This paper is devoted to the study of the shape of the free boundary for a threedimensional axisymmetric incompressible impinging jet.To be more precise,we will show that the free boundary is convex to the fluid,provi...This paper is devoted to the study of the shape of the free boundary for a threedimensional axisymmetric incompressible impinging jet.To be more precise,we will show that the free boundary is convex to the fluid,provided that the uneven ground is concave to the fluid.展开更多
We study the incompressible limit of classical solutions to compressible ideal magneto-hydrodynamics in a domain with a flat boundary.The boundary condition is characteristic and the initial data is general.We first e...We study the incompressible limit of classical solutions to compressible ideal magneto-hydrodynamics in a domain with a flat boundary.The boundary condition is characteristic and the initial data is general.We first establish the uniform existence of classical solutions with respect to the Mach number.Then,we prove that the solutions converge to the solution of the incompressible MHD system.In particular,we obtain a stronger convergence result by using the dispersion of acoustic waves in the half space.展开更多
We discuss the properties of incompressible pairwise incompressible surfaces in a knot complement by using twist crossing number. Let K be a pretzel knot or rational knot that its twistindex is less than 6, and l...We discuss the properties of incompressible pairwise incompressible surfaces in a knot complement by using twist crossing number. Let K be a pretzel knot or rational knot that its twistindex is less than 6, and let F be an incompressible pairwise incompressible surface in S 3-K. Then F is a punctured sphere.展开更多
We investigate the uniform regularity and zero kinematic viscosity-magnetic diffusion limit for the incompressible viscous magnetohydrodynamic equations with the Navier boundary conditions on the velocity and perfectl...We investigate the uniform regularity and zero kinematic viscosity-magnetic diffusion limit for the incompressible viscous magnetohydrodynamic equations with the Navier boundary conditions on the velocity and perfectly conducting conditions on the magnetic field in a smooth bounded domain Ω⊂R^(3).It is shown that there exists a unique strong solution to the incompressible viscous magnetohydrodynamic equations in a finite time interval which is independent of the viscosity coefficient and the magnetic diffusivity coefficient.The solution is uniformly bounded in a conormal Sobolev space and W^(1,∞)(Ω)which allows us to take the zero kinematic viscosity-magnetic diffusion limit.Moreover,we also get the rates of convergence in L^(∞)(0,T;L^(2)),L^(∞)(0,T;W^(1,p))(2≤p<∞),and L^(∞)((0,T)×Ω)for some T>0.展开更多
The central subject of studying in this paper is incompressible pairwise incompressible surfaces in link complements. Let L be a non-split prime link and let F be an incompressible pairwise incompressible surface in S...The central subject of studying in this paper is incompressible pairwise incompressible surfaces in link complements. Let L be a non-split prime link and let F be an incompressible pairwise incompressible surface in S3 - L. We discuss the properties that the surface F intersects with 2-spheres in S3 - L. The intersection forms a topological graph consisting of a collection of circles and saddle-shaped discs. We introduce topological graphs and their moves (R-move and S2-move), and define the characteristic number of the topological graph for F∩S2±. The characteristic number is unchanged under the moves. In fact, the number is exactly the Euler Characteristic number of the surface when a graph satisfies some conditions. By these ways, we characterize the properties of incompressible pairwise incompressible surfaces in alternating (or almost alternating) link complements. We prove that the genus of the surface equals zero if the component number of F∩S2+(or F∩S2-) is less than five and the graph is simple for alternating or almost alternating links. Furthermore, one can prove that the genus of the surface is zero if #(F) ≤8.展开更多
In this paper, we prove the existence and uniqueness of the weak solution to the incompressible Navier-Stokes-Landau-Lifshitz equations in two-dimension with finite energy.The main techniques is the Faedo-Galerkin app...In this paper, we prove the existence and uniqueness of the weak solution to the incompressible Navier-Stokes-Landau-Lifshitz equations in two-dimension with finite energy.The main techniques is the Faedo-Galerkin approximation and weak compactness theory.展开更多
This paper is joint with [27]. The authors prove in this article the existence and reveal its structure of uniform attractor for a two-dimensional nonautonomous incompressible non-Newtonian fluid with a new class of e...This paper is joint with [27]. The authors prove in this article the existence and reveal its structure of uniform attractor for a two-dimensional nonautonomous incompressible non-Newtonian fluid with a new class of external forces.展开更多
