent ma...Organic light-emitting diodes(OLEDs)have important applications in the field of next-generation displays and lighting,and phosphorescent iridium complexes are an important class of electroluminescent phosphorescent materials.In this paper,Ir(bmppy)_(3),tris(4-methyl-2,5-diphenylpyridine)iridium,was synthesized and elvaluted for photo-physical characteristics.Single crystals suitale for X-ray diffraction(XRD)were grown from a mixture solvent of dichloromethane and absolute ethanol.The composition and structur of Ir(bmppy)_(3)were determined by element analysis,NMR spectra and XRD.The complex crystallizes in the monoclinic symmetry with the space group P21/c with a slightly distorted octahedral configuration.As measured by UV-Visible and photoluminescence spectra,Ir(bmppy)_(3) displays a maximum emission at at 527 nm at ambient temperature,a typical green-emitting profile.The complex has potential for application in the OLED industry.展开更多
Platinum-Iridium alloy films were prepared by MOCVD on Mo substrate using metal-acetylacetonate precursors. Effects of deposition conditions on composition, microstructure and mechanical properties were determined. In...Platinum-Iridium alloy films were prepared by MOCVD on Mo substrate using metal-acetylacetonate precursors. Effects of deposition conditions on composition, microstructure and mechanical properties were determined. In these experimental conditions, the purities of films are high and more than 99.0%. The films are homogeneous and monophase solid solution of Pt and Ir. Weight percentage of platinum are much higher than iridium in the alloy. Lattice constant of the alloy changes with the platinum composition. Iridium composition showing an up-down-up trend at the precursor temperature of 190~230℃ and the deposition temperature at 400~ 550℃. The hardness of Pt-Ir alloys prepared by MOCVD is three times more than the alloys prepared by casting.展开更多
To achieve efficient catalytic hydrogenation of CO_(2)to formate,we employed a transmetallation strategy to develop three novel iridium(Ⅰ)complexes,which feature N‑heterocyclic carbene‑nitrogen‑phosphine ligands(CNP)...To achieve efficient catalytic hydrogenation of CO_(2)to formate,we employed a transmetallation strategy to develop three novel iridium(Ⅰ)complexes,which feature N‑heterocyclic carbene‑nitrogen‑phosphine ligands(CNP)and a 1,5‑cyclooctadiene(cod)molecule:[Ir(cod)(κ^(3)‑CN^(im)P)]Cl(1⁃Cl),[Ir(cod)(κ^(3)‑CN^(im)P)]PF6(1⁃PF_(6)),and[Ir(cod)(κ^(3)‑CNHP)]Cl(2).The^(1)H NMR spectra,^(31)P NMR spectra,and high‑resolution mass spectra verify the successful synthesis of these three Ir(Ⅰ)‑CNP complexes.Furthermore,single‑crystal X‑ray diffraction analysis confirms the coordination geometry of 1⁃PF_(6).The strong Ir—C(NHC)bond suggests that the carbene carbon plays an enhanced anchoring role to iridium due to its strongσ‑donating ability,which helps stabilize the active metal species during CO_(2)hydrogenation.As a result,the Ir(Ⅰ)‑CNP complex exhibits remarkable activity and long catalytic lifetime for the hydrogenation of CO_(2)to formate,reaching a turnover number(TON)of 1.16×10^(6)after 150 h at a high temperature of 170℃,which was a relatively high value among all the Ir complexes.CCDC:2384071,1⁃PF_(6).展开更多
基金Projects(20772101,50473046) supported by the National Natural Science Foundation of ChinaProject(2007FJ3017) supported by the Hunan Provincial Science Foundation, ChinaProject(07C764) supported by the Science Foundation of the Education Department of Hunan Province,China
文摘An iridium (Ⅲ) bis[(4,6-difluorophenyl)pyridinato-N, C^2][6-(6'-(4"-( 5"-phenyl- 1", 3", 4"-oxadiazole-2"-yl) phenoxy) hexyloxy picolinate) was synthesized and characterized by IH NMR and elementary analysis in order to study the effect of ancillary ligand of the oxadiazole-based picolinic acid derivative on optophysical properties of its iridium complex, and further to obtain an iridium complex with highly-efficient blue emission. The thermal stability, UV absorption and photoluminescent properties of this iridium complex were investigated. Compared with iridium (Ⅲ) bis[(4,6-difluorophenyl)pyridinato-N, C^2](picolinate) reported as a highly-efficient blue electroluminescent material, this iridium complex bearing an oxadiazole-based picolinic acid derivative presents higher thermal stability, more intense UV absorption at 291 nm and similar photoluminescent spectrum peaked at 469 nm. This indicates that tuning ancillary ligand of picolinic acid with an oxadiazole unit can improve the optophysical properties of its iridium complex.