The object of this article is to study the boundary layer appearing at large Reynolds number (small viscosity ε) incompressible Navier Stokes Equation in a cylinder in space dimension three. These are Navier-Stokes...The object of this article is to study the boundary layer appearing at large Reynolds number (small viscosity ε) incompressible Navier Stokes Equation in a cylinder in space dimension three. These are Navier-Stokes equations linearized around a fixed velocity flow: the authors study the convergence as ε →0 to the inviscid type equations, the authors define the correctors needed to resolve the boundary layer and obtain convergence results valid up to the boundary and the authors also study the behavior of the boundary layer when, simultaneously, time and the Reynolds number tend to infinity, in which case the boundary layer tends to pervade the whole domain.展开更多
In this paper,the inviscid and non-resistive limit is justified for the local-in-time solutions to the equations of nonhomogeneous incompressible magneto-hydrodynamics (MHD)in R3.We prove that as the viscosity and r...In this paper,the inviscid and non-resistive limit is justified for the local-in-time solutions to the equations of nonhomogeneous incompressible magneto-hydrodynamics (MHD)in R3.We prove that as the viscosity and resistivity go to zero,the solution of the Cauchy problem for the nonhomogeneous incompressible MHD system converges to the solution of the ideal MHD system.The convergence rate is also obtained simultaneously.展开更多
In this article, we mainly study the local equation of energy for weak solutions of 3D MHD equations. We define a dissipation term D(u, B) that steins from an eventual lack of smoothness in the solution, and then ob...In this article, we mainly study the local equation of energy for weak solutions of 3D MHD equations. We define a dissipation term D(u, B) that steins from an eventual lack of smoothness in the solution, and then obtain a local equation of energy for weak solutions of 3D MHD equations. Finally, we consider the 2D case at the end of this article.展开更多
The purpose of this article is to develop and analyze least-squares approximations for the incompressible magnetohydrodynamic equations. The major advantage of the least-squares finite element method is that it is not...The purpose of this article is to develop and analyze least-squares approximations for the incompressible magnetohydrodynamic equations. The major advantage of the least-squares finite element method is that it is not subjected to the so-called Ladyzhenskaya-Babuska-Brezzi (LBB) condition. The authors employ least-squares functionals which involve a discrete inner product which is related to the inner product in H^-1(Ω).展开更多
In this paper we derive LPS's criterion for the breakdown of classical solutions to the incompressible nematic liquid crystal flow, a simplified version of Ericksen-Leslie system modeling the hydrodynamic evolution o...In this paper we derive LPS's criterion for the breakdown of classical solutions to the incompressible nematic liquid crystal flow, a simplified version of Ericksen-Leslie system modeling the hydrodynamic evolution of nematic liquid crystals in R^3. We show that if 0 〈 T 〈 +∞ is the maximal time interval for the unique smooth solution u ∈ C^∞([0, T),R^3),then |u|+|△d|∈L^q([0,T],L^p(R^3)),where p and q satisfy the Ladyzhenskaya-Prodi-Serrin's condition:3/p+2/q=1 and p∈(3,+∞].展开更多
This paper studies the trajectory asymptotic behavior of a non-autonomous in- compressible non-Newtonian fluid in 3D bounded domains. In appropriate topologies, the authors prove the existence of the uniform trajector...This paper studies the trajectory asymptotic behavior of a non-autonomous in- compressible non-Newtonian fluid in 3D bounded domains. In appropriate topologies, the authors prove the existence of the uniform trajectory attractor for the translation semigroup acting on the united trajectory space.展开更多
In this note,we give a new proof to the energy conservation for the weak solutions of the incompressible 3D MHD equations.Moreover,we give the lower bounds for possible singular solutions to the incompressible 3D MHD ...In this note,we give a new proof to the energy conservation for the weak solutions of the incompressible 3D MHD equations.Moreover,we give the lower bounds for possible singular solutions to the incompressible 3D MHD equations.展开更多
Two-phase, incompressible, immiscible flow in porous media is governed by a coupled system of nonlinear partial differential equations. The pressure equation is elliptic, whereas the concentration equation is paraboli...Two-phase, incompressible, immiscible flow in porous media is governed by a coupled system of nonlinear partial differential equations. The pressure equation is elliptic, whereas the concentration equation is parabolic, and both are treated by the collocation scheme. Existence and uniqueness of solutions of the algorithm are proved. A optimal convergence analysis is given for the method.展开更多
In this article, we are concerned with the strong solutions for the incompress- ible fluid models of Korteweg type in a bounded domain Ω СR^3. We prove the existence and uniqueness of local strong solutions to the i...In this article, we are concerned with the strong solutions for the incompress- ible fluid models of Korteweg type in a bounded domain Ω СR^3. We prove the existence and uniqueness of local strong solutions to the initial boundary value problem. We point out that in this article we allow the existence of initial vacuum provided initial data satisfy a compatibility condition.展开更多
This article considers the global regularity to the initial-boundary value problem for the 2D incompressible MHD with mixed partial dissipation and magnetic diffusion. To overcome the difficulty caused by the vanishin...This article considers the global regularity to the initial-boundary value problem for the 2D incompressible MHD with mixed partial dissipation and magnetic diffusion. To overcome the difficulty caused by the vanishing viscosities, we first establish the elliptic system for ux and by, which are estimated by 7 × us and × by, respectively. Then, we establish the global estimates for × u and ×b.展开更多
In this paper, we consider the nonlinear instability of incompressible Euler equations. If a steady density is non-monotonic, then the smooth steady state is a nonlinear instability. First, we use variational method t...In this paper, we consider the nonlinear instability of incompressible Euler equations. If a steady density is non-monotonic, then the smooth steady state is a nonlinear instability. First, we use variational method to find a dominant eigenvalue which is important in the construction of approximate solutions, then by energy technique and analytic method, we obtain the dynamical instability result.展开更多
In this work we prove the weighted Gevrey regularity of solutions to the incompressible Euler equation with initial data decaying polynomially at infinity. This is motivated by the well-posedness problem of vertical b...In this work we prove the weighted Gevrey regularity of solutions to the incompressible Euler equation with initial data decaying polynomially at infinity. This is motivated by the well-posedness problem of vertical boundary layer equation for fast rotating fluid. The method presented here is based on the basic weighted L;-estimate, and the main difficulty arises from the estimate on the pressure term due to the appearance of weight function.展开更多
In this paper, we consider the short time classical solution to a simplified hydro-dynamic flow modeling incompressible, nematic liquid crystal materials in R3. We establisha criterion for possible breakdown of such s...In this paper, we consider the short time classical solution to a simplified hydro-dynamic flow modeling incompressible, nematic liquid crystal materials in R3. We establisha criterion for possible breakdown of such solutions at a finite time. More precisely, if (u, d)is smooth up to time T provided that ∫T 0‖△×u(t, ·)‖BMO(R3) +‖△d(t, ·)‖8L4(R3)dt 〈∞.展开更多
基金supported in part by the National Natural Science Foundation of China(12101088)the Natural Science Foundation of Sichuan Province(2022NSFSC1858)。
文摘This paper is devoted to the study of the shape of the free boundary for a threedimensional axisymmetric incompressible impinging jet.To be more precise,we will show that the free boundary is convex to the fluid,provided that the uneven ground is concave to the fluid.
文摘We study the incompressible limit of classical solutions to compressible ideal magneto-hydrodynamics in a domain with a flat boundary.The boundary condition is characteristic and the initial data is general.We first establish the uniform existence of classical solutions with respect to the Mach number.Then,we prove that the solutions converge to the solution of the incompressible MHD system.In particular,we obtain a stronger convergence result by using the dispersion of acoustic waves in the half space.
文摘We discuss the properties of incompressible pairwise incompressible surfaces in a knot complement by using twist crossing number. Let K be a pretzel knot or rational knot that its twistindex is less than 6, and let F be an incompressible pairwise incompressible surface in S 3-K. Then F is a punctured sphere.
基金supported partially by NSFC(11671193,11971234)supported partially by the China Postdoctoral Science Foundation(2019M650581).