基金supported by the National Natural Science Foundation of China(50872055/E020703)Funding for Outstanding Doctoral Dissertation in NUAA(BCXJ1109)the Funding of Jiangsu Innovation Program for Graduate Education(CXLX11_0207)
文摘Pt and Ir coatings were produced by double glow plasma technology on the surface of Ti alloy substrates. The chemical compositions of the coatings were determined by X-ray diffraction and X-ray photoelectron spectroscopy. The microstructure and morphology of the coatings were observed by scanning electron microscopy. The hardness and elastic modulus of the coatings were estimated by nanoindentation. The measurements of adhesive forces of the coatings were performed with scratch tester. The results indicated that the Pt and Ir coatings displayed the preferred (220) orientation due to the initial nuclei with preferred growth on the surface of the substrates. The interface between the Pt coating and substrate exhibited no evidence of delamination. The Ir coating was composed of irregular columnar grains with many nanovoids at the interface between the coating and substrate. The mean values of hardness for Pt and Ir coatings were 0.9 GPa and 9 GPa, respectively. The elastic modulus of Pt and Ir coatings were 178 GPa and 339 GPa, respectively. The adhesive forces of the Pt and Ir coatings were about 66.4 N and 55 N, respectively. The Pt and Ir coatings adhered well to the Ti alloy substrates.
基金Project(50803008) supported by the National Natural Science Foundation of ChinaProject(2002CB613403) supported by the Ministry of Science and Technology (MOST) of China+1 种基金Project(09JJ6085) supported by the Natural Science Foundation of Hunan Province,ChinaProject(08hjyh02) supported by the Open Project Program of Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education,China
文摘A new functionalized heteroleptic iridium complex coordinated with 1-phenylisoquinoline (1-piq) and a functionalized fl-diketone (G1), Ir(1-piq)2G1, was synthesized and characterized by 1H-NMR, mass spectrometry and elemental analysis. The larger conjugation of the replacement of acetylacetone (acac) by a functionalizedβ-diketonate ligand led to a significant decrease in the HOMO level toward vacuum level, while Ir(1-piq)2G1 and Ir(1-piq)2(acac) showed red phosphorescent emissions of about 620 nm in dichloromethane solution. The phosphorescent polymer light-emitting devices were achieved, with the complexes incorporated with polyfluorene (PFO) as a host polymer doped with 30% of 5-(4-biphenylyl)-2-(4-tert-butylphenyl)-1,3,4-oxadiazole (PBD) as electron transport material. The energy transfer mechanism of the devices was also discussed. The lower EL performance of Ir(1-piq)2G1 is ascribed to the inter-ligand energy transfer, indicating that it is important to control the energy level of the cyclometalated and ancillary ligands.
文摘Organic light-emitting diodes(OLEDs)have important applications in the field of next-generation displays and lighting,and phosphorescent iridium complexes are an important class of electroluminescent phosphorescent materials.In this paper,Ir(bmppy)_(3),tris(4-methyl-2,5-diphenylpyridine)iridium,was synthesized and elvaluted for photo-physical characteristics.Single crystals suitale for X-ray diffraction(XRD)were grown from a mixture solvent of dichloromethane and absolute ethanol.The composition and structur of Ir(bmppy)_(3)were determined by element analysis,NMR spectra and XRD.The complex crystallizes in the monoclinic symmetry with the space group P21/c with a slightly distorted octahedral configuration.As measured by UV-Visible and photoluminescence spectra,Ir(bmppy)_(3) displays a maximum emission at at 527 nm at ambient temperature,a typical green-emitting profile.The complex has potential for application in the OLED industry.
基金supported by National Natural Science Foundation of China(Grant No.50771051)the Natural Science Foundation of Yunnan,China(Program No2003PY10and No2011FZ220)
文摘Platinum-Iridium alloy films were prepared by MOCVD on Mo substrate using metal-acetylacetonate precursors. Effects of deposition conditions on composition, microstructure and mechanical properties were determined. In these experimental conditions, the purities of films are high and more than 99.0%. The films are homogeneous and monophase solid solution of Pt and Ir. Weight percentage of platinum are much higher than iridium in the alloy. Lattice constant of the alloy changes with the platinum composition. Iridium composition showing an up-down-up trend at the precursor temperature of 190~230℃ and the deposition temperature at 400~ 550℃. The hardness of Pt-Ir alloys prepared by MOCVD is three times more than the alloys prepared by casting.
文摘To achieve efficient catalytic hydrogenation of CO_(2)to formate,we employed a transmetallation strategy to develop three novel iridium(Ⅰ)complexes,which feature N‑heterocyclic carbene‑nitrogen‑phosphine ligands(CNP)and a 1,5‑cyclooctadiene(cod)molecule:[Ir(cod)(κ^(3)‑CN^(im)P)]Cl(1⁃Cl),[Ir(cod)(κ^(3)‑CN^(im)P)]PF6(1⁃PF_(6)),and[Ir(cod)(κ^(3)‑CNHP)]Cl(2).The^(1)H NMR spectra,^(31)P NMR spectra,and high‑resolution mass spectra verify the successful synthesis of these three Ir(Ⅰ)‑CNP complexes.Furthermore,single‑crystal X‑ray diffraction analysis confirms the coordination geometry of 1⁃PF_(6).The strong Ir—C(NHC)bond suggests that the carbene carbon plays an enhanced anchoring role to iridium due to its strongσ‑donating ability,which helps stabilize the active metal species during CO_(2)hydrogenation.As a result,the Ir(Ⅰ)‑CNP complex exhibits remarkable activity and long catalytic lifetime for the hydrogenation of CO_(2)to formate,reaching a turnover number(TON)of 1.16×10^(6)after 150 h at a high temperature of 170℃,which was a relatively high value among all the Ir complexes.CCDC:2384071,1⁃PF_(6).