文摘We investigate the uniform regularity and zero kinematic viscosity-magnetic diffusion limit for the incompressible viscous magnetohydrodynamic equations with the Navier boundary conditions on the velocity and perfectly conducting conditions on the magnetic field in a smooth bounded domain Ω⊂R^(3).It is shown that there exists a unique strong solution to the incompressible viscous magnetohydrodynamic equations in a finite time interval which is independent of the viscosity coefficient and the magnetic diffusivity coefficient.The solution is uniformly bounded in a conormal Sobolev space and W^(1,∞)(Ω)which allows us to take the zero kinematic viscosity-magnetic diffusion limit.Moreover,we also get the rates of convergence in L^(∞)(0,T;L^(2)),L^(∞)(0,T;W^(1,p))(2≤p<∞),and L^(∞)((0,T)×Ω)for some T>0.
基金Supported by NSF of China (11071106)supported by Liaoning Educational Committee (2009A418)
文摘The central subject of studying in this paper is incompressible pairwise incompressible surfaces in link complements. Let L be a non-split prime link and let F be an incompressible pairwise incompressible surface in S3 - L. We discuss the properties that the surface F intersects with 2-spheres in S3 - L. The intersection forms a topological graph consisting of a collection of circles and saddle-shaped discs. We introduce topological graphs and their moves (R-move and S2-move), and define the characteristic number of the topological graph for F∩S2±. The characteristic number is unchanged under the moves. In fact, the number is exactly the Euler Characteristic number of the surface when a graph satisfies some conditions. By these ways, we characterize the properties of incompressible pairwise incompressible surfaces in alternating (or almost alternating) link complements. We prove that the genus of the surface equals zero if the component number of F∩S2+(or F∩S2-) is less than five and the graph is simple for alternating or almost alternating links. Furthermore, one can prove that the genus of the surface is zero if #(F) ≤8.
文摘In this paper, we prove the existence and uniqueness of the weak solution to the incompressible Navier-Stokes-Landau-Lifshitz equations in two-dimension with finite energy.The main techniques is the Faedo-Galerkin approximation and weak compactness theory.
基金Sponsored by the NSFC (10901121,10826091 and 10771139)NSF for Postdoctors of China (20090460952)+2 种基金NSF of Zhejiang Province (Y6080077)NSF of Wenzhou University (2008YYLQ01)by the Zhejiang Youth Teacher Training Project and Wenzhou 551 Project
文摘This paper is joint with [27]. The authors prove in this article the existence and reveal its structure of uniform attractor for a two-dimensional nonautonomous incompressible non-Newtonian fluid with a new class of external forces.
文摘The object of this article is to study the boundary layer appearing at large Reynolds number (small viscosity ε) incompressible Navier Stokes Equation in a cylinder in space dimension three. These are Navier-Stokes equations linearized around a fixed velocity flow: the authors study the convergence as ε →0 to the inviscid type equations, the authors define the correctors needed to resolve the boundary layer and obtain convergence results valid up to the boundary and the authors also study the behavior of the boundary layer when, simultaneously, time and the Reynolds number tend to infinity, in which case the boundary layer tends to pervade the whole domain.
基金partly supported by NSFC(1080111110971171)+1 种基金the Natural Science Foundation of Fujian Province of China(2010J05011)the Fundamental Research Funds for the Central Universities(2010121006)
文摘In this paper,the inviscid and non-resistive limit is justified for the local-in-time solutions to the equations of nonhomogeneous incompressible magneto-hydrodynamics (MHD)in R3.We prove that as the viscosity and resistivity go to zero,the solution of the Cauchy problem for the nonhomogeneous incompressible MHD system converges to the solution of the ideal MHD system.The convergence rate is also obtained simultaneously.
基金Supported by NSFC (10976026)supported by the Fundamental Research Funds for the Central Universities (11QZR18)the Research Funds for high-level talents of Huaqiao University (12BS232)
文摘In this article, we mainly study the local equation of energy for weak solutions of 3D MHD equations. We define a dissipation term D(u, B) that steins from an eventual lack of smoothness in the solution, and then obtain a local equation of energy for weak solutions of 3D MHD equations. Finally, we consider the 2D case at the end of this article.
基金supported by the National Basic Research Program of China (2005CB321701)NSF of mathematics research special fund of Hebei Province(08M005)
文摘The purpose of this article is to develop and analyze least-squares approximations for the incompressible magnetohydrodynamic equations. The major advantage of the least-squares finite element method is that it is not subjected to the so-called Ladyzhenskaya-Babuska-Brezzi (LBB) condition. The authors employ least-squares functionals which involve a discrete inner product which is related to the inner product in H^-1(Ω).
基金Supported by National Natural Science Foundation of China (10976026, 11271305, 11301439, 11226174)
文摘In this paper we derive LPS's criterion for the breakdown of classical solutions to the incompressible nematic liquid crystal flow, a simplified version of Ericksen-Leslie system modeling the hydrodynamic evolution of nematic liquid crystals in R^3. We show that if 0 〈 T 〈 +∞ is the maximal time interval for the unique smooth solution u ∈ C^∞([0, T),R^3),then |u|+|△d|∈L^q([0,T],L^p(R^3)),where p and q satisfy the Ladyzhenskaya-Prodi-Serrin's condition:3/p+2/q=1 and p∈(3,+∞].
基金Supported by NSFC(51209242,2011BAB09B01,11271290)NSF of Zhejiang Province(LY17A010011)
文摘This paper studies the trajectory asymptotic behavior of a non-autonomous in- compressible non-Newtonian fluid in 3D bounded domains. In appropriate topologies, the authors prove the existence of the uniform trajectory attractor for the translation semigroup acting on the united trajectory space.
基金supported by a Research Grant of Andong National University NRF-2015R1A5A1009350 and NRF-2016R1D1A1B03930422。
文摘In this note,we give a new proof to the energy conservation for the weak solutions of the incompressible 3D MHD equations.Moreover,we give the lower bounds for possible singular solutions to the incompressible 3D MHD equations.
基金Supported by NNSF of China(0441005)Research Fund for Doctoral Program of High Education by China State Education Ministry
文摘Two-phase, incompressible, immiscible flow in porous media is governed by a coupled system of nonlinear partial differential equations. The pressure equation is elliptic, whereas the concentration equation is parabolic, and both are treated by the collocation scheme. Existence and uniqueness of solutions of the algorithm are proved. A optimal convergence analysis is given for the method.
基金Supported by NSF (10531020) of Chinathe Programof 985 Innovation Engineering on Information in Xiamen University (2004-2007) and NCETXMU
文摘In this article, we are concerned with the strong solutions for the incompress- ible fluid models of Korteweg type in a bounded domain Ω СR^3. We prove the existence and uniqueness of local strong solutions to the initial boundary value problem. We point out that in this article we allow the existence of initial vacuum provided initial data satisfy a compatibility condition.
基金supported by the Scientific Research Funds of Huaqiao University(14BS309)the National Natural Science Foundation of China(11526091)
文摘This article considers the global regularity to the initial-boundary value problem for the 2D incompressible MHD with mixed partial dissipation and magnetic diffusion. To overcome the difficulty caused by the vanishing viscosities, we first establish the elliptic system for ux and by, which are estimated by 7 × us and × by, respectively. Then, we establish the global estimates for × u and ×b.
基金supported by the NSFC (11071094)supported by the NSFC (The Youth Foundation) (10901068)CCNU Project (CCNU09A01004)
文摘In this paper, we consider the nonlinear instability of incompressible Euler equations. If a steady density is non-monotonic, then the smooth steady state is a nonlinear instability. First, we use variational method to find a dominant eigenvalue which is important in the construction of approximate solutions, then by energy technique and analytic method, we obtain the dynamical instability result.
基金supported by NSF of China(11422106)the NSF of China(11171261)+1 种基金Fok Ying Tung Education Foundation(151001)supported by“Fundamental Research Funds for the Central Universities”
文摘In this work we prove the weighted Gevrey regularity of solutions to the incompressible Euler equation with initial data decaying polynomially at infinity. This is motivated by the well-posedness problem of vertical boundary layer equation for fast rotating fluid. The method presented here is based on the basic weighted L;-estimate, and the main difficulty arises from the estimate on the pressure term due to the appearance of weight function.
基金supported by the Natural Science Key Foundation of Universities of Fujian Province(JZ160406)Natural Science Foundation of Fujian Province(2015J01582)
文摘In this paper, we consider the short time classical solution to a simplified hydro-dynamic flow modeling incompressible, nematic liquid crystal materials in R3. We establisha criterion for possible breakdown of such solutions at a finite time. More precisely, if (u, d)is smooth up to time T provided that ∫T 0‖△×u(t, ·)‖BMO(R3) +‖△d(t, ·)‖8L4(R3)dt 〈∞.